9,922 research outputs found

    Cloud Storage and Bioinformatics in a private cloud deployment: Lessons for Data Intensive research

    No full text
    This paper describes service portability for a private cloud deployment, including a detailed case study about Cloud Storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). Our Cloud Storage design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture and user support. Experiments for data services (backup automation, data recovery and data migration) are performed and results confirm backup automation is completed swiftly and is reliable for data-intensive research. The data recovery result confirms that execution time is in proportion to quantity of recovered data, but the failure rate increases in an exponential manner. The data migration result confirms execution time is in proportion to disk volume of migrated data, but again the failure rate increases in an exponential manner. In addition, benefits of CCAF are illustrated using several bioinformatics examples such as tumour modelling, brain imaging, insulin molecules and simulations for medical training. Our Cloud Storage solution described here offers cost reduction, time-saving and user friendliness

    Cloud Bioinformatics in a private cloud deployment

    No full text

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    Grid infrastructures for secure access to and use of bioinformatics data: experiences from the BRIDGES project

    Get PDF
    The BRIDGES project was funded by the UK Department of Trade and Industry (DTI) to address the needs of cardiovascular research scientists investigating the genetic causes of hypertension as part of the Wellcome Trust funded (£4.34M) cardiovascular functional genomics (CFG) project. Security was at the heart of the BRIDGES project and an advanced data and compute grid infrastructure incorporating latest grid authorisation technologies was developed and delivered to the scientists. We outline these grid infrastructures and describe the perceived security requirements at the project start including data classifications and how these evolved throughout the lifetime of the project. The uptake and adoption of the project results are also presented along with the challenges that must be overcome to support the secure exchange of life science data sets. We also present how we will use the BRIDGES experiences in future projects at the National e-Science Centre

    Towards data grids for microarray expression profiles

    Get PDF
    The UK DTI funded Biomedical Research Informatics Delivered by Grid Enabled Services (BRIDGES) project developed a Grid infrastructure through which research into the genetic causes of hypertension could be supported by scientists within the large Wellcome Trust funded Cardiovascular Functional Genomics project. The BRIDGES project had a focus on developing a compute Grid and a data Grid infrastructure with security at its heart. Building on the work within BRIDGES, the BBSRC funded Grid enabled Microarray Expression Profile Search (GEMEPS) project plans to provide an enhanced data Grid infrastructure to support richer queries needed for the discovery and analysis of microarray data sets, also based upon a fine-grained security infrastructure. This paper outlines the experiences gained within BRIDGES and outlines the status of the GEMEPS project, the open challenges that remain and plans for the future

    Report of the user requirements and web based access for eResearch workshops

    Get PDF
    The User Requirements and Web Based Access for eResearch Workshop, organized jointly by NeSC and NCeSS, was held on 19 May 2006. The aim was to identify lessons learned from e-Science projects that would contribute to our capacity to make Grid infrastructures and tools usable and accessible for diverse user communities. Its focus was on providing an opportunity for a pragmatic discussion between e-Science end users and tool builders in order to understand usability challenges, technological options, community-specific content and needs, and methodologies for design and development. We invited members of six UK e-Science projects and one US project, trying as far as possible to pair a user and developer from each project in order to discuss their contrasting perspectives and experiences. Three breakout group sessions covered the topics of user-developer relations, commodification, and functionality. There was also extensive post-meeting discussion, summarized here. Additional information on the workshop, including the agenda, participant list, and talk slides, can be found online at http://www.nesc.ac.uk/esi/events/685/ Reference: NeSC report UKeS-2006-07 available from http://www.nesc.ac.uk/technical_papers/UKeS-2006-07.pd

    Distributed BLAST in a grid computing context

    Get PDF
    The Basic Local Alignment Search Tool (BLAST) is one of the best known sequence comparison programs available in bioinformatics. It is used to compare query sequences to a set of target sequences, with the intention of finding similar sequences in the target set. Here, we present a distributed BLAST service which operates over a set of heterogeneous Grid resources and is made available through a Globus toolkit v.3 Grid service. This work has been carried out in the context of the BRIDGES project, a UK e-Science project aimed at providing a Grid based environment for biomedical research. Input consisting of multiple query sequences is partitioned into sub-jobs on the basis of the number of idle compute nodes available and then processed on these in batches. To achieve this, we have implemented our own Java-based scheduler which distributes sub-jobs across an array of resources utilizing a variety of local job scheduling systems

    From access and integration to mining of secure genomic data sets across the grid

    Get PDF
    The UK Department of Trade and Industry (DTI) funded BRIDGES project (Biomedical Research Informatics Delivered by Grid Enabled Services) has developed a Grid infrastructure to support cardiovascular research. This includes the provision of a compute Grid and a data Grid infrastructure with security at its heart. In this paper we focus on the BRIDGES data Grid. A primary aim of the BRIDGES data Grid is to help control the complexity in access to and integration of a myriad of genomic data sets through simple Grid based tools. We outline these tools, how they are delivered to the end user scientists. We also describe how these tools are to be extended in the BBSRC funded Grid Enabled Microarray Expression Profile Search (GEMEPS) to support a richer vocabulary of search capabilities to support mining of microarray data sets. As with BRIDGES, fine grain Grid security underpins GEMEPS

    User-oriented security supporting inter-disciplinary life science research across the grid

    Get PDF
    Understanding potential genetic factors in disease or development of personalised e-Health solutions require scientists to access a multitude of data and compute resources across the Internet from functional genomics resources through to epidemiological studies. The Grid paradigm provides a compelling model whereby seamless access to these resources can be achieved. However, the acceptance of Grid technologies in this domain by researchers and resource owners must satisfy particular constraints from this community - two of the most critical of these constraints being advanced security and usability. In this paper we show how the Internet2 Shibboleth technology combined with advanced authorisation infrastructures can help address these constraints. We demonstrate the viability of this approach through a selection of case studies across the complete life science spectrum

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward
    corecore