338 research outputs found

    A method and framework to evaluate system architecture candidates on reliability criteria

    Get PDF
    Philips Lighting is moving from a lighting component business towards lighting solutions business in professional environments, offering lighting solutions for energy saving, productivity and effect creation. In these solutions (consisting of light sources, sensors and control devices) networked based systems are essential and software makes it possible to add intelligence into the system. Reliability aspects at system level are getting more important and architectural analysis is done during brainstorm sessions to evaluate possible system architecture candidates on reliability criteria. It is crucial that the reliability of the architectures is evaluated more formally, for example based on a model of each of the architectural candidates. This report describes the design, the implementation, and the experimentation with such a method that predicts the reliability and other non-functional criteria of the architecture candidates. Lighting entities, their attributes, behavior, and relationships are the core of evaluating a system on reliability criteria. This approach relies heavily on modeling principle. The results of the project show whether such an approach can been used to determine and evaluate an architecture candidate, and give input on how architecture evaluation can be done in the future

    Adaptation-Aware Architecture Modeling and Analysis of Energy Efficiency for Software Systems

    Get PDF
    This thesis presents an approach for the design time analysis of energy efficiency for static and self-adaptive software systems. The quality characteristics of a software system, such as performance and operating costs, strongly depend upon its architecture. Software architecture is a high-level view on software artifacts that reflects essential quality characteristics of a system under design. Design decisions made on an architectural level have a decisive impact on the quality of a system. Revising architectural design decisions late into development requires significant effort. Architectural analyses allow software architects to reason about the impact of design decisions on quality, based on an architectural description of the system. An essential quality goal is the reduction of cost while maintaining other quality goals. Power consumption accounts for a significant part of the Total Cost of Ownership (TCO) of data centers. In 2010, data centers contributed 1.3% of the world-wide power consumption. However, reasoning on the energy efficiency of software systems is excluded from the systematic analysis of software architectures at design time. Energy efficiency can only be evaluated once the system is deployed and operational. One approach to reduce power consumption or cost is the introduction of self-adaptivity to a software system. Self-adaptive software systems execute adaptations to provision costly resources dependent on user load. The execution of reconfigurations can increase energy efficiency and reduce cost. If performed improperly, however, the additional resources required to execute a reconfiguration may exceed their positive effect. Existing architecture-level energy analysis approaches offer limited accuracy or only consider a limited set of system features, e.g., the used communication style. Predictive approaches from the embedded systems and Cloud Computing domain operate on an abstraction that is not suited for architectural analysis. The execution of adaptations can consume additional resources. The additional consumption can reduce performance and energy efficiency. Design time quality analyses for self-adaptive software systems ignore this transient effect of adaptations. This thesis makes the following contributions to enable the systematic consideration of energy efficiency in the architectural design of self-adaptive software systems: First, it presents a modeling language that captures power consumption characteristics on an architectural abstraction level. Second, it introduces an energy efficiency analysis approach that uses instances of our power consumption modeling language in combination with existing performance analyses for architecture models. The developed analysis supports reasoning on energy efficiency for static and self-adaptive software systems. Third, to ease the specification of power consumption characteristics, we provide a method for extracting power models for server environments. The method encompasses an automated profiling of servers based on a set of restrictions defined by the user. A model training framework extracts a set of power models specified in our modeling language from the resulting profile. The method ranks the trained power models based on their predicted accuracy. Lastly, this thesis introduces a systematic modeling and analysis approach for considering transient effects in design time quality analyses. The approach explicitly models inter-dependencies between reconfigurations, performance and power consumption. We provide a formalization of the execution semantics of the model. Additionally, we discuss how our approach can be integrated with existing quality analyses of self-adaptive software systems. We validated the accuracy, applicability, and appropriateness of our approach in a variety of case studies. The first two case studies investigated the accuracy and appropriateness of our modeling and analysis approach. The first study evaluated the impact of design decisions on the energy efficiency of a media hosting application. The energy consumption predictions achieved an absolute error lower than 5.5% across different user loads. Our approach predicted the relative impact of the design decision on energy efficiency with an error of less than 18.94%. The second case study used two variants of the Spring-based community case study system PetClinic. The case study complements the accuracy and appropriateness evaluation of our modeling and analysis approach. We were able to predict the energy consumption of both variants with an absolute error of no more than 2.38%. In contrast to the first case study, we derived all models automatically, using our power model extraction framework, as well as an extraction framework for performance models. The third case study applied our model-based prediction to evaluate the effect of different self-adaptation algorithms on energy efficiency. It involved scientific workloads executed in a virtualized environment. Our approach predicted the energy consumption with an error below 7.1%, even though we used coarse grained measurement data of low accuracy to train the input models. The fourth case study evaluated the appropriateness and accuracy of the automated model extraction method using a set of Big Data and enterprise workloads. Our method produced power models with prediction errors below 5.9%. A secondary study evaluated the accuracy of extracted power models for different Virtual Machine (VM) migration scenarios. The results of the fifth case study showed that our approach for modeling transient effects improved the prediction accuracy for a horizontally scaling application. Leveraging the improved accuracy, we were able to identify design deficiencies of the application that otherwise would have remained unnoticed

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    Architecture-based Evolution of Dependable Software-intensive Systems

    Get PDF
    This cumulative habilitation thesis, proposes concepts for (i) modelling and analysing dependability based on architectural models of software-intensive systems early in development, (ii) decomposition and composition of modelling languages and analysis techniques to enable more flexibility in evolution, and (iii) bridging the divergent levels of abstraction between data of the operation phase, architectural models and source code of the development phase

    Certifying Software Component Performance Specifications

    Get PDF
    In component-based software engineering, performance prediction approaches support the design of business information systems on the architectural level. They are based on behavior specifications of components. This work presents a round-trip approach for using, assessing, and certifying the accuracy of parameterized, probabilistic, deterministic, and concurrent performance specifications. Its applicability and effectiveness are demonstrated using the CoCoME benchmark

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability
    • …
    corecore