
38

R
o

b
er

t
H

ei
n

ri
ch

Architecture-based Evolution of
Dependable Software-intensive
Systems

Robert Heinrich

The Karlsruhe Series on
Software Design

and Quality

38

Ev
o

lu
ti

o
n

 o
f

D
ep

en
d

ab
le

 S
o

ft
w

ar
e-

in
te

n
si

ve
 S

ys
te

m
s

Robert Heinrich

Architecture-based Evolution of
Dependable Software-intensive Systems

The Karlsruhe Series on Software Design and Quality
Volume 38

Dependability of Software-intensive Systems group
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Architecture-based Evolution of
Dependable Software-intensive Systems

by
Robert Heinrich

This document – excluding parts marked otherwise, the cover, pictures and graphs –
is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Print on Demand 2023 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-1294-3
DOI: 10.5445/KSP/1000157920

Habilitation, Karlsruher Institut für Technologie
KASTEL – Institut für Informationssicherheit und Verlässlichkeit, 2022
Tag des Habilitationskolloquiums: 14. Dezember 2022

Abstract

Software permeates many areas of our daily life. However, this software often

shows quality flaws from which critical issues may arise, as also reported

manifold in the press. Recent innovations lead to complex systems that com-

bine contributions from several heterogeneous disciplines on which software

has an essential influence. Thus, these systems are denoted as software-

intensive systems. Highly relevant quality properties of software-intensive

systems comprise performance, maintainability, and confidentiality. Qual-

ity properties like these are commonly subsumed under the broader term

dependability.

Enabling the development and, in particular, the evolution of today’s and

tomorrow’s increasingly heterogeneous and complex, dependable software-

intensive systems requires to address the following challenges. First, highly

relevant quality properties strongly depend on architectural design decisions.

There is little support for reasoning about quality properties, especially main-

tainability and confidentiality, in early development. As a result, issues can be

identified only late and cause high effort. Second, not only software-intensive

systems evolve but also the modelling languages and analysis techniques

to reason about the systems have to evolve to satisfy emerging or chang-

ing requirements on modelling and analysis due to novel system properties.

However, there is little flexibility in recent approaches to model-driven engi-

neering. Third, software-intensive systems typically drift away from their

development models due to adaptive and evolutionary changes. Observing

the system in operation is a feasible approach to keep track of the system.

However, there is a gap of abstraction between the data elicited by observation

in operation and the architectural models used in development. Evolutionary

changes of source code not reflected in architectural models is another reason

for systems drifting away. Both result in loss of architectural knowledge and

thus makes the initial development models increasingly less useful.

In this cumulative habilitation thesis, we propose and evaluate concepts

to address these challenges. First, we describe concepts for modelling and

i

Abstract

analysing especially maintainability and confidentiality based on architec-

tural models of software-intensive systems early in development. Second, we

present concepts for decomposition and composition of modelling languages

and analysis techniques for software-intensive systems to enable more flexi-

bility in their evolution. Third, we show concepts for bridging the divergent

levels of abstraction between data of the operation phase, architectural models

and source code of the development phase.

ii

Zusammenfassung

Software durchdringt viele Bereiche unseres täglichen Lebens. Allerdings

weist diese Software oft Qualitätsmängel auf, aus denen sich kritische Situatio-

nen ergeben können, über die auch vielfach in der Presse berichtet wird. Neus-

te Innovationen führen zu komplexen Systemen, die Beiträge aus mehreren

heterogenen Disziplinen in sich vereinen, auf die Software einen wesentlichen

Einfluss hat. Daher werden diese Systeme als software-intensive Systeme be-

zeichnet. Hochrelevante Qualitätseigenschaften software-intensiver Systeme

umfassen Effizienz, Wartbarkeit und Vertraulichkeit. Qualitätseigenschaften

wie diese werden gemeinhin unter dem umfassenderen Begriff Verlässlichkeit

subsumiert.

Um die Entwicklung und insbesondere die Evolution dieser zunehmend hete-

rogenen und komplexen, zuverlässigen software-intensiven Systeme heute

und in Zukunft zu ermöglichen, müssen die folgenden Herausforderungen

angegangen werden. Erstens, hochrelevante Qualitätseigenschaften hängen

stark von Entwurfsentscheidungen bezüglich der Systemarchitektur ab. Es

gibt wenig Unterstützung zur Untersuchung von Qualitätseigenschaften,

insbesondere Wartbarkeit und Vertraulichkeit, in der frühen Entwicklung.

Dadurch können Probleme erst spät erkannt werden und verursachen einen

hohen Aufwand. Zweitens, nicht nur software-intensive Systeme evolvieren,

sondern auch die Modellierungssprachen und Analysetechniken zur Unter-

suchung dieser Systeme müssen evolvieren, um neu entstehende oder sich

ändernde Anforderungen an die Modellierung und Analyse zu erfüllen, die

sich aus neuen Systemeigenschaften ergeben. Aktuelle Ansätze des Model-

Driven Engineering weisen jedoch wenig Flexibilität auf. Drittens, aufgrund

adaptiver und evolutionärer Änderungen weichen software-intensive Sys-

teme typischerweise zunehmend von ihren Entwicklungsmodellen ab. Das

Beobachten des Systems im Betrieb ist ein praktikabler Ansatz, um den Über-

blick über das System zu behalten. Es besteht jedoch eine Abstraktionslücke

zwischen den durch Beobachtung im Betrieb erhobenen Daten und den in der

Entwicklung verwendeten Architekturmodellen. Evolutionäre Änderungen

iii

Zusammenfassung

des Quellcodes, die nicht in Architekturmodellen widergespiegelt werden,

sind ein weiterer Grund für das Abweichen von Systemen. Beides führt zu

einem Verlust an Architekturwissen und macht damit die ursprünglichen

Entwicklungsmodelle immer weniger brauchbarer.

In dieser kumulativen Habilitationsschrift schlagen wir Konzepte zur Bewäl-

tigung dieser Herausforderungen vor und evaluieren diese. Wir beschreiben

erstens Konzepte zur Modellierung und Analyse insbesondere von Wartbar-

keit und Vertraulichkeit in der frühen Entwicklung basierend auf Architek-

turmodellen software-intensiver Systeme. Zweitens stellen wir Konzepte zur

Dekomposition und Komposition von Modellierungssprachen und Analyse-

techniken für software-intensive Systeme vor, um mehr Flexibilität bei deren

Evolution zu ermöglichen. Wir zeigen drittens Konzepte zur Überbrückung

der divergierenden Abstraktionsebenen zwischen Daten der Betriebsphase,

Architekturmodellen und Quellcode der Entwicklungsphase.

iv

Acknowledgements

First of all, I would like to thank Professor Ralf Reussner for great advice to

foster my research and the creation of a pleasant and productive working

atmosphere. My appreciation also goes to the reviewers of this habilitation

thesis for their support and valuable time they put into reviewing this work.

I would like to thank all the employees of the DSiS research group for excit-

ing cooperation and the nice team spirit. Special appreciation goes to the

doctoral researchers I supervised and I am currently supervising, Doktor

Kiana Busch, Doktor Misha Stittmatter, Doktor Stephan Seifermann, Emre

Taspolatoglu, Maximilian Walter, Sandro Koch, Frederik Reiche, and Sebas-

tian Hahner, as well as to the students I supervised, especially Alessandro

Giusa, Tobias Pöppke, Nicolas Boltz, and David Monschein, for intensive and

fruitful collaboration, helpful discussions, and valuable contributions to my

research.

I would also like to thank all my collaboration partners who supported my

research in various ways in the last years, especially Professor Tomáš Bureš,

Professor Francisco Durán, Professor Petr Hnětynka, Professor Bernhard

Rumpe, Doctor Carolyn Talcott, Professor Birgit Vogel-Heuser, and Doktor

Steffen Zschaler, as well as the German Research Foundation (DFG), the

German Federal Ministry of Education and Research (BMBF), the Ministry of

Science, Research and theArts Baden-Württemberg (MWKBW), the Karlsruhe

Institute of Technology, and my industrial collaboration partners.

Last, but not the least, I would like to thank my family for their support while

preparing this habilitation thesis. Special thanks to my wife and children for

their encouragement and patience during this time-intensive endeavour.

v

Contents

Abstract . i

Zusammenfassung . iii

Acknowledgements . v

List of Figures . xi

1 Introduction . 1
1.1 Motivation . 1

1.1.1 Architecture-based Modelling and Analysis of De-

pendability . 3

1.1.2 Evolution of Modelling Languages and Analysis Tech-

niques . 4

1.1.3 System Development and Operation 5

1.2 Challenges, Objectives, and Research Questions 6

1.3 Overview of Contributions 9

1.4 Outline . 11

2 Terms and Definitions . 13
2.1 Basic Terms . 13

2.2 Modelling and Analysis Terms 14

3 State of the Art . 19
3.1 Architecture-based Modelling and Analysis of Dependability 19

3.1.1 Architecture-based Modelling and Analysis of Main-

tainability . 20

3.1.2 Architecture-based Modelling and Analysis of Confi-

dentiality . 28

vii

Contents

3.2 Decomposition and Composition of Modelling Languages and

Analysis Techniques . 32

3.2.1 Decomposition and Composition of Modelling Lan-

guages . 32

3.2.2 Decomposition and Composition of Analysis Tech-

niques . 35

3.3 Bridging the Divergent Levels of Abstraction between Devel-

opment and Operation . 36

3.4 Concluding Remark . 39

4 Approaches to Architecture-based Evolution of Dependable Software-
intensive Systems . 41
4.1 Publication Overview . 41

4.2 Discussion of Contributions 43

4.2.1 Architecture-based Modelling and Analysis of Main-

tainability and Confidentiality 43

4.2.2 Decomposition and Composition of Modelling Lan-

guages and Analysis Techniques 52

4.2.3 Bridging the Divergent Levels of Abstraction between

Development and Operation 58

5 Architecture-based Change Impact Analysis in Cross-disciplinary
Automated Production Systems . 63

6 Architecture-based Change Impact Analysis in Information Systems
and Business Processes . 65

7 Data-driven Software Architecture for Analyzing Confidentiality . 67

8 Detecting Violations of Access Control and Information Flow Policies
in Data Flow Diagrams . 69

9 Architectural Attack Propagation Analysis for Identifying Confiden-
tiality Issues . 71

10 A Layered Reference Architecture for Metamodels to Tailor Quality
Modeling and Analysis . 73

11 Integrating Business Process Simulation and Information System
Simulation for Performance Prediction 75

viii

Contents

12 Architectural Run-time Models for Performance and Privacy Analysis
in Dynamic Cloud Applications . 77

13 Architectural Runtime Models for Integrating Runtime Observations
and Component-based Models . 79

14 Enabling Consistency between Software Artefacts for Software Adap-
tion and Evolution . 81

15 Conclusion . 83
15.1 Summary . 83

15.2 Outlook . 84

15.2.1 Architecture-based Quality Modelling and Analysis . 84

15.2.2 Decomposition and Composition of Modelling Lan-

guages and Analysis Techniques 89

15.2.3 Bridging the Divergent Levels of Abstraction between

Development and Operation 92

Bibliography . 95

ix

List of Figures

2.1 Relationships between concepts of modelling languages and analy-

sis techniques: analysis features that are implemented by analysis

components require (req.) modelling language features that are

implemented by modelling language components (some elements

omitted for clarity). 16

xi

1 Introduction

This chapter starts with a motivation of the topic of this habilitation thesis in

Section 1.1. Then, Section 1.2 introduces the research goals and questions to

be addressed. Section 1.3 gives an overview of contributions. The outline of

the thesis is described in Section 1.4.

1.1 Motivation

Software is an essential part in various facets of our daily life. Mobility,

production, energy supply, economics, and infrastructure, to name only a

few examples, strongly depend on software. This software is not always of

high quality. Critical issues that arose from poor software quality are even

reported manifold publicly in the press. For example, Denver International

Airport opened, delayed, and over budget, due to a dysfunctional automated

baggage-handling system [75]; a new online banking system at TSB Bank led

to access and confidentiality issues for its customers, and eventually forced

the CEO to step down [182]; and a supply-chain attack against SolarWinds

inserted a Trojan Horse into installation packages enabling attackers to access

customers’ systems running the affected products [126]
1
.

Recent innovations, like the Internet of Things, production automation,

smart mobility, and cyber-physical systems, brought forth systems that com-

bine contributions from several heterogeneous disciplines, such as software,

electrics/electronics, and mechanics, and are involved in complex organisa-

tional processes. In these systems, software contributes an essential influence

factor on parts of the system from other disciplines. Therefore, these systems

are denoted as software-intensive systems [102].

1
Parts of this motivation are taken from the Introduction chapter of my book Composing

Model-Based Analysis Tools [114].

1

1 Introduction

Besides functional correctness, highly relevant quality properties for today’s

and tomorrow’s software-intensive systems include, for instance, perfor-

mance, as directly perceived by users, for example in form of response time

when invoking system services, maintainability, as significant decision factor

for system evolution, and confidentiality, as important legal constraint for

system design [114].

Quality properties like the aforementioned are commonly grouped under

the broader term dependability [20, 83]. Dependability of a computer system

is generally understood as the “justifiable confidence that it will perform

specified actions or deliver specified results in a trustworthy and timely

manner” [195]. Dependability has various facets and there are many different

quality properties that make a system dependable. An overview is given in

[83]. In order to keep this thesis concise, we focus on three very different

but equally important quality properties of dependable software-intensive

systems — performance, maintainability, and confidentiality. Performance
refers to timing behaviour and resource efficiency of a system. Performance

(efficiency) is defined in [128] “relative to the amount of resources used

under stated conditions”. Maintainability is commonly understood as the

capability of a system to be modified. Maintainability is defined as “degree of

effectiveness and efficiencywithwhich a product or system can bemodified by

the intended maintainers” in [128]. Confidentiality ensures that “information

is not made available or disclosed to unauthorised individuals, entities, or

processes” [129].

As described by Eusgeld and Freiling [83], the inclusion of performance in a

dependability definition reaches back to a standard of the ISO/Technical Com-

mittee 176 [131] and, according to Avizienis et al. [20], comes from a definition

from the telephony area. Maintainability has already been considered as a

property of dependability by Avizienis et al. [20] when discussing threats to

dependability that may be evoked by maintaining the system. Confidentiality

has been mentioned by Avizienis et al. [20] when discussing the relationship

between dependability and security. Building upon this work, confidentiality

is listed as a property of dependability in [83].

2

1.1 Motivation

1.1.1 Architecture-based Modelling and Analysis of
Dependability

The quality properties performance, maintainability, and confidentiality

strongly depend on design decisions regarding the system architecture. For

the domain of information systems [189] it has been shown that the influence

of software architecture design on quality properties is so strong, that knowl-

edge about the architecture is sufficient to make good quality predictions

[206, 248]. A software architecture specifies the “fundamental concepts or

properties of a system in its environment embodied in its elements, relation-

ships, and in the principles of its design and evolution” [130]. Consequently,

a software architecture represents on the one hand a structural plan of the

system and on the other hand a set of documented design decisions [206].

In literature, several situations have been described in which engineers ben-

efit from analysing quality properties based on the software architecture

[206, 248]. For example, when making design decisions regarding system

structuring or defining component boundaries, analyses enable to predict the

implications of these design decision on quality properties. Another example

is refactoring or evolution (see Chapter 2) where it is easier and more efficient

to investigate the implications of design decisions on the quality properties

of the systems by modelling and analysing the architectural design compared

to implementing the change in source code and investigating implications in

retrospect.

Given the definition of software architecture and the benefits it brings for

quality prediction, there is nothing which restricts these to pure software

systems. Our assumption is that the notion of architecture-based modelling

and analysis of quality properties can be applied to software-intensive systems

in general. This is because both, software architecture as well as system

architecture, represent (i) a structural plan (or a collection of structural plans)

in terms of elements and relationships, and (ii) a set of design decisions which

makes both a reasonable basis for quality analysis.

In order to ensure high quality of software-intensive systems, research and

practice is interested in approaches to analyse the system design for quality

properties. This needs to be done already in early development to identify and

fix emerging issues efficiently. Studies on software engineering economics

show the earlier issues can be fixed, the more cost-efficient the fix is [37].

Owing to the strong dependencies of quality properties on architectural

3

1 Introduction

design decisions, the system architecture is one of the earliest artefacts based

on which quality analysis can be conducted reasonably.

While there is research on performance engineering on architectural level

for decades that brought forth promising approaches (e.g., [231, 280, 206]),

there is little support for modelling and analysing the quality properties main-

tainability and confidentiality on architectural level. Furthermore, current

approaches (discussed in Section 3.1) are limited to software and neglect

dependencies to other parts of a software-intensive system and its context.

1.1.2 Evolution of Modelling Languages and Analysis
Techniques

Although modelling and analysis are powerful means to enable well-founded

design decisions in development, adaptation, and evolution (see Chapter 2) of

software-intensive systems, they lead to new challenges, because modelling

languages and analysis techniques also have to evolve in order to satisfy

new or changing requirements that result from novel system properties. For

example, the appearance of self-adaptive systems has prompted changes as

this kind of systems cannot be investigated properly using strict models and

static analysis techniques. There is a huge variety of different languages for

modelling software-intensive systems and for analysing their quality prop-

erties (to be used depending on the size and complexity of the systems and

the available details [114]). These languages are specific to individual quality

properties, types of systems, tools, or development paradigms. Developing

a language that encompasses all possible combinations of these aspects is

just infeasible in practical settings. Initiatives to unify and extend existing

modelling languages and analysis techniques in the past have resulted in

languages and analysis techniques that were hard to maintain and overly

complex. However, when comparing different languages for modelling and

analysing different quality properties of software-intensive systems, sub-

stantial overlaps can be identified, for example, for modelling structure and

behaviour of the systems [109].

Recent software-intensive systems combine contributions from several disci-

plines, such as software, electrics/electronics, mechanics, and organisational

processes. Consequently, also the analyses for each of these individual disci-

plines need to be combined to adequately investigate the overall behaviour

4

1.1 Motivation

and quality of the system. The purpose-specific composition of modelling

languages and analysis techniques is a challenging but unavoidable issue for

today’s and tomorrow’s increasingly heterogeneous and complex systems

[114].

Existing modelling languages and analysis techniques, however, often show

monolithic structures. They are seldom designed so that parts can be extended

and reused for specific purposes in different contexts. Indeed, an approach

like Palladio [206], for example, already provides a modelling language and

analysis techniques for reasoning about performance, reliability, maintainabil-

ity, and other quality properties based on software architecture design [117].

However, the Palladio approach, like similar model-driven approaches, relies

on a monolithic modelling language and monolithic analysis techniques. This

makes modification, extension, and partial reuse of the modelling language

and analysis techniques challenging when providing support for new quality

properties and disciplines [114]. In consequence, the internal structure of

Palladio’s modelling language and tools implementing the analysis techniques

eroded over time due to, for example, feature overload, feature scattering,

uncontrolled growth of dependencies, instance incompatibility, and incom-

patible extensions [241, 113]. Even more importantly, there is no support for

leveraging commonalities between analysis techniques provided.

1.1.3 System Development and Operation

The quality of software-intensive systems must be ensured not only dur-

ing the initial development (also called design time, development time, or

Dev-time in literature) but also must be maintained during system operation

(also called runtime, operation time, or Ops-time in literature). Throughout

their lifetime these systems must react to a variety of different events, such

as outage of resources, peak loads, emerging requirements, and changes of

infrastructures or third party services [107]. Addressing these events requires

strong interaction of evolution activities on development level and adapta-

tion activities on operation level. Examples of adaptive and evolutionary

changes include the replication or migration of a database component [106],

replacement of one algorithm implementation by another [202], or more

profound modifications of the system design like adding a new feature or

changing the architecture style, for example, moving from monolithic system

to microservice architecture [107].

5

1 Introduction

Architectural models that are used in development of a software-intensive

system usually differ from those created during operation of the system

with regard to purpose, content, and, in particular, the level of abstraction

[110]. Consequences of these differences are limited reusability of develop-

ment models in operation, loss of knowledge about the architecture, and

little phase-spanning consideration of the architecture [107]. Once software-

intensive systems are in operation, they typically drift away from their initial

development models due to adaptive and evolutionary changes [187]. Run-

time models [28] can be kept in sync with the system in operation. However,

typical runtime models are close to the level of abstraction of the implementa-

tion in source code [258, 28]. Although useful for self-adaptation, for example,

such a low level of abstraction makes it difficult for humans to understand

the system and keep overview of the system as it evolves. Moreover, run-

time models may grow in detail or become unnecessarily complex due to

various modifications throughout the system’s lifetime. This severely limits

comprehensibility of this kind of runtime models for humans during system

evolution [107].

Furthermore, there is a risk that source code of the implemented system

drifts away from its architectural models in case changes are not properly

reflected due to the increasing dynamics of adaptive and evolutionary changes

and development cycles that get increasingly shorter due to the growing

popularity of practices such as DevOps [48].

1.2 Challenges, Objectives, and Research
Questions

Enabling the development and, in particular, the evolution of today’s and

tomorrow’s increasingly heterogeneous and complex, dependable software-

intensive systems requires to address the challenges described in this sec-

tion.

Challenge 1, Little support for early reasoning about quality prop-
erties: Highly relevant quality properties strongly depend on architectural

design decisions. There is little support for reasoning about quality properties,

especially maintainability and confidentiality, in early development. As a

result, issues can be identified only late or even occur once the system is

6

1.2 Challenges, Objectives, and Research Questions

in operation. This typically leads to dramatic increase in effort required for

fixing these issues [37]. As there is little support for reasoning about quality

properties in early development, there is also little support for comparing

design alternatives based on these quality properties in early development.

Again, this may result in unfavourable design decisions that, in turn, create

high effort in case they need to be revised later. Furthermore, little support for

reasoning about quality properties and for comparing design alternatives in

early development may result in the need to implement prototypes to estimate

the quality properties before developing the actual system. This is costly

in any case and infeasible in practical settings for some quality properties,

especially for maintainability and confidentiality.

Challenge 2, Little flexibility of modelling languages and analysis
techniques: Not only the software-intensive system itself evolves but also

the modelling languages and analysis techniques to reason about the system

have to evolve to satisfy emerging or changing requirements on modelling

and analysis. However, there is little flexibility in recent approaches to model-

driven engineering for purpose-specific creation, extension, and reuse of

modelling languages and analysis techniques. This is in contrast to object-

oriented software design (as coined for example by Grady Booch [42]) where

decomposition and composition concepts are established. There exist several

commonalities between object-oriented software design and engineering of

modelling languages (especially metamodel design) and analysis techniques,

for example in the notion of classes, their attributes and dependencies, in-

heritance hierarchies, and packaging (a detailed discussion is given in [241]).

However, the transfer of concepts from object-oriented software design to

support decomposition and composition of modelling languages and analysis

techniques is yet to show.

Challenge 3, Divergent levels of abstraction between development and
operation: Software-intensive systems typically drift away from their initial

development models due to adaptive and evolutionary changes. Observing

the system in operation is a feasible approach to gather information about

behaviour and status of the system and even about its context. Based on

the concept of a control loop (such as the MAPE loop [282]) the system in

operation is observed to gather this information and to plan and execute

adaptions to handle upcoming issues. However, there is a gap of abstraction

between the data elicited by observation in operation and the architectural

models used in development. Evolutionary changes of source code without

changing the architectural model is another reason for software-intensive

7

1 Introduction

systems drifting away from their initial architectural models. Both result

in loss of architectural knowledge and thus makes the initial development

models increasingly less useful or even entirely useless for reasoning about

quality properties of the system for upcoming changes.

In order to address aforementioned challenges we derive the following objec-

tives and research questions of the thesis:

Objective 1, Modelling and analysing maintainability and confiden-
tiality on architectural level: The first objective of this work is to allow

for reasoning about dependability of software-intensive systems early in

development by investigating concepts for modelling and analysing espe-

cially maintainability and confidentiality based on the system architecture.

This objective addresses Challenge 1 (little support for early reasoning about

quality properties) and results in the following research questions:

Research Question 1.1: How can the maintainability of software-intensive

systems be modelled and analysed based on the system architecture?

Research Question 1.2: How can the confidentiality of software-intensive

systems be modelled and analysed based on the system architecture?

Objective 2, Decomposition and composition of modelling languages
and analysis techniques: Another objective of this work is to provide

more flexibility in model-driven engineering of software-intensive systems

by investigating concepts for decomposition and composition specifically for

model-based analyses of software-intensive systems. This objective addresses

Challenge 2 (little flexibility of modelling languages and analysis techniques).

In order to achieve this objective we raise the following research question:

Research Question 2: How can decomposition and composition concepts

as known from object-oriented software design be transferred to modelling

languages and analysis techniques for reasoning about the dependability of

software-intensive systems?

Objective 3, Bridging the divergent levels of abstraction between de-
velopment and operation: The last objective of this work is to preserve

architectural knowledge in adaptation and evolution of software-intensive

systems by investigating concepts for bridging the divergent levels of abstrac-

tion between data of the operation phase, architectural models and source

8

1.3 Overview of Contributions

code of the development phase. This objective addresses Challenge 3 (diver-

gent levels of abstraction between development and operation) and results in

the following research question:

Research Question 3: How to bridge the divergent levels of abstraction

between data of the operation phase, architectural models and source code of

the development phase?

1.3 Overview of Contributions

This section gives a brief overview of contributions described in this the-

sis. A detailed introduction and discussion of the contributions is given in

Chapter 4.

In order to answer Research Question 1.1, we investigate the maintainability

of a software-intensive system by analysing the impact of changes while

propagating through the system. The maintainability of a software-intensive

system correlates with the impact of certain changes in the system. A change

in the system may cause further changes. This is denoted as change prop-
agation. Consequently, the maintainability of a system is determined not

only by characteristics of the system but also by the changes the system

faces [50]. We exemplary focus on two different kinds of software-intensive

systems: (i) automated production systems as cross-disciplinary systems and

special class of mechatronic systems [219, 41] that besides software typically

comprise electrical/electronical and mechanical parts, and (ii) information

systems [189] as software systems that are closely involved in business pro-

cesses [281] and an organisational environment. We chose these two kinds of

software-intensive systems because, due to their differences, they represent

extreme poles and therefore open up a space in which other systems can

be classified. First, we propose an approach to architecture-based change

impact analysis in automated production systems. We specify modelling

languages to model the automated production system on architectural level

and maintenance-relevant annotations. We investigate algorithms and rules

for change propagation analysis. This contribution is described in [112] and

Chapter 5 of this thesis. Moreover, we propose an approach to architecture-

based change impact analysis in business processes and involved information

systems building upon the modelling concepts in [115]. We specify modelling

languages and investigate algorithms and rules that allow to consider the

9

1 Introduction

mutual dependencies between business processes and information systems

in change propagation analysis. This contribution is described in [211] and

Chapter 6 of this thesis.

In order to answer Research Question 1.2, we investigate the architecture-

based modelling and analysis of confidentiality. Confidentiality is closely

related to data and data processing which is handled by the software parts of

a software-intensive system. Consequently, we focus on the software parts

of a software-intensive system to answer this research question. We first

introduce data flows in an architecture description language [130] to describe

data and data processing. This enables the investigation of confidentiality

issues in the architectural model by proposing an analysis technique using

logic programming. This contribution is described in [227] and Chapter 7

of this thesis. Moreover, we propose an extended data flow diagram syntax

that supports modelling both, information flow and access control, in the

same language as well as data flow diagram semantics that support various

types of confidentiality analyses. This contribution is described in [228] and

Chapter 8 of this thesis. Further, we propose an architecture-based approach

for analysing the dependencies between system vulnerabilities and access

control policies to identify attack paths and confidentiality issues. Note, we

focus on cyber attacks in this thesis and do not consider physical attacks.

This contribution is described in [269] and Chapter 9 of this thesis.

In order to answer Research Question 2, we investigate the applicability of de-

composition and composition concepts known from object-oriented software

design and the idea of a reference architecture known from software engineer-

ing to metamodels for quality modelling and analysis of software-intensive

systems to systematically create, extend, and reuse metamodel parts. This

contribution is described in [109] and Chapter 10 of this thesis. Furthermore,

we investigate the composition of analysis techniques with a special focus

on performance. We propose concepts for modelling and analysing business

processes and human actor behaviour and discuss composition operators for

performance simulators for business processes and information systems. This

contribution is described in [115] and Chapter 11 of this thesis. We generalise

these composition operators for performance simulators in Chapter 4 and give

examples of how these are implemented in existing simulators in [113].

In order to answer Research Question 3, we first propose foundations to keep

the architectural model consistent with the system in operation by consider-

ing operation-level adaptation and development-level evolution as twomutual

10

1.4 Outline

interwoven processes. We develop the notion of an architectural runtime

model that is usable for automated adaptation and is simultaneously com-

prehensible for humans during evolution. This contribution is described in

[106] and Chapter 12 of this thesis. Then, we detail and extend the modelling

concepts introduced in [106] with regard to correspondence maintenance,

transformation pipeline specification, and workload modelling to align ar-

chitectural models used in development and operation. This contribution is

described in [107] and Chapter 13 of this thesis. Furthermore, we propose

an approach to keep various representations of the system — architectural

model, source code, and monitoring data — consistent throughout evolution

and adaption building upon [107]. The approach allows for self-validation

and reduces monitoring overhead while observing the system in operation.

This contribution is described in [184] and Chapter 14 of this thesis.

1.4 Outline

The remainder of this thesis is organised as follows. In Chapter 2, we introduce

relevant terms and definitions. Chapter 3 discusses the state of the art with

respect to the contributions proposed in this thesis. In Chapter 4, we first

give an overview of the publications that are part of this cumulative thesis

grouped by the objectives of this thesis. Then, the contributions of this

thesis are introduced and placed in context before the single contributions

are described in detail in the following chapters.

The next chapters represent the publications that together form this cumula-

tive thesis.

• The publication about architecture-based change impact analysis in

cross-disciplinary automated production systems is included as

Chapter 5 in this thesis.

• Chapter 6 represents the publication about architecture-based change

impact analysis in information systems and business processes.

• The publication that introduces data flows in an architecture

description language for investigation of confidentiality issues is

included as Chapter 7.

11

1 Introduction

• Chapter 8 represents the publication that describes our approach to

detect violations of access control and information flow policies in

data flow diagrams.

• The publication about architectural attack propagation analysis for

identifying confidentiality issues is included as Chapter 9.

• Chapter 10 represents our approach to decomposition and

composition concepts and the reference architecture for metamodels

to tailor quality modelling and analysis.

• The publication about composing business process simulation and

information system simulation for performance prediction is

represented in Chapter 11.

• Chapter 12 represents the publication about first attempts to

architectural runtime models for bridging the divergent levels of

abstraction in modelling between development and operation.

• The publication about extensions and elaborations of our approach to

architectural runtime models is represented in Chapter 13.

• Chapter 14 represents the publication about enabling consistency

between software artefacts for software adaption and evolution.

Finally, Chapter 15 gives a summary of the contributions proposed in this

thesis and an outlook of future research topics and research directions.

12

2 Terms and Definitions

This chapter introduces terms and definitions relevant in the thesis. We first

present basic terms and their definitions in Section 2.1. Then, we introduce

terms and definitions related to model-based analyses in Section 2.2.

2.1 Basic Terms

Important basic terms that need to be clarified before we go further into the

details of the thesis are discussed in this section.

A central term in this thesis is software-intensive system. A software-intensive
system denotes a system on which software contributes essential influence

[102]. Automated production systems, information systems, or systems from

automotive are examples of software-intensive systems.

The term quality property refers to the ISO/IEC 25010 quality models [128]. Ex-

amples of quality properties include performance, reliability, maintainability,

and confidentiality.

The term domain refers to one or several discipline(s) (i.e. branch of knowl-

edge), which comprise (parts of) systems providing different functionality,

but addressing similar business and technical needs, and are subject to com-

mon requirements and terminology (cf. [50]). For example, the domain of

automated production systems typically comprises the disciplines software,

electrics/electronics, and mechanics.

Refactoring is the process of improving the internal structure of a software

to make it easier to understand and cheaper to modify without changing its

observable behaviour [90].

The term evolution in the context of software first appears with Lehman [164].

Evolution of a software-intensive system is commonly understood as the

13

2 Terms and Definitions

continual development after the system has been initially released to satisfy

new or changed requirements.

In our research, we distinguish evolution and adaptation. This is inspired
by Oreizy et al. [192] and described as follows: Evolution activities are con-

ducted by human developers in a non-automated or partly automated way

to implement perfective, adaptive, or corrective changes to the system [168].

Adaptation activities are performed fully automatically by predefined proce-

dures where possible without human intervention [107].

2.2 Modelling and Analysis Terms

The concepts introduced in this thesis for the decomposition and composi-

tion of model-based analyses are shown in Figure 2.1 and explained in the

following
1
.

A model-based analysis is a type of analysis that uses models for reasoning

about the system and for communicating the results [114].

A modelling language is created and applied to specify models to efficiently

design and reason about systems [121]. Modellers can use standardised lan-

guages, such as UML [214] or SysML [92], or they can design their own

domain-specific modelling languages (DSMLs) [91, 59]. An architecture de-
scription language is a specific kind of modelling language used to describe a

system architecture [130]. A modelling language feature is an abstraction of a

thing to be modelled [109].

An analysis technique is applied for reasoning about structure, behaviour,

and/or quality of systems based on a model. Various different analysis tech-

niques are possible, for example, based on queuing networks orMarkov chains.

While we on the one hand belief the hypothesis that analysis techniques can

(to a large extent) be decomposed into individual, reusable algorithms de-

scribed in form of their analysis features, we on the other hand in detail

investigate in the interactions between analysis techniques in our research,

because these interaction points are the glue to compose analysis techniques

to higher system understanding.

1
I would like to express my appreciation to Professor Bernhard Rumpe for discussion and

feedback on the definitions presented in this section.

14

2.2 Modelling and Analysis Terms

An analysis feature is an abstraction of a property to be analysed. For sake of

compositional reuse, it is of high interest to use analysis features, operating on

language features. Analysis features are needed to decompose the increasing

complexity of analysis techniques.

A simulator is a software tool that implements one or more techniques of

simulative analysis for approximating the behaviour and/or quality properties

of a system under study [113]. A simulation is the execution of a simulative

technique using a simulator [113]. Simulation is therefore an example of an

automated analysis (cf. Chapter 2 of [114]).

A feature model [64] is a formalism to capture the variability and interde-

pendencies of features of a specific subject [109]. Based on a feature model,

subsets of the given features are selected to specify which features are of

current interest, for example, to be composed. In [109], we use feature models

to specify interdependencies between language features and select those of

current interest for language composition. In this thesis, we apply our notion

of feature models to two dimensions, (a) modelling languages and (b) analysis

techniques, and use them to specify the interdependencies between analysis

features, language features, and from analysis features to language features

as well as to select those features (both analysis and language features) of

current interest. As shown in Figure 2.1, parent-child relationships form a

tree allowing, for example, type mandatory, optional, and alternative feature

groups [64]. Language features are implemented by modelling language com-

ponents. A modelling language component describes language constituents,
for example through metamodels or grammars, has explicit interfaces and

composition operators [53, 109] for other modelling language components,

and has an individual, composable semantics. Analysis features are imple-

mented by analysis components. An analysis component contains analysis
algorithms realised in source code. These analysis components are executable

on the needed language features and have explicit interfaces and composition

operators for other analysis components.

Modelling language composition is a combination of sub-languages into one

complete language, where the individual sub-models adhere to their sub-

languages and the complete model derives its syntax and semantics from

the composed sub-languages [215, 121]. Language features can be selected

from the feature model visualised in Figure 2.1 to configure and extend a

modelling language. By selecting language features from the feature model

their associated language components are composed.

15

2 Terms and Definitions

We define modelling language decomposition as a split of one complete lan-

guage into individual sub-languages. In accordance, a model that adheres to

the complete language can be projected into individual sub-models adhering

to their sub-languages.

The decomposition of analysis techniques first builds on the decomposition

of modelling languages and especially on the models (the analysis input) as

defined before. Second, the analysis techniques can themselves be decom-

posed (and then also composed) in various ways as defined in the following.

We define analysis technique composition as a combination of sub-analysis

techniques into one complete analysis technique, where (1) the individual

sub-models adhere to their sub-languages, (2) the individual sub-results ad-

here to their sub-analysis techniques, and (3) an appropriate “orchestration”

of sub-analysis techniques defines the order and use of sub-results into a

complete result.

We distinguish three general forms of composition in our previous work

[246]: Model composition (white-box composition) is the analysis input model

composition realised by language integration. Result composition (black-

box composition) is the composition of the analysis results by orchestrating

encapsulated analyses. Analysis composition (grey-box composition) is the

composition of the analysis techniques by orchestrating the steps of two or

more analysis algorithms.

Analysis features can be selected from the feature model visualised in Fig-

ure 2.1 to configure and extend a model-based analysis. By selecting analysis

features from the feature model their associated analysis components are

composed.

A Model-based Analysis

req.

Legend:

req.

req.

req.

Language Component

Analysis Component
Component Dependency
Language Feature

Analysis Feature
Feature Dependency
Optional Child
Mandatory Child
Alternative (XOR)
OR
Implements

Figure 2.1: Relationships between concepts of modelling languages and analysis techniques:

analysis features that are implemented by analysis components require (req.) modelling language

features that are implemented by modelling language components (some elements omitted for

clarity).

16

2.2 Modelling and Analysis Terms

We define analysis technique decomposition as a split of one complete analysis

technique into individual sub-algorithms, where (1) a model that adheres to

the language of the complete analysis technique can be projected into indi-

vidual sub-models adhering to the languages of the sub-analysis techniques

(cf. modelling language decomposition), and (2) the result of the complete

analysis technique arises out of the results of the individual sub-algorithms

by appropriate orchestration of the sub-analysis techniques.

17

3 State of the Art

This chapter gives an overview of the state of the art related to the contri-

butions proposed in this thesis. In Section 3.1, we discuss work on quality

modelling and analysis on architectural level with a special focus on maintain-

ability and confidentiality. The decomposition and composition of modelling

languages and analysis techniques is discussed in Section 3.2. Work on bridg-

ing the divergent levels of abstraction in modelling between development

and operation is discussed in Section 3.3. The chapter concludes with Sec-

tion 3.4.

3.1 Architecture-based Modelling and Analysis of
Dependability

Many quality properties of a software-intensive system are influenced by

the system’s architectural design. For the quality properties and disciplines

we consider in this thesis this influence is strong enough that knowledge

about the architectural design can be used for adequately predicting these

quality properties for the system once it is in operation, even if only the

architectural design and relevant context specifications are used as the basis

for prediction.

Approaches to architecture-based quality modelling and analysis either build

upon domain-specific modelling languages or quality-specific extensions to

general purpose modelling languages, such as UML [214] and SysML [92].

Examples of domain-specific modelling languages are the Palladio Compo-

nent Model (PCM) [206] for modelling component-based software systems,

AutomationML [18] for modelling automated production systems, MECHA-

TRONICUML [79] for modelling software embedded in mechatronic systems,

and BPMN [190] for modelling business process designs. Given the PCM

as an example, there exist several language extensions for which different

19

3 State of the Art

analyses for various quality properties like performance [26, 177, 24], reliabil-

ity [44], scalability and elasticity [167], maintainability [210], security [247],

and energy consumption [240] are available. Examples of quality-specific

extensions to general purpose modelling languages are UML MARTE [191]

for performance modelling and UMLSec [137] for security modelling.

Analysis techniques for predicting various quality properties build upon the

modelling languages. These analysis techniques enforce individual models for

each desired form of analysis. Examples of analysis techniques are based on

queuing networks, Petri nets, Markov chains, data flows, and fault trees. For

aforementioned quality-specific extensions of the PCM examples of analysis

techniques can be found in [44, 167, 240, 210].

In the following, we focus on the state of the art with respect to modelling

and analysing the quality properties maintainability and confidentiality for

software-intensive systems.

3.1.1 Architecture-based Modelling and Analysis of
Maintainability

Often a software-intensive system is in operation for several decades while

facing various modifications over time. These modifications include, for

example, replacement of parts due to physical abrasion, platform changes

due to environmental conditions, and software evolution due to emerging

requirements [112]. The software-intensive system must be designed to be

repeatedly changed in a cost-efficient way. Consequently, maintainability

refers to the effort required for implementing changes to the system [210].

Typically, a system is understood to be the more maintainable the less effort it

takes to implement a change. The effort required for implementing a change

to the system depends on the change impact, i.e. the artefacts affected by the

change while propagating through the system. Each affected artefact causes

effort by activities performed to change the artefact.

A software-intensive system may involve, besides software, artefacts of other

disciplines, such as electrics/electronics or mechanics, and is typically in-

volved in business processes to add value to an organisation. All the different

parts of a software-intensive system and the processes the system is involved

in mutually affect each other. Consequently, the discussion of the state of

20

3.1 Architecture-based Modelling and Analysis of Dependability

the art comprises approaches from three categories: (i) change propaga-

tion modelling and analysis in software systems (Section 3.1.1.1), (ii) change

propagation modelling and analysis in automated production systems as an

example of cross-disciplinary software-intensive systems (Section 3.1.1.2),

and (iii) change propagation modelling and analysis in business processes

and involved information systems (Section 3.1.1.3). While we in the following

give an overview of the state of the art further details are described in [50]

and [239].

3.1.1.1 Change Propagation Modelling and Analysis in Software Systems

Various graph-based approaches to change propagation analysis in software

systems exist. A comprehensive literature overview and classification has

been provided by Lehnert [166, 165]. One of the most established graph-based

approaches to change propagation analysis is program slicing originally

introduced by Weiser [275]. A program slice denotes “the parts of a program

that (potentially) affect the values computed at some point of interest” [252].

Program slicing is the method of reducing a program to the program slice

[275, 252]. Efficient realisations of program slicing exist based on a Program

Dependence Graph (PDG) [193, 98]. In [161] and [138], the concept of program

slicing is generalised for slicing methods in UML design models. Another

approach by Reps [205] identifies attributes affected by a change based on

dependency graphs. Further, approaches exist with a special focus on object-

oriented programs, such as the approach by Ryder and Tip [218] based on

call graphs.

The literature review by Lehnert [166] revealed that 65 percent of the in-

vestigated approaches to identify change impacts are based on source code

neglecting other representations of the software system. In contrast, we focus

on architecture-based change propagation analysis in this thesis in order to

identify change impacts already early in development. Moreover, all these

approaches obviously are limited to software and do not consider parts of a

software-intensive system from other disciplines.

Architecture-based approaches related to analysing change impacts in soft-

ware systems comprise (i) architecture-based project planning, (ii) architecture-

based software evolution, and (iii) scenario-based software architecture anal-

ysis.

21

3 State of the Art

Approaches to architecture-based project planning use the software architec-

ture as an artefact in project planning. For example, the approachArchitecture-

Centered Software Project Planning (ACSPP) [196] estimates cost and sched-

ule in a project using architectural knowledge. Carbon [55] proposes an

approach to align software architecture and project planning. However, to

the best of our knowledge no approach in this category supports change

propagation analysis.

Examples of approaches to architecture-based software evolution are those

by Garlan [94] and Naab [188]. The approach by Garlan [94] addresses the

evolution of a given software architecture and the reasoning about the quality

of evolution paths. The approach by Naab [188] analyses the flexibility of a

software architecture for modification. However, these approaches do not

support change propagation analysis.

Approaches to scenario-based software architecture analysis investigate the
impact of a change based on change scenarios to a given architectural model.

The Software Architecture Analysis Method (SAAM) [141] analyses the main-

tainability (modifiability in [141]) of the software architecture by investigating

components and their connections as well as data flows. The Architecture

Tradeoff Analysis Method (ATAM) [142] as a successor of SAAM allows

making trade-offs between various quality properties like maintainability

and performance. The approach Architecture-Level Prediction of Software

Maintenance (ALPSM) [30] estimates the impact of a change based on the

size of software components using weighted change scenarios. Similarly,

Architecture-Level Modifiability Analysis (ALMA) [29] estimates the impact

of change scenarios on a software architectural model. Change impact anal-

ysis in these approaches is limited to artefacts of the system structure and

associated activities. Besides these structural artefacts, however, there are

various technical and organisational artefacts, such as test cases and staff

specifications, that may be affected by a change and thus cause activities,

such as updating test cases and assigning tasks to responsible staff [210].

Consequently, they need to be considered in change impact analysis.

The Karlsruhe Architectural Maintainability Prediction (KAMP) approach

[210, 239] goes beyond aforementioned approaches by using comprehensive

architectural models that allows to include technical and organisational arte-

facts, besides structural artefacts, in estimation. KAMP like all approaches

discussed before, however, is limited to software systems and does not con-

22

3.1 Architecture-based Modelling and Analysis of Dependability

sider, for example, electrical/electronical or mechanical artefacts that are

often part of software-intensive systems.

There are also approaches to change impact analysis in software systems

working on UML design models, such as class diagrams, sequence diagrams,

or statechart diagrams. For example, Briand et al. [43] propose an approach

based on UML design models using OCL-based change propagation rules

and distance measures to identify and prioritise parts of the system affected

by a change. Dam and Winikoff [65] create repair plans for each identified

violation of an OCL constraints in a UML design model. The cost of the

repair plans are calculated and the cheapest plan is identified. However,

these approaches are restricted to UML design models and do not support

change propagation analysis on the architectural level. Furthermore, there are

various approaches based on UML design models, for example [143, 235, 279,

197], or domain-specific design models, for example [169], that are limited

to comparing and analysing model differences but do not analyse change

propagation.

3.1.1.2 Change Propagation Modelling and Analysis in Automated
Production Systems

Automated production systems are one kind of software-intensive systems

we exemplary focus on in this thesis. A wide-spread approach for decades

was estimating change impacts in automated production systems based on

counting the number of input or output signals [261] without considering

any architectural insights. Only in recent years modelling languages are used

to manage complexity and estimate change impacts in these systems. Ap-

proaches related to change propagation modelling and analysis in automated

production systems exist based on both, general purpose modelling languages

and domain-specific modelling languages.

Examples of approaches based on general purpose models (UML and SysML

models) are discussed in the following. For analysing change propagation in

the software modules of an automated production system aforementioned

approaches based on UML design models (e.g., [43, 65]) are widely used. As

these approaches have been developed for software systems, they obviously

cannot consider change propagation from the software parts to other parts of

a software-intensive systems and vice versa. When replacing one software

module of the system by another widely used approaches to analyse and

23

3 State of the Art

compare differences between the two modules are the aforementioned ones

based on UML design models (e.g., [143, 235, 279, 197]). Again, as these

approaches have been developed for software systems they are limited to

software modules and cannot investigate impacts on other parts of the system.

Moreover, there are various modelling approaches for automated production

systems based on SysML, such as [251, 22, 84]. None of these approaches

support the analysis of change propagation to the best of our knowledge.

In [169], differences between domain-specific models and UMLmodels are dis-

cussed as follows. In contrast to UML, (i) domain-specific modelling languages

allow for creating models tailored to specific application areas. However, (ii)

domain-specific models are considered as instance-basedmodels whichmeans

that they are often large models having repetitive and nested hierarchical

structures and contain many objects of the same type. This conforms to

our experience with existing models of automated production systems. In

contrast, UML models are primarily class-based models according to [169].

Examples of approaches based on domain-specific models related to change

propagation modelling and analysis in automated production systems are

the following. Biffl et al. [34] provide an approach to support linking and

versioning different engineering artefacts of an automated production sys-

tem but do not support change propagation analysis. Ladiges et al. [158]

observe the input and output signals of the control system of a plant and gen-

erate behavioural models which are then used to detect behavioural changes.

Prähofer et al. [201] propose a feature-oriented modelling framework that

supports analysing change impacts. However, neither Ladiges et al. [158]

nor Prähofer et al. [201] consider the system structure (i.e. architecture) for

change propagation analysis. Furthermore, none of these approaches consider

technical or organisational artefacts that, besides structural artefacts of the

system, can be affected by a change. In a previous work [51], we proposed

an approach to model and analyse change propagation in control programs

deployed on Programmable Logic Controllers (PLC). The approach in [51] is

restricted to PLC software because it is an extension of the broader approach

proposed in this thesis.

24

3.1 Architecture-based Modelling and Analysis of Dependability

3.1.1.3 Change Propagation Modelling and Analysis in Business Processes
and Involved Information Systems

Busch [50] identified two categories of approaches related to change propaga-

tion modelling and analysis in business processes — approaches to dynamic

change propagation in business processes and approaches to change propa-

gation in collaborative processes. Moreover, there is work on change propa-

gation modelling and analysis between business processes and information

systems discussed in [50].

Approaches to dynamic change propagation in business processes migrate

instances of a process schema (i.e., a process metamodel [194] in our ter-

minology) after a schema change which is denoted as “dynamic change”

[207]. Kradolfer and Geppert [153] analyse and migrate process instances

(i.e., process models in our terminology) after schema changes but neglect

the propagation of changes in the process instances. Similar, the approaches

in [203, 204] consider the change propagation from a process schema to its

instances. Sadiq et al. [222] identify different types of process changes and a

set of complete and minimal operations — add task, remove task, modify task

properties, and modify task order. A modification methodology to support

dynamic changes is proposed in [221]. The approach by Yoo et al. [284]

allows defining schema modification rules but does not support the change

propagation in or between instances. All these approaches are limited to

change propagation analysis in processes. They neglect co-evolution of busi-

ness processes and information systems (i.e., the impact of changes in the

business process to information systems and vice versa). Moreover, they

neglect change propagation to technical and organisational artefacts that,

besides structural artefacts, can be affected by a change.

Changes in a single process may affect other related processes called collabo-

rative processes [85, 86]. In the following, we discuss approaches to change
propagation in collaborative processes. Approaches to describe and analyse

change propagation in process choreographies are proposed, for example,

in [85, 86, 209, 208]. In [157], an approach to analyse the change propa-

gation in a process ecosystem (i.e., collection of interrelated processes) is

described. Weidmann et al. [273] propose an approach to change propagation

and synchronisation of business processes across different levels of abstrac-

tion. Weidlich et al. [272] propose an approach to change propagation to

overlapping processes based on activities that correspond between processes.

25

3 State of the Art

All these approaches, however, neglect the co-evolution of business processes

and information systems. They also neglect change propagation to technical

and organisational artefacts that, besides structural artefacts, can be affected

by a change.

Business processes and involved information systems mutually affect each

other in various ways. This is what approaches to change propagation be-
tween business processes and information systems address. There are several
approaches concerned with the co-design [170] of business processes and

information systems. Sani et al. [223] propose guidelines for co-designing busi-

ness processes and information systems. Vanderfeesten et al. [256] identify

similarities between business processes and information systems. Warboys

et al. [271] propose modelling the mutual dependencies between business

processes and information systems to support co-evolution. Also Aerts et

al. [5] describe mutual dependencies between business processes and infor-

mation systems. Gasson [96] considers knowledge of different stakeholders

in co-design of business processes and information systems. However, none

of these approaches provide an analysis of change propagation. The graph

matching approach in [133] identifies change patterns in the software archi-

tectural model resulting from changes in the business process model, but

neglects the impact of changes in each of the single models. Sunkle et al. [245]

propose an enterprise architecture ontology and change propagation rules

based on heuristic. A similar approach based on heuristics describing change

propagation rules is proposed in [38]. An approach to investigate misalign-

ment between business processes and information systems as a result of

changes is described in [36]. However, only a coarse-grained strategy based

on metrics is presented in [36] without analysing change propagation. Avia

et al. [19] propose actions as guidelines to handle misalignment between

business processes and information systems, however, do not support change

propagation analysis. These approaches either do not support change propa-

gation analysis between business processes and information systems at all

or neglect considering technical and organisational artefacts that, besides

structural artefacts, can be affected in change propagation analysis.

26

3.1 Architecture-based Modelling and Analysis of Dependability

3.1.1.4 Summary of Architecture-based Modelling and Analysing of
Maintainability

The related approaches discussed before already provide attempts to change

propagation modelling and analysis for certain disciplines. However, we

identified limitations in the body of related approaches. These limitations are

listed in the following. Further reading is given in [50].

• Limitation 3.1.1-1, Cross-disciplinary change propagation: The majority

of existing approaches to change propagation modelling and analysis

are restricted to a single discipline. We have seen examples limited to

software or business processes. These approaches do not consider the

impact of changes to artefact of one discipline to those of another

discipline. However, this is required to adequately analyse change

impacts and support co-evolution of different disciplines. Approaches

restricted to source code cannot be generalised to systems other than

software systems as these typically comprise other kinds of artefacts,

such as electrical/electronical or mechanical artefacts. Consequently,

a higher level of abstraction is required to describe systems for

analysing cross-disciplinary change propagation. This is why we

focus on the architectural level in our research. An architecture-based

approach allows considering various kinds of artefacts and thus can

be generalised to different disciplines [108].

• Limitation 3.1.1-2, Use of domain-specific language: Most of the existing

approaches discussed are based on models. These either adhere to a

general purpose modelling language or a domain-specific modelling

language. Several approaches apply the general purpose modelling

language UML. However, UML shows limitations like “single

definition for syntax and static semantics” and “class-based” nature

according to [169]. Existing UML-based approaches are focused on

design models like class diagrams, sequence diagrams, or statechart

diagrams but cannot represent change propagation on architectural

level. Furthermore, as UML has been developed to represent software

systems it cannot be applied to describe artefacts of other disciplines

[250]. For these reasons, domain-specific languages for modelling and

analysing change propagation are required.

• Limitation 3.1.1-3, Support for technical and organisational artefacts:
Another limitation of most of the existing approaches is that they

27

3 State of the Art

neglect change propagation to technical and organisational artefacts

that, besides structural artefacts, can be affected by a change. In

consequence, this negatively affects estimation results due to

neglected effort. Thus, besides structural artefacts considering various

technical and organisational artefacts is required for proper change

impact analysis.

3.1.2 Architecture-based Modelling and Analysis of
Confidentiality

Achieving confidentiality in software-intensive systems is challenging [13,

267]. Nevertheless, it is important to consider confidentiality in system

design in order to avoid high penalties and loss of reputation. Common

confidentiality mechanisms described in literature are access control [220]

and information flow control [104].

Approaches to modelling and analysing confidentiality can be distinguished

into two categories — approaches based on control flows (described in Sec-

tion 3.1.2.1) and those based on data flows (described in Section 3.1.2.2). More-

over, work on modelling and analysis of attack propagation (described in

Section 3.1.2.3) for identifying confidentiality issues is related.

3.1.2.1 Modelling and Analysis of Control Flows

A control flow specifies the actions to be executed and the order in which these

actions are executed by the system. We distinguish control flow modelling

and analysis approaches into approaches that work on specific abstractions

of the system and those working on source code.

Approaches working on abstractions of the system, for example, apply UML

design models or architectural models to represent the system. These ap-

proaches can be applied already early in development when source code is

not yet available. Consequently, confidentiality issues identified by these

approaches can be addressed early and thus usually in a more efficient way

compared to issues identified only in the source code [37, 180, 122, 173].

Examples of approaches to modelling and analysing confidentiality based

on abstractions are proposed by Gerking et al. [97], Katkalov et al. [139],

Jürjens [136], Hoisl et al. [120], Almorsy et al. [14], and Abdellatif et al. [2].

28

3.1 Architecture-based Modelling and Analysis of Dependability

The approaches in [97, 139, 136] apply detailed system specifications to anal-

yse information flow properties. These approaches lack traceability of data

that is processed by a user as they cannot represent data processing by the

behaviour of actors [228] but restrict behaviours to individual calls to the

system. UMLSec [136] is able to analyse access control besides information

flow. However, UMLSec is limited to control access to actions and does not

consider access to data. Hoisl et al. [120] apply taint analysis using behaviour

specifications for processes and actors. Examples of approaches that do not

support behaviour specifications for processes and actors are [14] and [2].

These approaches do not analyse data propagation and are limited to pattern

matching.

Approaches working on source code for analysing confidentiality can be dis-

tinguished into three categories — taint analyses, such as FlowDroid [17],

full-fledged information flow analyses, such as JOANA [232] and IFcB [217],

and verification approaches, such as KeY [6]. These approaches merely sup-

port one particular confidentiality mechanism and are barely extensible.

A data flow path represents a sequence of nodes a data item can take to reach

a particular node [228]. All these approaches to control flow modelling and

analysis are able to discover multiple data flow paths but restrict themselves

to data flows via calls. Thus, they cannot represent complex data flow patterns.

A comparison and detailed discussion of all these approaches can be found in

[228] and Chapter 8 of this thesis.

3.1.2.2 Modelling and Analysis of Data Flows

We distinguish data flow modelling and analysis approaches into threat mod-

elling approaches and approaches to data propagation analysis.

Threat modelling comprises various approaches to identify and mitigate

threats [229]. Examples of approaches to threat modelling are proposed

by Abi-Antoun et al. [3], Deng et al. [71], Yampolskiy et al. [283], Berger

et al. [31], Sion et al. [230], and Frydman et al. [93]. All these approaches

are limited to structural analysis using pattern matching. They do not de-

rive confidentiality-relevant properties of data exchanged based on the data

processing. Consequently, to be able to investigate information flow either

all exchanged data need to be labelled manually, or results remain on the

granularity level of simple taint analysis. Moreover, these approaches do not

29

3 State of the Art

allow to reason about multiple data classification levels [228] nor consider

multiple data flow paths.

Approaches to data propagation analysis require a limited set of initial labels

that are propagated through the system. Thus, in contrast to aforementioned

threat modelling approaches, only few labels have to be assigned manually.

Examples of approaches to data propagation analysis are proposed by Al-

ghathbar et al. [11], Tuma et al. [253], and van den Berghe et al. [32]. Also

our own approach in [227] and Chapter 7 of this thesis falls in this category.

FlowUML [11] as well as the similar approach authUML [12] in a previous pub-

lication by the same authors derive data flows from UML sequence diagrams.

Then, represent these data flows in a logic program and detect violations of

information flow requirements and access control requirements. However,

the publications [11] and [12] only give a brief description of the approaches

and we could neither find a publication reporting about an evaluation nor an

implementation of FlowUML or authUML. Tuma et al. [253], similar to our

approach in [227] and Chapter 7 of this thesis, specify the system behaviour

as a sequence of label propagation functions and initial labels on data. [253]

is restricted to information flow control. van den Berghe et al. [32] specifies

data flows between predefined processing operators to investigate security

properties including a simple form of information flow control.

None of these approaches to data flow modelling and analysis report on

systematically considering all possible data flow paths. A comparison and

detailed discussion of all these approaches can be found in [228] and Chapter 8

of this thesis.

3.1.2.3 Modelling and Analysis of Attack Propagation

Another topic of this thesis with respect to confidentiality is modelling and

analysis of attack propagation for identifying confidentiality issues. For

modelling and analysing the propagation of attacks in a software-intensive

system, besides aforementioned work on modelling and analysing control

flows and data flows, also work on access control policy analysis and attack

path analysis is related.

Examples of approaches to access control policy analysis are proposed by

Fisler et al. [87], Alberti et al. [9], and Turkmen et al. [255]. The software

suite Margrave [87] analyses role-based access control (RBAC) policies to

30

3.1 Architecture-based Modelling and Analysis of Dependability

understand the effect of policy change. Alberti et al. [9] propose an automated

analysis technique for administrative attribute-based RBAC policies. The

approach in [255] analyse access control policies against security properties.

These security properties express requirements on policies and on relations

between policies. However, none of these approaches supports the analysis

of policies for attack propagation on architectural level.

A comprehensive overview of existing approaches to attack modelling is given

in [151]. Examples of approaches to attack path analysis are described in the

following. Modelling attack trees is an established approach to analyse attack

paths in the system [151]. The modelling language and probabilistic inference

approach proposed by Sommestad et al. [233] investigates vulnerabilities of

enterprise architectures by analysing the probability that attack paths can be

accomplished. Other approaches, such as those by Polatidis et al. [198, 199]

and Deloglos et al. [70], reuse existing vulnerability classifications to analyse

attack paths. However, these approaches do not support analysing access

control policies. In contrast, the approaches by Aksu et al. [7] and Yuan et

al. [285] generate attack paths by applying simple access control models.

3.1.2.4 Summary of Architecture-based Modelling and Analysing of
Confidentiality

The related approaches discussed before already provide modelling languages

and analysis techniques for automated confidentiality analyses of software-

intensive systems. However, we identified limitations in the body of related

approaches. These limitations are listed in the following and discussed in

further detail in [228] and [269].

• Limitation 3.1.2-1, Exploration of multiple data flow paths: In realistic

systems, multiple data flow paths providing the same type of data to

the same node commonly occur. Existing approaches investigate only

particular paths data can take in a system design or are restricted to

data flows via calls. However, considering all possible data flow paths

is necessary to investigate confidentiality issues systematically.

• Limitation 3.1.2-2, Coverage of multiple confidentiality mechanisms:
Aforementioned approaches that are focused on single confidentiality

mechanisms (e.g., information flow or access control) show accurate

analysis results for specific purposes. However, they lack flexibility as

31

3 State of the Art

engineers have to decide for a specific confidentiality mechanisms

before starting modelling. Replacing the confidentiality mechanism by

another implies remodelling large parts of the system. This may result

in consistency problems. Support for various confidentiality

mechanisms in modelling and analysis is necessary.

• Limitation 3.1.2-3, Support for user-defined confidentiality analyses:
When engineers are forced to use predefined confidentiality

mechanisms, modelling even simple requirements may become

complex [228]. Means for specifying custom analyses and

corresponding modelling concepts are needed. Therefore, a formalism

supporting user-defined analyses for various confidentiality

mechanisms as well as an appropriate modelling language are

required.

• Limitation 3.1.2-4, Support for architecture-based attack propagation:
Attackers may exploit vulnerabilities and access control policies to

identify attack paths to propagate through the system. Existing

approaches lack the analysis of attack propagation on architectural

level by considering access control policies and existing

vulnerabilities. However, this is required to identify confidentiality

issues in early development.

3.2 Decomposition and Composition of Modelling
Languages and Analysis Techniques

The discussion of the state of the art regarding the decomposition and com-

position of modelling languages and analysis techniques is organised in the

following two categories. First, we discuss approaches to decomposition and

composition of modelling languages (Section 3.2.1). Then, we discuss those

to decomposition and composition of analysis techniques (Section 3.2.2).

3.2.1 Decomposition and Composition of Modelling Languages

The body of research in software language engineering has yielded relevant

contributions to reusing and composing language fragments to createmodelling

languages. The majority of this work focuses on syntax-defining language

32

3.2 Decomposition and Composition of Modelling Languages and Analysis Techniques

fragments (i.e., grammars or metamodels). Some more advanced approaches

additionally consider the composition of analyses. For example, GEMOC Stu-

dio [58] supports composing modelling languages based on generic language

components in form of metamodels with built-in interpretation and analyses.

In GEMOC Studio, built-in analyses rely on the composition mechanisms of

the Java programming language. The Neverlang [57] language workbench

enables reusing and composing language components comprising grammars

and analyses. MontiCore [216] provides means to support modular definition

of languages and reuse analyses as part of reusing a language component

[52]. Melange [69] is an approach to a modular and reusable development

of modelling language syntaxes and interpreters by combining and subtyp-

ing existing language artefacts. Spoofax [140] supports the composition

of context-free grammars that describe the syntax of modelling languages.

Similar methods for syntax reuse are supported with the rule extension of

LISA [178] or the grammar extension of Xtext [33]. LanGems [276] is a

role-based language compositions system for modular language development.

Also Leduc et al. [163] propose a modular approach for the definition and

composition of modelling languages. MPS [265] is a language workbench in

which analyses are tied to the abstract syntax of the language. There is no

composition of analyses in MPS. However, none of these approaches provide

any guidance for the decomposition and composition of a modelling language

with respect to the specifics of given quality properties or disciplines.

Further, there is work focused on the decomposition of modelling languages
in language engineering. For example, Strüber et al. [244, 243] propose

clustering algorithms to decompose large modelling languages and models.

Degueule et al. [68] propose the concept of language interfaces to abstract

the various constituents of a given language. In contrast to these approaches,

the decomposition in our research is based on language features. However,

none of these approaches provide any guidance for the decomposition of a

modelling language with respect to the specifics of given quality properties

or disciplines.

Language engineering brought forth various tools supporting the decomposi-
tion and composition of modelling languages. EMF Splitter [95] decomposes

monolithic metamodels based on the structural modularity concepts project,

package, and unit. In contrast, the decomposition in our research is based on

language features. GTSMorpher [287] is a tool for the composition of domain-

specific modelling languages based on graph transformation systems building

upon [76]. EMF Refactor [81] refactors design smells in modelling languages

33

3 State of the Art

based on model metrics. Puzzle [176] is a tool for extracting reusable language

modules. None of these tools provide guidance for the decomposition and

composition of a modelling language with respect to specifics of given quality

properties or disciplines.

Other approaches to language composition provide concepts for structur-

ing reuse without supporting specific composition mechanisms. These in-

clude, for example, the CORE approach [8] which enables concern-oriented

and model-based software reuse. Concern-oriented language development

(COLD) [59] is a purely conceptual framework that extends CORE to language

engineering.

Furthermore, various approaches to modelling language variability, for exam-

ple [156, 175, 89], apply product line techniques for developing languages.

They focus on closed variability of either abstract syntaxes or abstract syn-

taxes combined with interpreters.

Another approach to the formalisation of composition in modelling and

analysing ismulti-paradigmmodelling (MPM) [186]which proposes paradigms

by explaining them as the composition of languages and workflows. Multi-

paradigm tools, such as AToM
3
[162] and OsMoSys [257], couple heteroge-

neous formalisms for simulation. Foundations for multi-paradigm modelling

for cyber-physical systems have recently been proposed [56]. While multi-

paradigm modelling for cyber-physical systems aims to encompass similar

challenges than our work, it is still on a conceptual level [15] and results

towards its formalisation have yet to show [16].

The body of work in language engineering focuses on reusing and composing

language fragments to create modelling languages or the decomposition

of modelling languages. There are language engineering tool to support

the decomposition and composition of modelling languages. Conceptional

attempts to language composition provide foundations for structuring reuse

without supporting specific composition mechanisms. However, we identified

the following limitation.

Limitation 3.2-1, Guidance for the decomposition and composition of modelling
languages: None of the work discussed before provides any guidance for

the decomposition and composition of modelling languages with respect to

specifics of given quality properties or disciplines.

Further discussion on the decomposition and composition of modelling lan-

guages is given in [241].

34

3.2 Decomposition and Composition of Modelling Languages and Analysis Techniques

3.2.2 Decomposition and Composition of Analysis Techniques

While aforementioned approaches address the white-box form of composition,

in the following, we discuss work on integration and orchestration of analysis

techniques which is black-box or grey-box composition depending on how

the analyses interact.

Interaction by result exchange is black-box composition. For example, Dwyer

et al. [78] proposes to combine analysis tools using common representation

and storage of analysis results, and means to compose these results. Cruanes

et al. [61] designed the Evidential Tool Bus (ETB) to integrate diverse tools

into coherent workflows. In our previous work [116], we propose a reference

architecture for the integration of analysis tools into modelling environments

and give examples of orchestration strategies. However, all these approaches

merely focuses on storing and sharing analysis results between distributed

analysis tools. They do not provide guidance for the decomposition and

composition of analysis techniques with respect to the specifics of given

quality properties or disciplines.

Work on analysis coupling [246] is grey-box composition if the single steps of

the analyses are orchestrated. There is a large body of work on simulation

coupling and co-simulation. Approaches like DEVS [286] and CODES [249]

support the composition of discrete event-based simulations. DIS (Distributed

Interactive Simulation) [124] is a suite of protocols for interconnecting simula-

tors [134]. HLA (High Level Architecture) [125] as a successor of DIS enables

the coupling of simulations. An overview of co-simulation approaches is

given in [99]. All these approaches enable interaction by exchanging events

during simulation. However, they do not provide guidance for the decompo-

sition and composition of analysis techniques with respect to the specifics of

given quality properties or disciplines.

The decomposition of model-based analysis techniques is not well discussed in

literature to the best of our knowledge. This is because model-based analyses

are often decomposed by decomposing the analysis input models and mod-

elling languages instead of decomposing the analysis techniques. Approaches

like MontiCore [216] discussed before in Section 3.2.1 are examples. These

approaches reuse analyses as part of reusing a language fragment (e.g., [52])

but do not provide support for the decomposition of analysis techniques.

35

3 State of the Art

Existing approaches to interaction of analysis tools as well as to analysis cou-

pling, for instance simulation coupling and co-simulation, show the following

limitation.

Limitation 3.2-2, Guidance for the decomposition and composition of analysis
techniques: None of the work discussed before provides any guidance for

the decomposition and composition of analysis techniques with respect to

specifics of given quality properties or disciplines.

3.3 Bridging the Divergent Levels of Abstraction
between Development and Operation

The state of the art in bridging the divergent levels of abstraction in modelling

between development and operation can be structured in eight categories:

(i) work on reusing development models in operation, (ii) work on model

extraction, (iii) work on user behaviour modelling and user group detection,

(iv) work on consistency management in development, (v) hybrid approaches

that span development and operation, (vi) instrumentation approaches to

observe the running system, (vii) approaches to estimate the resource de-

mands based on monitoring data, and (viii) work to characterise parametric

dependencies.

Work on reusing development models during operation, such as Morin et

al. [185], Ivanovic et al. [132], Schmieders and Metzger [225], and Canfora et

al. [54], employs development models as foundation for reflecting software

systems during operation in form of runtime models [28]. However, these

approaches do not reflect component-based system architectures. Further,

these approaches update the model with respect to single parameters and do

not change the model structure.

Work on model extraction creates and updates model content based on data

gathered from monitoring the system in operation. Approaches, such as

those by Schmerl et al. [224], Song et al. [234], van der Aalst et al. [1], von

Massow et al. [171], Brosig et al. [45], Langhammer et al. [159], PMW by

Brunnert et al. [47], SLAstic by van Hoorn [123], and PMX by Walter et

al. [268], establish the semantic relation between executed applications and

runtime models based on monitoring data. Starting with an empty model,

these approaches create model content during operation from scratch by, for

36

3.3 Bridging the Divergent Levels of Abstraction between Development and Operation

example, observing and interpreting operation traces. Therefore, they neglect

information that cannot be elicited from monitoring data, such as design

perspectives on component structures and component boundaries. These

approaches show continuously high monitoring effort required to extract or

update models. Further, there is no validation of the quality of the extracted

models in these approaches.

Work on user behaviour modelling and user group detection, such as Langham-

mer et al. [159], Menascé et al. [174], Ruffo et al. [213], Vögele et al. [263, 264],

Walter et al. [268], and Jung and Adolf [135], extracts user behaviour models

and applies clustering algorithms to identify user groups from observed user

interaction during operation. As these approaches extract user groups only

based on monitoring data they neglect user groups already specified in devel-

opment. Furthermore, there is work on modelling usage intensity without

detecting user groups. LIMBO [146] implements an approach for modelling

variations in usage intensity for seasonal patterns, trends, bursts, and noise.

Herbst et al. [118] present an approach for predicting usage intensities based

on decision trees and direct feedback cycles.

Work on consistencymanagement in development, such as JITTAC [49], mbeddr

[266], reverse engineering approaches (for example, SoMoX [27], Extract [159],

ROMANTIC-RCA [80], Archimetrix [74]), and approaches concerned with

architecture erosion (for example, [67]), avoids or handles inconsistencies

to keep artefacts consistent in development. However, approaches in this

category are limited to maintaining consistency in development but neglect

inconsistencies in operation.

Work on hybrid approaches, such as Konersmann et al. [149, 150], EjbMox

by Langhammer [160], and Spinner et al. [238], uses both, source code and

monitoring data, to extract architectural models. However, these approaches

apply very fine-grained monitoring which causes a high monitoring overhead.

Further, these approaches show small scope of consistency preservation (e.g.,

limited recognition of evolution and adaption scenarios).

Instrumentation approaches, such as AIM [277] and AjaxScope [144], observe

the running system to identify emerging quality issues. However, the instru-

mentation is rather coarse-grained and there is no way to specify which parts

of the system are of specific focus and thus should be instrumented more

fine-granular.

37

3 State of the Art

There is work on estimating resource demands based on either coarse-grained

monitoring data, such as LibReDE [236, 237], or fine-grained monitoring data,

such as [46, 278]. Approaches using fine-grained monitoring data show the

advantage of high estimation accuracy for the cost of high monitoring over-

head. An approach to continuously updating resource demand is proposed

by Grohmann et al. [101]. However, the result of demand estimation in [101]

is a constant value while parametric dependencies are not considered.

There are approaches focused on the characterisation of parametric dependen-
cies in performance models, such as those by Courtois and Woodside [60],

Ackermann et al. [4], and Grohmann et al. [100]. These approaches lack

covering work of aforementioned categories. Krogmann et al. [155, 154]

extended SoMoX with parametric dependencies based on the dynamic anal-

ysis approach Beagle. However, also SoMoX and Beagle are limited to the

extraction of models.

In the body of related approaches discussed before we identified limitations.

These limitations are listed in the following.

• Limitation 3.3-1, Bridging the levels of abstraction: As shown in the

discussion, there are various approaches addressing single aspects

relevant for bridging the divergent levels of abstraction in modelling

between development and operation. However, there is not yet a

comprehensive approach that covers all aforementioned aspects.

• Limitation 3.3-2, Support for model validation: Approaches discussed
before do not support the validation of the quality of the extracted

models. This can result in inaccuracies in the extracted models and in

consequence inaccuracies in the prediction results.

• Limitation 3.3-3, Reduction of monitoring overhead: Approaches to
coarse-grained monitoring typically show little estimation accuracy.

Approaches to fine-grained monitoring show the advantage of high

estimation accuracy for the cost of high monitoring overhead. The

discussed approaches do not allow to adjust the granularity of

monitoring and thus cannot reduce monitoring overhead.

38

3.4 Concluding Remark

3.4 Concluding Remark

In this chapter, we discussed the state of the art in three different areas relevant

for the architecture-based evolution of dependable software-intensive systems

— architecture-based modelling and analysis of maintainability and confiden-

tiality, decomposition and composition of modelling languages and analysis

techniques, and bridging the divergent levels of abstraction in modelling

between development and operation. In each of these areas we identified

limitations. In order to address these limitations we introduce contributions

in the following chapter. In the description of these contributions we refer to

the tackled limitations.

39

4 Approaches to
Architecture-based Evolution of
Dependable Software-intensive
Systems

This chapter starts with an overview of the published contributions that are

part of this cumulative thesis in Section 4.1. Then, the individual contributions,

their relations, and how they address limitations in the state of the art are

described in Section 4.2.

4.1 Publication Overview

The following publications are part of this cumulative thesis. They are clus-

tered according to the objectives of the thesis. A detailed discussion of the

contributions is given in the following section.

• Objective 1, Modelling and Analysing Maintainability and

Confidentiality on Architectural Level:

– Robert Heinrich, Sandro Koch, Kiana Rostami, Suhyun Cha, Ralf

Reussner, Birgit Vogel-Heuser. Architecture-based Change

Impact Analysis in Cross-disciplinary Automated Production

Systems. Journal of Systems & Software, 146:167–185, Elsevier,
2018.

– Kiana Rostami, Robert Heinrich, Axel Busch, Ralf Reussner.

Architecture-based Change Impact Analysis in Information

Systems and Business Processes. IEEE International Conference
on Software Architecture, pages 179–188, IEEE, 2017.

41

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

– Stephan Seifermann, Robert Heinrich, Ralf Reussner.

Data-driven Software Architecture for Analyzing

Confidentiality. IEEE International Conference on Software
Architecture, pages 1–10, IEEE, 2019.

– Stephan Seifermann, Robert Heinrich, Dominik Werle, Ralf

Reussner. Detecting Violations of Access Control and

Information Flow Policies in Data Flow Diagrams. Journal of
Systems & Software, 184, Elsevier, 2022.

– Maximilian Walter, Robert Heinrich, Ralf Reussner.

Architectural Attack Propagation Analysis for Identifying

Confidentiality Issues. IEEE International Conference on Software
Architecture, pages 1–12, IEEE, 2022.

• Objective 2, Decomposition and Composition of Modelling Languages

and Analysis Techniques:

– Robert Heinrich, Misha Strittmatter, Ralf Reussner. A Layered

Reference Architecture for Metamodels to Tailor Quality

Modeling and Analysis. IEEE Transactions on Software
Engineering, 47(4):775–800, IEEE, 2019.

– Robert Heinrich, Philipp Merkle, Jörg Henss, Barbara Paech.

Integrating Business Process Simulation and Information

System Simulation for Performance Prediction. Software &
Systems Modeling, 16:257–277, Springer, 2017.

• Objective 3, Bridging the Divergent Levels of Abstraction between

Development and Operation:

– Robert Heinrich. Architectural Run-time Models for

Performance and Privacy Analysis in Dynamic Cloud

Applications. ACM SIGMETRICS Performance Evaluation Review,
43(4):13–22, ACM, 2016.

– Robert Heinrich. Architectural Runtime Models for Integrating

Runtime Observations and Component-based Models. Journal
of Systems & Software, 169, Elsevier, 2020.

– David Monschein, Manar Mazkatli, Robert Heinrich, Anne

Koziolek. Enabling Consistency between Software Artefacts for

42

4.2 Discussion of Contributions

Software Adaption and Evolution. IEEE International Conference
on Software Architecture, pages 1–12, IEEE, 2021.

4.2 Discussion of Contributions

This section introduces my contributions proposed in this thesis, places them

in context, refers to the limitations of Chapter 3 tackled by the contributions,

and points out the origin of the contributions.

4.2.1 Architecture-based Modelling and Analysis of
Maintainability and Confidentiality

In order to reason about maintainability and confidentiality of software-

intensive systems early in development, we investigate concepts for modelling

and analysing these quality properties in the architectural design of software-

intensive systems.

4.2.1.1 Architecture-based Modelling and Analysis of Maintainability

As discussed in Chapter 1, maintainability is seen as an important property of

dependability and often is investigated by analysing change propagation in

the system. Prediction of maintainability is beneficial in early development

as well as in evolution of a software-intensive system to reason about design

alternatives and thus identify an appropriate system design. Predicting the

maintainability of a software-intensive system in terms of change propagation

is a challenging task especially in case the system comprises artefacts from

multiple disciplines and is involved in complex organisational processes.

Exemplary for such a cross-disciplinary software-intensive system we con-

sider an automated production system in this thesis. An automated produc-

tion system is a special class of mechatronic systems [219, 41] that produces

products [262]. It is common for an automated production system to be in

operation for several decades while continuously facing changes over time

[262]. Examples of these changes include replacement of mechanical or elec-

trical/electronical parts due to physical abrasion, platform changes due to

43

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

environmental conditions, and software changes due to emerging require-

ments [112]. While maintaining merely software systems is already a difficult

task [164], maintaining an automated production system is even more chal-

lenging. This is because an automated production system comprises various

artefacts, typically from the disciplines mechanics, electrics/electronics, and

control software, that mutually affect each other. These mutual dependencies

between heterogeneous artefacts are the reason why even small changes

can cause extensive side effects and evoke additional modifications in the

respective disciplines leading to a large amount of artefacts being affected

by the change [260]. As a result, predicting all artefacts affected by a change

in an automated production system is time consuming and often nearly as

complicated as implementing the change.

There are few attempts to change propagation analysis in automated pro-

duction systems (discussed in Section 3.1.1.2). This is in contrast to several

approaches existing to change propagation analysis in software systems. Ex-

isting approaches to software systems apply the software architectural model

as a foundation for analysing the propagation of changes in the system. When

being able to represent the various artefacts from multiple disciplines of an

automated production system in an architectural model this can serve as a

foundation for change propagation analysis to predict maintainability.

The publication in [112] proposes an approach to architecture-based change

propagation analysis in automated production systems. Contributions de-

scribed in [112] and in Chapter 5 of this thesis are as follows:

• The specification of modelling languages for: (a) modelling the

detailed structure of an automated production system as a foundation

for architecture-based change propagation analysis. In contrast to

related work described in Section 3.1.1, this modelling language

comprises the structure of electrical/electronical, mechanical, and

software parts of the system in order to address Limitation 3.1.1-1

(cross-disciplinary change propagation) and Limitation 3.1.1-2 (use of

domain-specific language); (b) modelling elements that represent

maintenance-relevant artefacts, such as test cases, documentation but

also stock and staff specifications, as annotations to structural model

elements in order to address Limitation 3.1.1-3 (support for technical

and organisational artefacts). These annotations are not supported by

most of the related approaches discussed in Section 3.1.1; (c)

representing the initial changes (denoted as seed modifications) and

44

4.2 Discussion of Contributions

steps in the propagation of changes based on the models of the system

structure in order to address Limitation 3.1.1-1 (cross-disciplinary

change propagation) and Limitation 3.1.1-2 (use of domain-specific

language).

• The specification of algorithms and rules for change propagation

analysis based on the aforementioned modelling languages in order to

address Limitation 3.1.1-1 (cross-disciplinary change propagation). In

contrast to related work described in Section 3.1.1, these algorithms

and rules not only consider maintenance tasks for modifying

structural model elements but also maintenance tasks for modifying

model elements that represent technical and organisational artefacts

other than those of the system structure. In consequence, the

approach described in [112] and Chapter 5 results in more

comprehensive task lists compared to related approaches. These

comprehensive task lists are a good basis for maintenance effort

estimation by domain experts.

These modelling languages as well as algorithms and rules for change propa-

gation analysis in automated production systems I developed together with

Kiana Busch while supervising her doctoral thesis [50].

Another kind of software-intensive systems we consider in this thesis is in-

formation systems involved in business processes and organisational environ-

ments. According to the established definition of the Workflow Management

Coalition, a business process is a “set of one or more linked activities which

collectively realize a business objective or policy goal, normally within the

context of an organizational structure defining functional roles and relation-

ships” [281]. In modern organisations, software services are an integral part

of their business processes. The activities of a business process are often

implemented by services of software systems [115] in this context from the

domain of information systems [189]. In the following, we focus on the

interaction between information systems and business processes.

There are mutual dependencies between information systems and the busi-

ness processes these systems are involved in [211]. On the one hand, an

information system may need to be adapted to reflect changes caused in a

corresponding business process. For example, supporting new activities in a

business process can cause changes in the involved information system. On

the other hand, a business process may need to be modified due to changes

45

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

in the involved information system. For example, replacing software com-

ponents by components of alternative vendors may cause some services and

in consequence activities of the business process to be changed. Again, the

mutual dependencies between heterogeneous artefacts make change propaga-

tion analysis difficult as even small changes can cause extensive side effects

leading to a large amount of affected artefacts.

Business process modelling is commonly used to better understand, struc-

ture, and analyse the business processes of an organisation [21]. Existing

approaches to change propagation analysis in software systems (discussed

in Chapter 3) are based on the architecture of the system without taking the

mutual dependencies to the business process design into account.

The publication in [211] proposes an approach to architecture-based change

propagation analysis in information systems and business processes building

upon [210, 239] and [115] that allows to consider the mutual dependencies

between information systems and business processes. Thus, the approach pre-

sented in [211] extends a previous approach [210, 239] to architecture-based

change propagation analysis in software systems bymore fine-grained change

propagation analysis for information systems and the change propagation

analysis for business processes as well as between information systems and

business processes. Contributions described in [211] and in Chapter 6 of this

thesis are as follows:

• The specification of modelling languages for: (a) modelling the

detailed structure of information systems and business processes in

order to address Limitation 3.1.1-1 (cross-disciplinary change

propagation) and Limitation 3.1.1-2 (use of domain-specific language).

In contrast to related work described in Section 3.1.1, this modelling

language allows for explicitly representing the mutual dependencies

between information systems and business processes. These

dependencies are change propagators which then can be considered

in change propagation analysis; (b) modelling maintenance-relevant

annotations to structural model elements of the information system

architecture and the business process design in order to address

Limitation 3.1.1-3 (support for technical and organisational artefacts).

Examples of these annotations to the information system architecture

are test cases and deployment descriptors [210]. Example of these

annotation to the business process design are training courses and

organisational units [211, 50]; (c) representing seed modifications and

46

4.2 Discussion of Contributions

steps in the propagation of changes based on the models of the system

architecture and the business process design in order to address

Limitation 3.1.1-1 (cross-disciplinary change propagation) and

Limitation 3.1.1-2 (use of domain-specific language).

• The specification of algorithms and rules for change propagation

analysis in information systems and business processes based on the

aforementioned modelling languages in order to address

Limitation 3.1.1-1 (cross-disciplinary change propagation). In contrast

to related work described in Section 3.1.1, these algorithms and rules

not only consider maintenance tasks for modifying structural model

elements but also maintenance tasks for modifying model elements

that represent technical and organisational artefacts other than those

of the structure of information systems and business processes.

Consequently, the approach described in [211] and Chapter 6 results

in more comprehensive task lists compared to related approaches.

Again, these comprehensive task lists serves as a basis for

maintenance effort estimation by domain experts.

These modelling languages based on the language I proposed in [115] as well

as the algorithms and rules for change propagation analysis for business pro-

cesses and between information systems and business processes I developed

together with Kiana Busch while supervising her doctoral thesis [50]. Note,

the modelling languages, algorithms, and rules for information systems are

extensions of a previous approach to architecture-based change propagation

analysis in software systems originally described in [239].

4.2.1.2 Architecture-based Modelling and Analysis of Confidentiality

Another important quality property of current and future software-intensive

systems is confidentiality. As discussed in Chapter 1, confidentiality is seen

as a property of dependability. Confidentiality plays a special role compared

to other quality properties subsumed by the term dependability, such as per-

formance or maintainability. While issues of other quality properties, for

example, may degrade user satisfaction or lead to high maintenance costs, con-

fidentiality issues can have legal consequences due to strong data protection

regulations, such as the General Data Protection Regulation (GDPR) [82] of

the European Union. For example, British Airways is facing a penalty of £20m

[72] and Marriott International is facing a penalty of £18.4m [73] because of

47

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

confidentiality breaches. Loss of reputation after information disclosure is

another threat for organisations we often find in press. A prominent example

is Facebook. Users lost trust [274] after the Cambridge Analytica scandal.

This loss of trust even affected Facebook’s market value [127].

Confidentiality of software-intensive systems typically refers to data and data

processing which is handled by the software parts of a software-intensive

system. Software engineers need to consider confidentiality in every phase of

development and operation to ensure compliance right from the beginning

on. This is because confidentiality can barely be incorporated as a polishing

step once the system has been designed. In consequence, prediction of confi-

dentiality needs to be applied in early development as well as in evolution

of a software-intensive system to reason about design alternatives and thus

identify an appropriate system design.

Considering confidentiality early is crucial to avoid high effort for fixing

confidentiality issues. Studies on software engineering economics in general,

for example [37], show the earlier issues are identified the more cost-efficient

they can be fixed. The same holds true for security issues [180, 122, 173].

Identifying and fixing confidentiality issues already in the architectural de-

sign phase seems reasonable as in this phase sufficient knowledge about

the system is available and significant decision decisions are made, such as

about the system structure and distribution, about which types of data to

be processed, and by which data processing operators, yet the design can

be modified in a cost-efficient manner compared to later phases, such as the

implementation phase, where related approaches discussed in Section 3.1.2

are located. Ensuring proper architectural design does not free software engi-

neers from considering confidentiality in the following phases but forms a

solid foundation for subsequent phases by identifying and fixing fundamental

issues that can barely be addressed later even when spending considerable

effort.

Model-based confidentiality analyses have demonstrated in a case study

[136] to be appropriate for identifying confidentiality issues. As manually

inspecting the system architecture is complex and labour-intensive, auto-

mated confidentiality analysis based on appropriate models can speed up the

detection of confidentiality issues [254]. Confidentiality analyses operating

on data flow diagrams are promising as confidentiality issues tend to follow

the data flow [229].

48

4.2 Discussion of Contributions

The publication in [227] introduces data flows in an architecture description

language to describe data and data processing and to enable the investigation

of confidentiality issues in the architectural design phase. Contributions

described in [227] and in Chapter 7 of this thesis are as follows.

• The specification of a modelling language for the representation of

data and predefined data processing operations as first class entities in

architectural models. A sequence of these data processing operations

that exchange data describes the system behaviour to be analysed for

confidentiality issues.

• The specification of a confidentiality analysis technique using the

confidentiality mechanism access control to detect confidentiality

issues by comparing access rights assigned to data with roles assigned

to processing operations on this data. The analysis technique

considers that data processing can change data properties, for

example, by declassifying data using an aggregation operation that

removes confidential details.

This modelling language and analysis technique I developed together with

Stephan Seifermann while supervising his doctoral thesis [226].

The approach we proposed in [227], just like related approaches discussed

in Section 3.1.2, faces limitations that need to be addressed to adequately

detect confidentiality issues in the architectural design phase. As discussed in

Section 3.1.2, these limitations refer to the systematic exploration of multiple

data flow paths, the coverage of multiple confidentiality mechanisms, and the

support for user-defined confidentiality analyses.

In order to address these limitations, the publication in [228] proposes an

extended data flow diagram syntax that supports modelling both, information

flow and access control, in the same language. Moreover, the publication in

[228] proposes analysis semantics that support various types of confidentiality

analyses. Contributions described in [228] and in Chapter 8 of this thesis are

as follows.

• The specification of an extended data flow diagram syntax by a

metamodel that provides syntactical extensions for representing

confidentiality mechanisms. The publication introduces the concept

of alternative data flows via pins to represent multiple data sources

and destinations to address Limitation 3.1.2-1 (exploration of multiple

data flow paths). The extended data flow diagram syntax allows to

49

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

distinguish between system parts that depend on particular

confidentiality mechanisms and those that do not. All system parts

related to specific confidentiality mechanisms are encapsulated in

user-defined model extensions to address Limitation 3.1.2-3 (support

for user-defined confidentiality analyses). Such a model extension

consists of confidentiality properties and behaviour descriptions that

specify how the system changes these properties during its execution.

The metamodel can represent information flow and access control by

the extensions to address Limitation 3.1.2-2 (coverage of multiple

confidentiality mechanisms).

• The specification of data flow diagram semantics for confidentiality

analyses based on label propagation that support various types of

confidentiality analyses. Confidentiality properties are mapped to

labels. Behaviour descriptions are mapped to label propagation

functions. An analysis then compares labels resulting from the label

propagation with expected labels coming from requirements. The

semantics consider all data flow paths to address Limitation 3.1.2-1

(exploration of multiple data flow paths). This approach covers

information flow analysis and access control analysis to address

Limitation 3.1.2-2 (coverage of multiple confidentiality mechanisms)

as well as user-defined analyses to address Limitation 3.1.2-3 (support

for user-defined confidentiality analyses).

This extended data flow diagram syntax and semantics I developed together

with Stephan Seifermann while supervising his doctoral thesis [226].

Besides analysing data flows, confidentiality issues can be detected by consid-

ering system vulnerabilities and potential attack paths. Single vulnerabilities,

such as sensitive information stored in cleartext [63, 62], viewed in isolation

are seldom critical since they often require certain privileges to exploit or

are hidden within internal networks without access from the outside. How-

ever, attackers may build attack paths based on the combination of several

vulnerabilities to breach the system. To be more specific, attackers may ex-

ploit single vulnerabilities to gain more and more credentials and further

propagate through the system until they are able to access critical data or

resources. By doing so, attackers may exploit existing access control policies

to further infiltrate the system. Consequently, investigating the dependencies

between access control policies and vulnerabilities is important already in

early development to identify confidentiality issues. Analyses to reveal these

50

4.2 Discussion of Contributions

confidentiality issues require information about system structure and be-

haviour, data, and deployment. Therefore, the software architecture seem to

be a reasonable foundation to identifying attack paths based on vulnerabilities

and access control policies.

Existing approaches to identifying attack paths based on vulnerabilities and

access control policies, for example Bloodhound [35] or approaches from the

Darpa Cyber Grand Challenge (CGC) [66], require deployed systems. Thus,

they cannot be applied in early development. Related approaches discussed

in Section 3.1.2 lack attack propagation on architectural level by considering

detailed access control policies and existing vulnerabilities.

The publication in [269] proposes an architecture-based approach for analysing

the dependency between vulnerabilities and access control policies to identify

attack paths and confidentiality issues in order to address Limitation 3.1.2-4

(support for architecture-based attack propagation). Contributions described

in [269] and in Chapter 9 of this thesis are as follows:

• The specification of a modelling language that allows modelling

vulnerabilities and access control policies. In contrast to existing

approaches discussed in Section 3.1.2, the approach in [269] uses a

fine-grained access control model together with a vulnerability model

based on commonly used attack classifications.

• The specification of an attack propagation analysis technique to

investigate how a malicious user propagates through the system by

using stolen credentials and exploiting existing vulnerabilities. The

attack propagation analysis technique builds upon the previously

described approaches to change propagation analysis and a generic

methodology [108]. The analysis technique considers architectural

information, such as system structure, behaviour, and deployment, as

well as considers fine-grained access control policies together with

vulnerabilities.

This modelling language and analysis technique for attack propagation analy-

sis I developed togetherwithMaximilianWalter while supervising his doctoral

thesis.

51

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

4.2.2 Decomposition and Composition of Modelling Languages
and Analysis Techniques

So far we have discussed several modelling languages and model-based anal-

ysis techniques for reasoning about quality properties of software-intensive

systems. Model-based analyses support the initial development as well as

the evolution of software-intensive systems by identifying quality issues

and allowing to compare design alternatives based on their expected quality

properties. However, not only the systems face evolutionary changes but also

the modelling languages and analysis techniques have to evolve in order to

satisfy new or changing requirements.

Today, specific modelling languages and analysis techniques are used for

model-based analysis of software-intensive systems. They enforce individual

models for each desired form of analysis. Approaches to unification, such as

extending existing well-proven modelling languages and analysis techniques,

showed these become unmanageable due to growth in complexity and number

of features, for example new quality properties or disciplines to be analysed,

being added over time.

For example, the Palladio approach [206] was initially designed for perfor-

mance analysis based on software architectures. Over time, Palladio has been

extended for modelling and analysing reliability, scalability and elasticity,

costs, maintainability, energy consumption, and many other quality prop-

erties [117]. These modifications led to serious degradation of the internal

structure of the modelling language [242, 241] and the tools implementing

the analysis techniques [113]. Feature overload, feature scattering, and un-

constrained creation of dependencies, for example, harm the evolvability and

reusability of the modelling language and analysis techniques. This is because

Palladio, like similar approaches, relies on a monolithic modelling language

and monolithic analysis techniques, making modifications, extensions, and

partial reuse challenging.

Guidance for the flexible creation, modification, extension, and partial reuse

of modelling languages and analysis techniques with respect to specifics of

given quality properties or disciplines is currently not given as discussion

in Section 3.2. Feature-based decomposition would give the flexibility to

compose those (partial) modelling languages and analysis techniques needed

in a purpose-specific way. This would reduce situations that substantial

parts of the modelling languages and analysis techniques for reasoning about

52

4.2 Discussion of Contributions

structure, behaviour, and quality properties of a software-intensive system

show similar features, but are realised completely independent over and over

again.

In our research, we focus on metamodels for specifying the abstract syntax

of a modelling language. This is because of the close relationship between

metamodel design and object-oriented software design [109, 241] as described

in Section 1.2 which makes it reasonable to applying concepts from object-

oriented software design to metamodel design.

A plethora of different metamodels for modelling software-intensive systems

and their quality properties is available in literature. Existing metamodels are

specific to different quality properties (e.g., performance versus reliability),

tools (e.g., the Palladio bench [206] versus QPN-Tool [23]), or analysis tasks

(e.g., mean time analysis versus prediction of a statistical distribution) [109].

When comparingmetamodels developed formodelling and analysing different

quality properties, substantial parts of these models for the specification

of structure and behaviour of the system show similar language features.

However, existing metamodels are seldom designed in a way that they are

extensible and reusable in different contexts. A systematic way of creating,

extending, and reusing (partial) metamodels for qualitymodelling and analysis

while preserving their internal structure is required to reduce complexity.

The publication in [109] investigates the applicability of decomposition and

composition concepts known from object-oriented software design and the

idea of a reference architecture known from software engineering to meta-

models for quality modelling and analysis in order to systematically create,

extend, and reuse (partial) metamodels. This approach addresses Limita-

tion 3.2-1 (guidance for the decomposition and composition of modelling

languages) and allows to tailor metamodels to specific modelling purposes.

Requirements on the reference architecture are gathered from the historically-

grown metamodel of the Palladio approach. Decomposition and composition

concepts are specified as a foundation of the reference architecture. Detailed

application guidelines are described. The reference architecture supports

instance compatibility and non-intrusive, independent extension of metamod-

els. Contributions described in [109] and in Chapter 10 of this thesis are as

follows.

• The specification of fundamental concepts for decomposing

metamodels that enable the description of language features, language

components (metamodel modules in [109]), their relations, and their

53

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

grouping. In contrast to related approaches described in Section 3.2,

the decomposition concepts enable clear distinction between language

features and their implementation in language components.

• The investigation of composition concepts in form of extension

mechanisms for metamodels to compose (partial) metamodels in a

purpose-specific way.

• The definition of the first reference architecture for metamodels for

quality modelling and analysis based on the decomposition and

composition concepts for metamodels. In contrast to related

approaches discussed Section 3.2, the reference architecture provides

guidance and a systematic way of creating, extending, and reusing

metamodels for different quality properties and disciplines.

Furthermore, design rationale behind the reference architecture are

discussed and detailed guidelines on the application of the reference

architecture are given for two scenarios: (1) designing a metamodel

from scratch and (2) refactoring an existing metamodel.

These decomposition and composition concepts and the reference architec-

ture for metamodels I developed together with Misha Strittmatter while

supervising his doctoral thesis [241].

Furthermore, there exists a plethora of different analysis techniques relying

on different forms of the same or similar modelling languages. The Palladio

approach [206], for example, comprises at least eight different analysis tech-

niques for reasoning about software architectural design. They all rely on

different variants of Palladio’s metamodel. Again, those analysis techniques

are specific to certain quality properties, tools or analysis tasks.

When comparing different analysis techniques for reasoning about quality

properties, substantial parts of the analysis techniques show similar analysis

features. For example, there are three different performance simulators for

Palladio’s metamodel — SimuCom [25], SimuLizar [24], and EventSim [177] —

that show similar or identical analysis features. However, existing analysis

techniques are seldom designed in a way that parts can be reused in different

contexts. Like for modelling languages, a systematic way of creating, extend-

ing, and reusing (partial) analysis techniques is required to reduce complexity

of existing analysis techniques.

Decomposition and purpose-specific composition is key for flexible use of

dedicated analysis techniques, extension, and reuse of (partial) analysis tech-

54

4.2 Discussion of Contributions

niques for different variants of modelling languages. Our hypothesis is that

the decomposition of a model-based analysis technique can follow the de-

composition of the modelling language it is based on. The decomposition

of analysis techniques can be achieved by transferring the decomposition

concepts and reference architecture for metamodels proposed in [109] to

analysis techniques. Analysis techniques may be decomposed into analysis

components along the features they provide. The individual analysis compo-

nents may be composed to satisfy a specific analysis purpose. A conceptual

overview and introduction of decomposition concepts for analysis techniques

(analysis feature, analysis component, and their dependencies) as well as

the relation between concepts of modelling languages and those of analysis

techniques has already been given in Figure 2.1. In [148], we proposed first

attempts to feature-based investigation of partial simulations for reuse. The

decomposition of analysis techniques, however, is topic of future work as

described in Chapter 15 of this thesis. In the following, we focus on the

composition of analysis techniques.

The publication in [115] investigates the composition of analysis techniques

with a special focus on performance simulation of information systems and

business processes. In contrast to existing approaches discussed in Section 3.2,

the approach in [115] considers the specifics of given disciplines— information

systems and business processes— and a quality property— performance. Thus,

it represents a concrete example and guidance for the composition of analysis

techniques for these specific disciplines and quality property. Consequently,

the approach in [115] addresses the composition part of Limitation 3.2-2

(guidance for the decomposition and composition of analysis techniques)

specific for the disciplines information systems and business processes and

the quality property performance. Contributions described in [115] and in

Chapter 11 of this thesis are as follows.

• The provision of an overview of composition concepts in form of

concrete composition operators for performance simulators with a

special focus on analysing the mutual impact between information

systems and business processes. These composition operators are:

composition by result exchange between isolated simulators,

composition by co-simulation, composition by transformation into a

joint formalism, and composition by extension of one simulator by

another. Further description of these composition operators is given

below.

55

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

• The specification of an extension of Palladio’s software architecture

description language by modelling concepts for representing business

processes and their organisational environment in order to enable an

integrated simulation. Business processes are represented in terms of

sequences of actor steps and system steps, and workload

specifications. The organisational environment of a business process

is represented in terms of resources involved in the business process.

Resources of the organisational environment encompass human

actors and their roles as well as their equipment.

• The specification of an integrated performance simulator for

information systems and business processes by extending Palladio’s

simulator EventSim [177] in order to contribute to: (a) the alignment

of business process design and information system architecture while

considering the mutual impact in between in simulation; (b) a more

accurate performance prediction compared to existing isolated

simulators in cases of high workload burstiness. Workload burstiness

has “paramount importance for queuing prediction” [179] because it

reflects whether load is dispersed equally or in bursts [105].

Consequently, workload burstiness is an important criteria for

composition of performance simulators; (c) a more accurate

performance prediction compared to existing simulators due to the

representation of human actor behaviour in simulation in form of a

scheduling policy specific for human actors based on dedicated

modelling constructs.

The extension of Palladio’s architecture description language by concepts to

represent business processes and their organisational environment as well

as the integrated performance simulation including scheduling policies for

human actors, and the discussion of composition operators are my contribu-

tions. [115] represents a connecting link between the research of my doctoral

thesis [105] and my following research. Progress of [115] in comparison to my

doctoral thesis [105] includes a comprehensive discussion of the simulation

of human actor behaviour while reflecting it against open issues reported in

literature, an elaborated discussion of composition operators for performance

simulators, and a comprehensive scalability study of our integrated simulator

comprising three different experiments.

In general, three forms of composition exist in the context of model-based

analysis — model composition (white-box composition), result composition

56

4.2 Discussion of Contributions

(black-box composition), and analysis composition (grey-box composition) —

as we have identified in [246]. In [113]
1
, we give examples of how these forms

of composition are implemented in existing simulators by discussing specific

composition operators for simulators in the context of Palladio building upon

[115].

Composition by result exchange between isolated simulators [115] conforms

to the form result composition (black-box composition) [246]. It is the most

simple way of simulator composition. This composition operator can only be

applied if one simulator requires the results of another simulator, but there

is no interaction between the simulators required during simulation. Both

simulators are executed in isolation, and information is exchanged ex-post by

inserting the results of one simulator as input into another simulator. Compo-

sition by result exchange shows limitations. For example, when exchanging

results between isolated queue-based simulators, workload burstiness cannot

be considered adequately leading to inaccurate simulation results [115]. The

forms discussed in the following are able to adequately represent workload

burstiness by applying more elaborated composition operators.

Composition by co-simulation [115] conforms to the form analysis composi-

tion (grey-box composition) [246]. This composition operator enables infor-

mation exchange during simulation. Simulators are interlinked in order to

exchange information during simulation. Co-simulation commonly requires

additional efforts, for example, a coordinator for time management, model

synchronisation, and connectivity in order to enable coherent simulation.

Composition by transformation into a joint formalism [115] conforms to the

form model composition (white-box composition) [246]. This composition

operator uses model transformations for creating a homogeneous simulation

model. A characteristic of this way of simulator composition is that a single

formalism model is used as input to the simulation. Commonly, general-

purpose simulation formalisms like Petri nets or queuing networks are used as

the target formalism. This way of simulator composition can only be applied

if there is a joint formalism to integrate the models of all the simulators, or if

such an integrated formalism can be constructed.

1
The book chapter [113] has not been included in this habilitation thesis because it is part

of an anthology not suitable for an habilitation thesis as there was no anonymous peer-

review process because of my editorship for this book. However, the following description of

composition operators is taken from [113].

57

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

Composition by extension [115] is another way to implement the form model

composition (white-box composition) [246]. This way of simulator composi-

tion is about extending the modelling language and simulation routines of

one simulator by the modelling language and simulation routines of another

simulator to form an integrated and unified simulator. Composition by exten-

sion is applicable if all the simulators build upon the same (or compatible)

modelling paradigm and simulation formalism.

4.2.3 Bridging the Divergent Levels of Abstraction between
Development and Operation

The previously described contributions were focused on the development

and evolution of software-intensive systems as well as the corresponding

modelling languages and analysis techniques. The operation of software-

intensive systems is addressed by the following contributions.

Modern software-intensive systems operate based on distributed, decen-

tralised, and cloud-based computing resources while facing various events as

described in Section 1.1. Handling these events requires strong interaction

of evolution activities on development level and adaptation activities on op-

eration level. The software architecture is a central artefact to keep track of

software-intensive systems for both, developers while evolving the system

and operators while adapting the system. Existing architectural models used

in the development phase, however, differ from those used in the operation

phase in terms of purpose, content, and, in particular, abstraction [110]. These

differences result in limited reuse of development models during operation,

lost architectural knowledge, and limited phase-spanning consideration of

the software architecture.

The publication in [106] proposes foundations for bridging the divergent

levels of abstraction between models used in development and those used

in operation in order to address Limitation 3.3-1 (bridging the levels of ab-

straction) by considering operation-level adaptation and development-level

evolution as two mutual interwoven processes. Central to this perception

is the notion of an architectural runtime model. Contributions described in

[106] and in Chapter 12 of this thesis are as follows.

• The introduction of the notion of an architectural runtime model

which reflects updates of component structures, deployments, and

58

4.2 Discussion of Contributions

application usage caused by changes in the software application and

its environment during operation. In contrast to related work

discussed in Section 3.3, the architectural runtime model targets to be

usable for automated adaptation and is simultaneously

comprehensible for humans during evolution.

• The introduction of first attempts to modelling concepts to align

architectural models used in development and those used in operation.

As an umbrella a megamodel integrates development models, code

generation, monitoring, and runtime model update.

The content presented in this single-author publication is my contribution.

The publication in [107] details and extends the modelling concepts intro-

duced in [106] to align architectural models used in development and those

used in operation and thus addresses Limitation 3.3-1 (bridging the levels of

abstraction). Contributions described in [107] and Chapter 13 of this thesis

are as follows.

• The specification of a correspondence model to bridge the divergent

levels of abstraction between elements of the component-based

architectural model and implementation artefacts. The publication

refines the concepts introduced in [106] by providing a detailed

description of the Runtime Architecture Correspondence Model (RAC)

to specify the correspondence between the architectural level and the

implementation level. Consequently, the RAC bridges the divergent

levels of abstraction between component-based architectural models

created in development and the artefacts implementing services to be

observed in operation. While generating source code from the

architectural model, correspondence information is recorded in the

RAC and is subsequently used for updating the architectural model

based on observations of the executed system.

• The development of a transformation pipeline that uses the

information stored in the correspondence model to update

architectural models based on changes observed in operation. The

publication extends the transformation pipeline introduced in [106]

by transformations to update the architectural runtime model for

changes in component deployment and allocation of execution

containers.

59

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

• The specification of an approach to model complex workload, such as

several user groups of different behaviour and nested user behaviour,

based on observations in operation for architecture-based quality

prediction. In contrast to related approaches discussed in Section 3.3,

this approach exploits knowledge from the existing architectural

model to identify different user groups, their user behaviour, and their

usage intensity. It is fully integrated in the modelling environment by

exploiting the information specified in the RAC to identify user

interaction and drive model updates using the transformation

pipeline.

The content presented in this single-author publication is my contribution.

Aforementioned events that occur in modern software-intensive systems may

not only lead to the system drifting away from its development models due

to adaptations during operation but also due to evolutionary changes to the

source code that are not reflected in the architectural models. Consequently,

for keeping track of modern software-intensive systems it is required to keep

all the representations of the system (i.e. architectural model, source code,

monitoring data) consistent.

The quality of a model-based analysis heavily relies on the accuracy of the

models used. A general disadvantage of using models is that their accuracy is

uncertain and thus also the prediction results are uncertain. Consequently,

approaches to identify inaccuracies in models and strategies to handle them

are required.

Furthermore, while monitoring is essential to observe the running system in

[107], a key disadvantage of monitoring is that it introduces overhead which

can negatively affect the performance of the observed system. Consequently,

approaches to minimise monitoring overhead while at the same time allow

for sufficient insights into the running system are required.

The publication in [184] presents an approach to keep various representations

of the system consistent throughout evolution and adaption building upon

[172] and [107]. Moreover, the approach allows for self-validation and reduces

monitoring overhead while observing the running system. Contributions

described in [184] and in Chapter 14 of this thesis are as follows.

• The specification of an in-depth automated consistency preservation

strategy between the system design (architectural model and source

code) and adaptive as well as evolutionary changes based on the

60

4.2 Discussion of Contributions

consistency preservation approach Vitruvius [147]. Thus, the

publication further contributes to address Limitation 3.3-1 (bridging

the levels of abstraction). By covering both, development and

operation, an up-to-date architectural model is available at any point

in time and can be used for quality analysis (performance prediction

in [184]). In contrast to related approaches discussed in Section 3.3,

the system composition in form of components and their interfaces is

represented in the architectural model. The system composition is

analysed in the development phase based on the source code and in

the operation phase based on monitoring data. By introducing a new

graph-based data structure, the system composition can be updated in

an automated way. Consequently, the modelling effort can be reduced

compared to existing non-automated approaches and architectural

design decisions can be evaluated.

• The development of a self-validation concept as an extension of the

existing CIPM approach [172] to address Limitation 3.3-2 (support for

model validation). During operation, simulations are performed based

on the architectural model and the simulation results are compared to

measurements to reason about accuracy of the model-based

performance prediction. Thus, the approach in [184] can reveal

inaccuracies in the model and react to them. This results in more

dynamic maintenance of consistency relationships informed by

previous shortcomings.

• The extension of the transformation pipeline proposed in [107] that

uses monitoring data as input to update the architectural model.

Aforementioned validation is also used to adjust the granularity of the

monitoring (i.e. the level of detail of the monitoring) to reduce the

monitoring overhead in order to address Limitation 3.3-3 (reduction of

monitoring overhead). Thus, only parts of the system can be observed

that are poorly represented in the model. For example, in case of large

deviations between simulation results and observations, the

monitoring granularity can be increased to create a more accurate

model. The monitoring granularity can be reduced if the model is

accurate enough.

To this publication I contributed extended concepts for updating architectural

models by monitoring data collected in operation as part of the consistency

preservation strategy, the extension of the transformation pipeline, and the

61

4 Approaches to Architecture-based Evolution of Dependable Software-intensive Systems

monitoring adjustment according to the validation results building upon

[107]. Furthermore, I was involved in the conception of the derivation of the

architectural model based on source code and the self-validation concepts as

an extension of [172]. All this I developed together with David Monschein

while supervising his master thesis [183].

62

5 Architecture-based Change
Impact Analysis in
Cross-disciplinary Automated
Production Systems

The paper is available at the following reference.

Robert Heinrich, Sandro Koch, Kiana Rostami, Suhyun Cha, Ralf Reussner,

Birgit Vogel-Heuser. Architecture-based Change Impact Analysis in Cross-

disciplinary Automated Production Systems. Journal of Systems & Software,
146:167–185, Elsevier, 2018. ISSN: 0164-1212. DOI: https://doi.org/10.

1016/j.jss.2018.08.058.

63

https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1016/j.jss.2018.08.058

6 Architecture-based Change
Impact Analysis in Information
Systems and Business Processes

The paper is available at the following reference.

Kiana Rostami, Robert Heinrich, Axel Busch, Ralf Reussner. Architecture-

based Change Impact Analysis in Information Systems and Business Processes.

IEEE International Conference on Software Architecture, pages 179–188, IEEE,
2017. DOI: https://doi.org/10.1109/ICSA.2017.17.

65

https://doi.org/10.1109/ICSA.2017.17

7 Data-driven Software
Architecture for Analyzing
Confidentiality

The paper is available at the following reference.

Stephan Seifermann, Robert Heinrich, Ralf Reussner. Data-driven Software

Architecture for Analyzing Confidentiality. IEEE International Conference
on Software Architecture, pages 1–10, IEEE, 2019. DOI: https://doi.org/10.
1109/ICSA.2019.00009.

67

https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009

8 Detecting Violations of Access
Control and Information Flow
Policies in Data Flow Diagrams

The paper is available at the following reference.

Stephan Seifermann, Robert Heinrich, Dominik Werle, Ralf Reussner. Detect-

ing Violations of Access Control and Information Flow Policies in Data Flow

Diagrams. Journal of Systems & Software, 184, Elsevier, 2022. ISSN: 0164-1212.
DOI: https://doi.org/10.1016/j.jss.2021.111138.

69

https://doi.org/10.1016/j.jss.2021.111138

9 Architectural Attack Propagation
Analysis for Identifying
Confidentiality Issues

The paper is available at the following reference.

Maximilian Walter, Robert Heinrich, Ralf Reussner. Architectural Attack

Propagation Analysis for Identifying Confidentiality Issues. IEEE International
Conference on Software Architecture, pages 1–12, IEEE, 2022. DOI: https:

//doi.org/10.1109/ICSA53651.2022.00009.

71

https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1109/ICSA53651.2022.00009

10 A Layered Reference
Architecture for Metamodels to
Tailor Quality Modeling and
Analysis

The paper is available at the following reference.

Robert Heinrich, Misha Strittmatter, Ralf Reussner. A Layered Reference

Architecture for Metamodels to Tailor Quality Modeling and Analysis. IEEE
Transactions on Software Engineering, 47(4):775–800, IEEE, 2019. ISSN: 0098-
5589. DOI: https://doi.org/10.1109/TSE.2019.2903797

73

https://doi.org/10.1109/TSE.2019.2903797

11 Integrating Business Process
Simulation and Information
System Simulation for
Performance Prediction

The paper is available at the following reference.

Robert Heinrich, Philipp Merkle, Jörg Henss, Barbara Paech. Integrating Busi-

ness Process Simulation and Information System Simulation for Performance

Prediction. Software & Systems Modeling, 16:257–277, Springer, 2017. ISSN:
1619-1366. DOI: https://doi.org/10.1007/s10270-015-0457-1.

75

https://doi.org/10.1007/s10270-015-0457-1

12 Architectural Run-time Models
for Performance and Privacy
Analysis in Dynamic Cloud
Applications

The paper is available at the following reference.

Robert Heinrich. Architectural Run-time Models for Performance and Privacy

Analysis in Dynamic Cloud Applications. ACM SIGMETRICS Performance
Evaluation Review, 43(4):13–22, ACM, 2016. ISSN: 0163-5999. DOI: https:

//doi.org/10.1145/2897356.2897359.

77

https://doi.org/10.1145/2897356.2897359
https://doi.org/10.1145/2897356.2897359

13 Architectural Runtime Models
for Integrating Runtime
Observations and
Component-based Models

The paper is available at the following reference.

Robert Heinrich. Architectural Runtime Models for Integrating Runtime

Observations and Component-based Models. Journal of Systems & Software,
169, Elsevier, 2020. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.

2020.110722.

79

https://doi.org/10.1016/j.jss.2020.110722
https://doi.org/10.1016/j.jss.2020.110722

14 Enabling Consistency between
Software Artefacts for Software
Adaption and Evolution

The paper is available at the following reference.

David Monschein, Manar Mazkatli, Robert Heinrich, Anne Koziolek. Enabling

Consistency between Software Artefacts for Software Adaption and Evolution.

IEEE International Conference on Software Architecture, pages 1–12, IEEE, 2021.
DOI: https://doi.org/10.1109/ICSA51549.2021.00009.

81

https://doi.org/10.1109/ICSA51549.2021.00009

15 Conclusion

This chapter concludes the thesis with a summary and gives an outlook of

future areas of research to extend and improve the approaches described

before.

15.1 Summary

This cumulative habilitation thesis presented approaches to architecture-

based evolution of dependable software-intensive systems. We focused on

three important quality properties of dependable software-intensive systems

— performance, maintainability, and confidentiality. These quality properties

strongly depend on architectural design decisions. However, we have shown

that there is little support for reasoning about quality properties, especially

maintainability and confidentiality, early in development. This little support

for architecture-based quality analysis may result in quality issues identified

only late or even occur once the system is in operation, unfavourable design

decisions that are costly to be revised later, or the need for prototypes. We

proposed approaches to modelling and analysing maintainability of software-

intensive systems based on architectural models in Chapter 5 and Chapter 6 in

order to answer Research Question 1.1. Moreover, we proposed approaches to

modelling and analysing confidentiality of software-intensive systems based

on architectural models in Chapter 7, Chapter 8, and Chapter 9 in order to

answer Research Question 1.2.

Besides the software-intensive system itself also the modelling languages

and analysis techniques to reason about the system have to evolve to satisfy

emerging or changing requirements due to novel system properties. However,

we have shown that there is little flexibility for purpose-specific creation,

extension, and reuse of modelling languages and analysis techniques with

respect to the specifics of given quality properties or disciplines in approaches

83

15 Conclusion

to model-driven engineering. In order to answer Research Question 2, we

investigated concepts for decomposition and composition known from object-

oriented software design and transferred them to modelling languages for

quality modelling and analysis of software-intensive systems in Chapter 10.

Moreover, we investigated the composition of analysis techniques with a

special focus on performance simulation of information systems and business

processes in Chapter 11.

Once a software-intensive system is in operation it typically drifts away from

its initial development models due to adaptive and evolutionary changes.

Observing the system in operation is a feasible approach to keep track of the

system. However, there is a gap of abstraction between the data elicited by

observation in operation and the architectural models used in development.

This gap results in loss of architectural knowledge and thus makes the initial

development models increasingly less useful or even entirely useless for rea-

soning about quality properties of the system for upcoming changes. Source

code changes without changing the architectural model is another reason

for systems drifting away from their architectural models. We have shown

that existing approaches are limited to single aspects relevant for bridging

the divergent levels of abstraction in modelling between development and

operation. In order to answer Research Question 3, we proposed approaches

to bridge the divergent levels of abstraction between data of the operation

phase, architectural models (in Chapter 12 and Chapter 13) and source code

(in Chapter 14) of the development phase.

15.2 Outlook

An outlook of possible future research activities with respect to architecture-

based evolution of dependable software-intensive systems is given in this

section. The outlook is structured by the objectives of this thesis.

15.2.1 Architecture-based Quality Modelling and Analysis

In this thesis, we presented approaches to architecture-based modelling and

analysis of software-intensive systems for the quality properties maintain-

ability, confidentiality, and performance. An obvious topic of future work is

to consider additional quality properties of the ISO/IEC 25010 quality models

84

15.2 Outlook

[128] in our research. Reliability is a candidate for a quality property to be

considered next as there is already a large body of work on modelling and

analysing reliability in different disciplines available that, however, needs

to be investigated for applicability on the level of the system architecture.

Moreover, developing approaches to analyse trade-offs between different

quality properties of software-intensive systems, such as performance versus

confidentiality or maintainability versus security, and to identify optimal

design decisions with respect to these trade-offs seems to be an interesting

topic of future work. There is already a large body of work for software

systems (e.g., [141, 10]) that needs to be investigated for applicability on the

level of the system architecture. For both, the concepts proposed in this thesis

serve as foundations for future research.

An overview of future work regarding architecture-based modelling and

analysis of maintainability is given by Busch [50] as summarised in the

following.

We have presented approaches to architecture-based change propagation

analysis in automated production systems as well as in business processes

and information systems. In [108], we introduced and further detailed in [50]

a methodology for domain-spanning change impact analysis that generalises

the approaches presented in this thesis and allows to be instantiate in vari-

ous disciplines. The instantiation of this methodology in new disciplines is

expected to reveal further insights on the applicability of the methodology.

Instantiation to modelling and analysing systems from the automotive do-

main seems to be an interesting future application areas that promises new

insights due to the various heterogeneous disciplines involved. Instantiating

the methodology in different ways in a given discipline would provide fur-

ther insights on the applicability of the methodology. The instances can be

developed based on influencing factors discussed in [50] to systematically

analyse the effects of the influencing factors and to develop guidelines for

the creation of possible future instances of the methodology. Moreover, the

effects of different influencing factors on analysis results can be investigated

further.

The approaches to change propagation analysis presented in this thesis are

based on the approach in [210, 239]. The approach in [210, 239] was evalu-

ated in an empirical study that indicated an automated approach helps less-

experienced users to estimate change effort more completely and precisely.

The approaches presented in this thesis were evaluated using community

85

15 Conclusion

case studies [119, 259] from different domains as we focused on the demon-

stration that architecture-based change propagation analysis can be used

to reason about various kinds of software-intensive systems. In the future,

empirical studies can be conducted for the approaches proposed in this thesis

to investigate how these approaches can help domain experts in analysing

change propagation in different domains. These empirical studies can be

set-up similar to the previous study in [210, 239].

Another interesting question to be answered in the future is how the auto-

mated approaches to change propagation analysis proposed in this thesis

scale, for instance, for different numbers of model elements, different types of

change propagation rules, or different types of dependencies between model

elements. Moreover, the effort required to develop the modelling languages

and analysis algorithms for instantiating the methodology at different ab-

straction levels as well as the effort required to create models and analyse

the change propagation, both manually and using an automated approach,

can be investigated to better understand when applying a model-based and

automated approach to change propagation analysis pays off.

The approach presented in Chapter 6 uses fairly generic modelling languages

to represent business processes and information systems. Consequently,

fairly generic change propagation rules have been specified based on these

languages. Using modelling languages tailored to more specific kinds of pro-

cesses or systems would allow for defining more specific change propagation

rules and thus promises to result in more precise analysis results. However,

more specific modelling languages and rules come with the disadvantage that

they may not be applicable to an arbitrary process or system and development

of these languages and rules may be more costly. This needs to be further

investigated — also for other disciplines — in the future.

The approaches to change propagation analysis proposed in this thesis result

in a set of potentially affectedmodel elements which is used by domain experts

to estimate the effort of implementing a given change request. In the future,

we may further investigate the needs of domain experts, for example, in terms

of the granularity of the set of model elements for effort estimation.

In the presented approaches, domain experts have to indicate seed modifi-

cations in the model based on a change request. An interesting question

to be investigated in the future is whether these seed modifications can be

identified automatically based on a given representation of a change request.

Ways to automated identification of seed modifications obviously depend

86

15.2 Outlook

on the representation of the change request. For textual representation of a

change request the application of approaches to natural language processing

seem to be promising.

The approaches to change propagation analysis presented in this thesis apply

models of the system architecture. These models may be extracted automati-

cally by approaches like those proposed in this thesis to address Challenge 3

(cf. Chapter 12, Chapter 13, and Chapter 14) or related approaches discussed

in Section 3.3 and be extended automatically with technical and organisa-

tional artefacts other than those of the system structure in the future. A

first attempt to the automated extension with technical and organisational

artefacts has been proposed in [212] but needs to refined in the future.

An overview of future work regarding architecture-based modelling and

analysis of confidentiality is given by Seifermann [226] as summarised in the

following.

The approaches presented in this thesis are focused on confidentiality. How-

ever, considering only one security objective is not enough to secure a system.

A topic of future work is to investigate how the modelling languages and

analysis techniques proposed in this thesis can be applied and extended to

reason about other security objectives. As a next step investigating the secu-

rity objective integrity seem to be promising because the mechanisms access

control and information flow control discussed in this thesis can also be

applied to protect the integrity of information.

For the approaches presented in this thesis we assumed the models adequately

represent the system under study. However, software-intensive systems will

further evolve to process data in highly dynamic contexts and will show

dynamically changing system structure and behaviour in the future. The

high level of heterogeneity, complexity, and dynamicity of future software-

intensive systems make these systems different from traditional systems as

the sheer number of possible situations that may occur during operation

will result in high level of uncertainty, for example about system structure,

behaviour, and contexts. Ensuring confidentiality in such a system requires

significant paradigm shift with respect to existing approaches. The high level

of dynamicity deprecates existing techniques to static modelling and analysis.

The high level of uncertainty results in even more significant challenges as it

collides with the traditional interpretation and modelling of confidentiality

where, for example, access/deny decisions are sharp and fully determined.

In future systems fraught with uncertainty the rigid interpretation of access

87

15 Conclusion

control causes many problems. Instead, confidentiality must be understood in

a “fluid” sense, and not be determined by rigid rules, but rather as continuous

space where risk and loss associated with confidentiality mechanisms and

together are tied to dynamic situations. The combination of dynamicity and

uncertainty creates new challenges for modelling and analysing software-

intensive systems which need to be addressed in the future. In the ongoing

research project FluidTrust [88] funded by the German Research Foundation,

we take a first stance in this new direction of research by providing mod-

elling languages and analysis techniques for reasoning about the system in

development as well as for enforcing confidentiality in operation in highly

dynamic and uncertain systems. First attempts to consider uncertainty in the

context [39, 40] and in the structure and behaviour [270, 103] of a system

have been developed based on the approaches presented in this thesis. These

first attempts need to be improved and extended in the future.

Parts of our approaches to modelling and analysing confidentiality depend

on a particular system and others can be reused for reasoning about other

systems as well, as discussed in [228]. Security engineers often use catalogues

to provide reusable artefacts to the community. In the future, we may inves-

tigate how parts of our approaches can be provided in form of catalogues

and understand how engineers can apply such catalogues to provide and/or

use partial analysis definitions. This is related to future work on the decom-

position and composition of modelling languages and analysis techniques

discussed in the following section.

The approach to attack propagation analysis may be extended in the future by

investigating the automated creation of vulnerability models by combining

existing vulnerability analysis techniques and reverse engineering approaches

for technology-induced architectures, such as [145].

Another topic of future work is to investigate the scalability of our approaches

to modelling and analysing confidentiality. Especially the approach to attack

propagation analysis shows potential for further research as for every newly

gained credential and newly compromised element all connected elements

have to be checked because they may provide new attack possibilities. To

address this, more efficient data-structures may be used in the future. Also our

approaches to confidentiality analysis based on data flows proposed in this

thesis can be examined for scalability in the future, for instance, depending

on the number of model elements or the kind of label propagation. Moreover,

88

15.2 Outlook

like discussed before, the effort required to create models and analyse confi-

dentiality issues, both manually and using the automated approaches, may

be investigated also for our approaches to modelling and analysing confi-

dentiality to better understand when applying a model-based and automated

approach pays off.

15.2.2 Decomposition and Composition of Modelling Languages
and Analysis Techniques

In the Dagstuhl Seminar 19481 [77], we brought together members of the

software engineering and formal methods communities and representatives

from industry with the goal of establishing the foundations for a common

understanding of the decomposition and composition of model-based analysis

tools. We identified several challenges with respect to the decomposition and

composition of model-based analyses and proposed first solutions to address

these challenges in a book [114] created by the community as a result of the

seminar. We collected topics of future work related to the decomposition

and composition of model-based analyses and arranged them in form of a

research roadmap. In the following, we discuss an excerpt of this research

roadmap while the complete roadmap is described in [114].

Further research to understand the compositionality of specific quality prop-

erties and their analyses is required. While for some properties research has

already advanced well, many other important properties remain for which

compositionality is still not well understood. For example, research advances

on compositionality of performance properties have been achieved in the last

decades but compositionality of security properties is still not well understood

[114].

Further investigation on the composition of analysis techniques is required in

the future. We have introduced different forms of composition in the context

of model-based analysis (black-, white-, and grey-box) in [246]. Getting a

detailed understanding under which conditions each of them should be used

and the consequences of use still remains a topic for future research. In this

thesis, we gave examples with a special focus on performance simulation of

information systems and business processes and described how these forms of

composition can be implemented in existing simulators by discussing specific

composition operators in Chapter 4. However, there is still a lot of research

89

15 Conclusion

required to come to a general understanding. Investigating these composition

operators for other types of analysis techniques and other quality properties

is one topic of future work. Moreover, further insights on the applicability

of these composition operators can be gathered in case studies for analysis

techniques in other disciplines we will conduct in the future.

An important challenge that needs to be addressed in the future is the de-

composition of analysis techniques along the analysis features they provide.

Based on first experience with analysis decomposition our hypothesis is that

the decomposition of a model-based analysis technique can follow the de-

composition of the modelling language it is based on like we proposed in this

thesis. However, further research is necessary and case studies for different

types of analysis techniques need to be conducted in the future to develop

guidelines for the decomposition of analysis techniques similar to those we

proposed for the decomposition of modelling languages in this thesis.

We have introduced fundamental concepts for the integration and orchestra-

tion of analysis tools in our previous work [116]. A comprehensive study of

orchestration strategies and the contexts in which these are most appropriate,

however, is a topic of future research. A related challenge is to develop a

language providing appropriate primitives for the specification and opera-

tionalisation of new orchestration strategies building on the foundational

principles introduced in our previous work [116]. Implementing orchestration

strategies efficiently requires substantial future research. For example, a safe

and general approach to modular language development across concrete and

abstract syntax as well as semantics is missing. This requires future research

in language engineering and tool support.

Getting a better understanding of the compositionality of semantics is an

important topic of future work. The decomposition and composition concepts

proposed in this thesis are a good foundation to investigate the composition-

ality of semantics when decomposing and composing model-based analyses

along different quality properties and disciplines. The concepts proposed in

this thesis are starting point based on which fundamental questions on seman-

tically correctness, validity, semantics and property preservation, and proper

executability when decomposing and composing model-based analyses can

be answered.

An overview of additional future work on the decomposition and composition

of modelling languages is given by Strittmatter [241] as summarised in the

following.

90

15.2 Outlook

Besides metamodels, grammars are commonly used to specify the syntax

of a modelling language. A topic of future work is to apply the reference

architecture described for metamodels in this thesis to grammar-based lan-

guages. Starting points are described, for example, in [53]. Moreover, the

layers of the reference architecture proposed in the thesis are specific to

languages for quality modelling and analysis. Similar reference architectures

showing (some) other layers may be applied for modelling languages of other

application areas. For these languages the specific layers of the reference

architecture may change while the decomposition and composition concepts

described in this thesis will remain as they are applicable to metamodels in

general.

Another topic of future work refers to the decomposition of metamodels.

Language features may be identified by analysing a large amount of models

and, for example, clustering metaclasses that are instantiated by groups of

models into language features. First attempts to clustering metamodels have

been shown, for example in [243], and need to be further examined.

In the future, our decomposition and composition approach as well as the ref-

erence architecture may be better align with related initiatives like MPM [186]

or ideas we had for COLD [59]. Moreover, applying language interfaces [68]

can allow for information hiding and decoupling of tools from modelling

languages.

Moreover, our decomposition and composition concepts as well as the refer-

ence architecture may be applied to refactor and consolidate various existing

metamodels and thus gather new insights on the applicability of our approach

in the future. For example, metamodels that support related concepts, such as

the Palladio Component Model [206] and the Descartes Modeling Language

[152], can be consolidated to share a common basis. We may also consider

modelling languages that cover new quality properties and/or disciplines and

new types of analyses. For example, we are currently working on basing

aforementioned approaches to confidentiality modelling and analysis on a

modular version of the Palladio Component Model. Furthermore, applying

our approach to new domains, such as automotive, promises interesting future

insights.

Another topic of future work is further investigation on the extension mecha-

nisms for composing modelling languages. The extension mechanisms pro-

posed in this thesis are based on EMOF [181]. In the future, we may survey

and examine other forms of extension mechanism for modelling languages,

91

15 Conclusion

both metamodel-based and grammar-based modelling languages, by using

and adapting the comparison criterion for extension mechanisms presented

in [241]. The compatibility of different extension mechanisms may also be

investigated in the future.

15.2.3 Bridging the Divergent Levels of Abstraction between
Development and Operation

Our approaches to bridging the divergent levels of abstraction in modelling

between development and operation can be extended and revised in the future

as described in the following.

We will further broaden our approaches to better support the planning and

execution phases of the MAPE control loop model. We have proposed first

attempts in [111, 110, 200]. As next steps, we (i) will further investigate

design space exploration and optimisation techniques to identify optimal

candidate architectural models, (ii) will further investigate the execution

of adaptation plans to allow for a maximum degree of automation where

adaptation is possible without human intervention, and (iii) will examine

approaches to efficient operator-in-the-loop adaptation in case of trade-off

decisions, lack of information, or criticality of decisions. Live visualisation

approaches have demonstrated support for human operators in cases where

human intervention is required. In the future, wemay extend our visualisation

approach sketched in [110] by additional views to further improve support of

human operators.

Another topic of future work is expanding the approaches proposed in this

thesis by considering, besides monitoring data of the software application,

additional kinds of data gathered in operation, such as sensor data of an

automated production plant, and represent this data in architectural run-

time models. These architectural runtime models then need to adhere to

corresponding modelling languages. The modelling languages for automated

production systems we proposed in Chapter 5, for example, can serve as a

basis which then need to be extended for specific purposes. Furthermore,

correspondence relations must be specified accordingly.

Our incremental model calibration may be extended in the future. We may

apply genetic algorithms to analyse the entire behaviour and additional quality

properties of services instead of focusing on performance parameters.

92

15.2 Outlook

Another topic of future work is to extend the scalability experiments of the

proposed approaches. Extensions to the scalability experiments may comprise

the consideration of influence factors like variation in the complexity of user

behaviour or optimisations using genetic algorithm.

Currently, the implementation of our consistency preservation rules are fo-

cused on the Java programming language and other specific technologies.

However, the Vitruvius approach [147] our consistency preservation approach

is based on allows for defining domain-specific metamodels and consistency

preservation rules. In the future, we may adjust the metamodels and con-

sistency preservation rules to make our approach independent of specific

technologies.

93

Bibliography

[1] W.M.P. van der Aalst, M.H. Schonenberg, and M. Song. “Time predic-

tion based on process mining”. In: Information Systems 36.2 (2011),
pp. 450–475. issn: 03064379. doi: 10.1016/j.is.2010.09.001. url:

http://linkinghub.elsevier.com/retrieve/pii/S0306437910000864.

[2] Takoua Abdellatif et al. “Automating information flow control in

component-based distributed systems”. In: 14th International ACM
Sigsoft Symposium on Component-based Software Engineering. ACM,

2011, pp. 73–82. isbn: 978-1-4503-0723-9. doi: 10.1145/2000229.

2000241.

[3] Marwan Abi-Antoun, Daniel Wang, and Peter Torr. “Checking threat

modeling data flow diagrams for implementation conformance and

security”. In: 22nd IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2007, pp. 393–396. isbn: 978-1-59593-882-

4. doi: 10.1145/1321631.1321692.

[4] Vanessa Ackermann et al. “Black-box Learning of Parametric De-

pendencies for Performance Models”. In: 13th Workshop on Mod-
els@run.time. CEUR Workshop Proceedings Vol-2245. 2018, pp. 78–

86.

[5] Ad Aerts et al. “Architectures in context: On the evolution of business,

application software, and ICT platform architectures”. In: Information
& Management 41 (2004), pp. 781–794. doi: 10.1016/j.im.2003.06.
002.

[6] Wolfgang Ahrendt et al., eds. Deductive Software Verification – The
KeY Book. Springer, 2016. isbn: 978-3-319-49811-9. doi: 10.1007/978-
3-319-49812-6.

[7] M. Ugur Aksu et al. “Automated Generation of Attack Graphs Using

NVD”. In: Eighth ACM Conference on Data and Application Security
and Privacy. ACM, 2018, pp. 135–142. isbn: 9781450356329. doi: 10.

1145/3176258.3176339. url: https://doi.org/10.1145/3176258.

3176339.

95

https://doi.org/10.1016/j.is.2010.09.001
http://linkinghub.elsevier.com/retrieve/pii/S0306437910000864
https://doi.org/10.1145/2000229.2000241
https://doi.org/10.1145/2000229.2000241
https://doi.org/10.1145/1321631.1321692
https://doi.org/10.1016/j.im.2003.06.002
https://doi.org/10.1016/j.im.2003.06.002
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/3176258.3176339
https://doi.org/10.1145/3176258.3176339
https://doi.org/10.1145/3176258.3176339
https://doi.org/10.1145/3176258.3176339

15 Bibliography

[8] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. “Concern-oriented

software design”. In: International Conference on Model Driven En-
gineering Languages and Systems. Springer. 2013, pp. 604–621. doi:
10.1007/978-3-642-41533-3_37.

[9] Francesco Alberti, Alessandro Armando, and Silvio Ranise. “Efficient

Symbolic Automated Analysis of Administrative Attribute-Based

RBAC-Policies”. In: 6th ACM Symposium on Information, Computer
and Communications Security. ACM, 2011, pp. 165–175. isbn: 9781450305648.

doi: 10.1145/1966913.1966935.

[10] Aldeida Aleti et al. “Software Architecture Optimization Methods:

A Systematic Literature Review”. In: IEEE Transactions on Software
Engineering 39.5 (2013), pp. 658–683. doi: 10.1109/TSE.2012.64.

[11] Khaled Alghathbar, Csilla Farkas, and DumindaWijesekera. “Securing

UML Information Flow using FlowUML”. In: Journal of Research and
Practice in Information Technology 38.1 (2006), pp. 111–120. url: https:
//50years.acs.org.au/content/dam/acs/50- years/journals/

jrpit/JRPIT38.1.111.pdf.

[12] Khaled Alghathbar and Duminda Wijesekera. “authUML: A Three-

Phased Framework to Analyze Access Control Specifications in Use

Cases”. In: 2003 ACM Workshop on Formal Methods in Security En-
gineering. ACM, 2003, pp. 77–86. isbn: 1581137818. doi: 10.1145/

1035429.1035438.

[13] Rasim Alguliyev, Yadigar Imamverdiyev, and Lyudmila Sukhostat.

“Cyber-physical systems and their security issues”. In: Computers in
Industry 100 (2018), pp. 212–223. doi: 10.1016/j.compind.2018.04.

017.

[14] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. “Automated

software architecture security risk analysis using formalized signa-

tures”. In: 35th International Conference on Software Engineering. IEEE,
2013, pp. 662–671. isbn: 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.

6606612.

[15] Moussa Amrani et al. “Multi-paradigm modelling for cyber-physical

systems: a descriptive framework”. In: Software & Systems Modeling
20 (2021), pp. 611–639. doi: 10.1007/s10270- 021- 00876- z. url:

https://doi.org/10.1007/s10270-021-00876-z.

96

https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1145/1966913.1966935
https://doi.org/10.1109/TSE.2012.64
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://doi.org/10.1145/1035429.1035438
https://doi.org/10.1145/1035429.1035438
https://doi.org/10.1016/j.compind.2018.04.017
https://doi.org/10.1016/j.compind.2018.04.017
https://doi.org/10.1109/ICSE.2013.6606612
https://doi.org/10.1109/ICSE.2013.6606612
https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1007/s10270-021-00876-z

15 Bibliography

[16] Moussa Amrani et al. “Towards a Formal Specification of Multi-

Paradigm Modelling”. In: 22nd International Conference on Model
Driven Engineering Languages and Systems Companion. IEEE. 2019,
pp. 419–424.

[17] Steven Arzt et al. “FlowDroid: precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for Android apps”. In:

35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2014, pp. 259–269. doi: 10.1145/2594291.

2594299.

[18] AutomationML. url: https://www.automationml.org/ (visited on

03/21/2022).

[19] Oscar Avila and Kelly Garcés. “Change Management Contributions

for Business-IT Alignment”. In: Lecture Notes in Business Information
Processing. Vol. 183. Springer, 2014. doi: 10.1007/978-3-319-11460-
6_14.

[20] A. Avizienis et al. “Basic concepts and taxonomy of dependable and

secure computing”. In: IEEE Transactions on Dependable and Secure
Computing 1.1 (2004), pp. 11–33. doi: 10.1109/TDSC.2004.2.

[21] Wasana Bandara, Guy Gable, and Michael Rosemann. “Factors and

measures of business process modelling: Model building through a

multiple case study”. In: European Journal of Information Systems 14
(2005), pp. 347–360. doi: 10.1057/palgrave.ejis.3000546.

[22] Luca Bassi et al. “A SysML-Based Methodology for Manufacturing

Machinery Modeling and Design”. In: IEEE/ASME Transactions on
Mechatronics 16.6 (2011), pp. 1049–1062. doi: 10.1109/TMECH.2010.
2073480.

[23] Falko Bause, Peter Buchholz, and Peter Kemper. “QPN-Tool for the

Specification andAnalysis of Hierarchically CombinedQueueing Petri

Nets”. In: Quantitative Evaluation of Computing and Communication
Systems. Vol. 977. 1995, pp. 224–238.

[24] Matthias Becker, Markus Luckey, and Steffen Becker. “Performance

Analysis of Self-adaptive Systems for Requirements Validation at

Design-time”. In: 9th International ACM Sigsoft Conference on Qual-
ity of Software Architectures. ACM, 2013, pp. 43–52. doi: 10.1145/

2465478.2465489.

97

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://www.automationml.org/
https://doi.org/10.1007/978-3-319-11460-6_14
https://doi.org/10.1007/978-3-319-11460-6_14
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1057/palgrave.ejis.3000546
https://doi.org/10.1109/TMECH.2010.2073480
https://doi.org/10.1109/TMECH.2010.2073480
https://doi.org/10.1145/2465478.2465489
https://doi.org/10.1145/2465478.2465489

15 Bibliography

[25] Steffen Becker. “Coupled model transformations for QoS enabled

component-based software design”. PhD thesis. 2008. 297 pp. isbn:

978-3-86644-271-9. doi: 10.5445/KSP/1000009095.

[26] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio com-

ponent model for model-driven performance prediction”. In: Journal
of Systems and Software 82.1 (2009). Special Issue: Software Perfor-
mance - Modeling and Analysis, pp. 3–22. doi: https://doi.org/10.

1016/j.jss.2008.03.066.

[27] Steffen Becker et al. “Reverse Engineering Component Models for

Quality Predictions”. In: 2010 14th European Conference on Software
Maintenance and Reengineering. IEEE, 2010, pp. 194–197. doi: 10.
1109/CSMR.2010.34.

[28] Nelly Bencomo et al. Models@run.time. Springer, 2014. isbn: 978-3-
319-08914-0. doi: 10.1007/978-3-319-08915-7.

[29] PerOlof Bengtsson et al. “Architecture-level modifiability analysis

(ALMA).” In: Journal of Systems and Software 69.1-2 (2004), pp. 129–
147. doi: 10.1016/S0164-1212(03)00080-3.

[30] PerOlof Bengtsson and Jan Bosch. “Architecture level prediction of

software maintenance”. In: Third European Conference on Software
Maintenance and Reengineering. IEEE, 1999, pp. 139–147. doi: 10.
1109/CSMR.1999.756691.

[31] Bernhard J. Berger, Karsten Sohr, and Rainer Koschke. “Automatically

Extracting Threats from Extended Data Flow Diagrams”. In: 8th Inter-
national Symposium on Engineering Secure Software and Systems. Ed.
by Juan Caballero, Eric Bodden, and Elias Athanasopoulos. Vol. 9639,

Lecture Notes in Computer Science. Springer, 2016, pp. 56–71. isbn:

978-3-319-30805-0. doi: 10.1007/978-3-319-30806-7_4.

[32] Alexander van den Berghe et al. “A Lingua Franca for Security by

Design”. In: 2018 IEEE Cybersecurity Development. IEEE, 2018, pp. 69–
76. doi: 10.1109/SecDev.2018.00017.

[33] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext
and Xtend - Second Edition. Packt Publishing, 2016. isbn: 1786464969.

[34] Stefan Biffl et al. “Linking and versioning support for AutomationML:

A model-driven engineering perspective”. In: 2015 IEEE 13th Interna-
tional Conference on Industrial Informatics. IEEE, 2015, pp. 499–506.
doi: 10.1109/INDIN.2015.7281784.

98

https://doi.org/10.5445/KSP/1000009095
https://doi.org/https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/CSMR.2010.34
https://doi.org/10.1109/CSMR.2010.34
https://doi.org/10.1007/978-3-319-08915-7
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1109/CSMR.1999.756691
https://doi.org/10.1109/CSMR.1999.756691
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1109/SecDev.2018.00017
https://doi.org/10.1109/INDIN.2015.7281784

15 Bibliography

[35] BloodHound Enterprise. url: https://bloodhoundenterprise.io/

(visited on 03/20/2022).

[36] Thierry Bodhuin et al. “Impact Analysis for Supporting the Co-Evolution

of Business Processes and Supporting Software Systems”. In: CAiSE’04
Workshops in connection with The 16th Conference on Advanced Infor-
mation Systems Engineering, Riga, Latvia, 7-11 June, 2004, Knowledge
and Model Driven Information Systems Engineering for Networked Or-
ganisations, Proceedings, Vol. 2. Ed. by Janis Grundspenkis and Marite

Kirikova. Faculty of Computer Science and Information Technology,

Riga Technical University, Riga, Latvia, 2004, pp. 146–150.

[37] Barry W. Boehm, Robert K Mcclean, and D. E. Urfrig. “Some experi-

ence with automated aids to the design of large-scale reliable soft-

ware”. In: IEEE Transactions on Software Engineering SE-1.1 (1975),

pp. 125–133. issn: 1939-3520. doi: 10.1109/TSE.1975.6312826.

[38] F.S. de Boer et al. “Change impact analysis of enterprise architectures”.

In: IEEE International Conference on Information Reuse and Integration.
2005, pp. 177–181. isbn: 0-7803-9093-8. doi: 10.1109/IRI-05.2005.

1506470.

[39] Nicolas Boltz, Maximilian Walter, and Robert Heinrich. “Context-

Based Confidentiality Analysis for Industrial IoT”. In: 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications.
IEEE, 2020, pp. 589–596. doi: 10.1109/SEAA51224.2020.00096.

[40] Nicolas Boltz et al. “Handling Environmental Uncertainty in Design

Time Access Control Analysis”. In: 2022 48th Euromicro Conference
on Software Engineering and Advanced Applications. IEEE, 2022.

[41] Marcello Bonfé and Cesare Fantuzzi. “Design and verification of in-

dustrial logic controllers with UML and statecharts”. In: 2003 IEEE
Conference on Control Applications. Vol. 2. 2003, pp. 1029–1034. isbn:
0-7803-7729-X. doi: 10.1109/CCA.2003.1223152.

[42] Grady Booch. “Object-oriented development”. In: IEEE Transactions
on Software Engineering SE-12.2 (1986), pp. 211–221. doi: 10.1109/

TSE.1986.6312937.

[43] L.C. Briand, Y. Labiche, and L. O’Sullivan. “Impact analysis and change

management of UMLmodels”. In: International Conference on Software
Maintenance. IEEE, 2003, pp. 256–265. doi: 10 . 1109 / ICSM . 2003 .
1235428.

99

https://bloodhoundenterprise.io/
https://doi.org/10.1109/TSE.1975.6312826
https://doi.org/10.1109/IRI-05.2005.1506470
https://doi.org/10.1109/IRI-05.2005.1506470
https://doi.org/10.1109/SEAA51224.2020.00096
https://doi.org/10.1109/CCA.2003.1223152
https://doi.org/10.1109/TSE.1986.6312937
https://doi.org/10.1109/TSE.1986.6312937
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1109/ICSM.2003.1235428

15 Bibliography

[44] Franz Brosch et al. “Architecture-Based Reliability Prediction with

the Palladio Component Model”. In: IEEE Transactions on Software
Engineering 38.6 (2012), pp. 1319–1339. doi: 10.1109/TSE.2011.94.

[45] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. “Automated

extraction of architecture-level performance models of distributed

component-based systems.” In: 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2011, pp. 183–
192. isbn: 978-1-4577-1638-6. doi: 10.1109/ASE.2011.6100052.

[46] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. “Automated

Extraction of Palladio Component Models from Running Enterprise

Java Applications”. In: 1st International Workshop on Run-time mOdels
for Self-managing Systems and Applications. ACM, 2009, 10:1–10:10.

isbn: 978-963-9799-70-7.

[47] Andreas Brunnert, Christian Vögele, and Helmut Krcmar. “Automatic

Performance Model Generation for Java Enterprise Edition (EE) Ap-

plications”. In: Computer Performance Engineering - 10th European
Workshop. Ed. by Maria Simonetta Balsamo, William J. Knottenbelt,

and Andrea Marin. Vol. 8168. Lecture Notes in Computer Science.

Springer, 2013, pp. 74–88. doi: 10.1007/978-3-642-40725-3_7.

[48] Andreas Brunnert et al. Performance-oriented DevOps: A Research
Agenda. Tech. rep. SPEC-RG-2015-01. SPEC Research Group — De-

vOps Performance Working Group, Standard Performance Evaluation

Corporation (SPEC), 2015.

[49] Jim Buckley et al. “JITTAC: A Just-in-Time tool for architectural

consistency”. In: 2013 35th International Conference on Software Engi-
neering. IEEE, 2013, pp. 1291–1294. doi: 10.1109/ICSE.2013.6606700.

[50] Kiana Busch. “An Architecture-based Approach for Change Impact

Analysis of Software-intensive Systems”. PhD thesis. Karlsruhe Insti-

tute of Technology (KIT), 2019. 275 pp. doi: 10.5445/IR/1000097837.

[51] Kiana Busch et al. “A Model-Based Approach to Calculate Maintain-

ability Task Lists of PLC Programs for Factory Automation”. In: 44th
Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018,
pp. 2949–2954. doi: 10.1109/IECON.2018.8591302.

100

https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/ASE.2011.6100052
https://doi.org/10.1007/978-3-642-40725-3_7
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.5445/IR/1000097837
https://doi.org/10.1109/IECON.2018.8591302

15 Bibliography

[52] Arvid Butting et al. “Compositional Modelling Languages with An-

alytics and Construction Infrastructures Based on Object-Oriented

Techniques—The MontiCore Approach”. In: Composing Model-Based
Analysis Tools. Ed. by Robert Heinrich et al. Springer, 2021, pp. 217–

234. isbn: 978-3-030-81915-6. doi: 10.1007/978-3-030-81915-6_11.

[53] Arvid Butting et al. “Systematic Composition of Independent Lan-

guage Features”. In: Journal of Systems and Software 152 (2019), pp. 50–
69. doi: 10.1016/j.jss.2019.02.026.

[54] Gerardo Canfora et al. “A framework for QoS-aware binding and

re-binding of composite web services”. In: Journal of Systems and
Software 81.10 (2008), pp. 1754–1769. doi: https://doi.org/10.

1016/j.jss.2007.12.792.

[55] Ralf Carbon. “Architecture-centric software producibility analysis”.

PhD thesis. Fraunhofer IESE, Kaiserslautern; University of Kaiser-

slautern, 2012. 202 pp. isbn: 978-3-8396-0372-7.

[56] Paulo Carreira, VascoAmaral, andHans Vangheluwe. “Multi-Paradigm

Modelling for Cyber-Physical Systems: Foundations”. In: Foundations
of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer,
2020, pp. 1–14. isbn: 978-3-030-43945-3. doi: 10.1007/978-3-030-

43946-0_1.

[57] Walter Cazzola and Edoardo Vacchi. “Neverlang 2–Componentised

Language Development for the JVM”. In: International Conference on
Software Composition. Springer. 2013, pp. 17–32. doi: 10.1007/978-
3-642-39614-4_2.

[58] B. Combemale, O. Barais, and A. Wortmann. “Language Engineering

with the GEMOC Studio”. In: 2017 IEEE International Conference on
Software Architecture Workshops. IEEE, 2017, pp. 189–191. doi: 10.
1109/ICSAW.2017.61.

[59] Benoit Combemale et al. “Concern-oriented language development

(COLD): Fostering reuse in language engineering”. In: Computer Lan-
guages, Systems & Structures 54 (2018), pp. 139–155.

[60] Marc Courtois and Murray Woodside. “Using Regression Splines for

Software Performance Analysis”. In: 2nd International Workshop on
Software and Performance. ACM, 2000, pp. 105–114. doi: 10.1145/

350391.350416.

101

https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/https://doi.org/10.1016/j.jss.2007.12.792
https://doi.org/https://doi.org/10.1016/j.jss.2007.12.792
https://doi.org/10.1007/978-3-030-43946-0_1
https://doi.org/10.1007/978-3-030-43946-0_1
https://doi.org/10.1007/978-3-642-39614-4_2
https://doi.org/10.1007/978-3-642-39614-4_2
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1145/350391.350416
https://doi.org/10.1145/350391.350416

15 Bibliography

[61] Simon Cruanes et al. “Tool Integration with the Evidential Tool Bus”.

In: Lecture Notes in Computer Science. Springer, 2013, pp. 275–294. doi:
10.1007/978-3-642-35873-9_18.

[62] CVE-2021-28374. url: https://nvd.nist.gov/vuln/detail/CVE-
2021-28374 (visited on 03/29/2022).

[63] CWE-312. url: https://cwe.mitre.org/data/definitions/312.
html (visited on 03/29/2022).

[64] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming. Addison-Wesley, 2000. isbn: 0201309777.

[65] Hoa Khanh Dam and Michael Winikoff. “Supporting change prop-

agation in UML models”. In: 2010 IEEE International Conference on
Software Maintenance. IEEE, 2010, pp. 1–10. doi: 10.1109/ICSM.2010.
5609712.

[66] Darpa Cyber Grand Challenge. url: https : / / www . darpa . mil /

program/cyber-grand-challenge (visited on 03/20/2023).

[67] Lakshitha de Silva and Dharini Balasubramaniam. “Controlling soft-

ware architecture erosion: A survey”. In: Journal of Systems and Soft-
ware 85.1 (2012), pp. 132–151. issn: 0164-1212. doi: https://doi.org/
10.1016/j.jss.2011.07.036.

[68] Thomas Degueule, Benoit Combemale, and Jean-Marc Jézéquel. “On

Language Interfaces”. In: PAUSE: Present And Ulterior Software Engi-
neering. Ed. by Bertrand Meyer and Manuel Mazzara. Springer, 2017,

pp. 65–75. doi: 10.1007/978-3-319-67425-4_5.

[69] Thomas Degueule et al. “Melange: A meta-language for modular

and reusable development of DSLs”. In: ACM SIGPLAN International
Conference on Software Language Engineering. ACM. 2015, pp. 25–36.

doi: 10.1145/2814251.2814252.

[70] Christopher J. Deloglos, Carl R. Elks, and Ashraf Tantawy. “An At-

tacker Modeling Framework for the Assessment of Cyber-Physical

Systems Security”. In:Computer Safety, Reliability, and Security. Vol. LNCS
12234. Springer, 2020, pp. 150–163. doi: 10.1007/978-3-030-54549-

9.

[71] Mina Deng et al. “A privacy threat analysis framework: supporting the

elicitation and fulfillment of privacy requirements”. In: Requirements
Engineering 16.1 (2011), pp. 3–32. doi: 10.1007/s00766-010-0115-7.

102

https://doi.org/10.1007/978-3-642-35873-9_18
https://nvd.nist.gov/vuln/detail/CVE-2021-28374
https://nvd.nist.gov/vuln/detail/CVE-2021-28374
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/312.html
https://doi.org/10.1109/ICSM.2010.5609712
https://doi.org/10.1109/ICSM.2010.5609712
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://doi.org/https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1007/978-3-319-67425-4_5
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1007/978-3-030-54549-9
https://doi.org/10.1007/978-3-030-54549-9
https://doi.org/10.1007/s00766-010-0115-7

15 Bibliography

[72] ElizabethDenham. Penatly Notice. Penatly Notice COM0783542. United

Kingdom: Information Commissioner’s Office, Oct. 2020. url: https:

//web.archive.org/web/20210620130131/https://edpb.europa.

eu/sites/default/files/article-60-final-decisions/uk_2010-

10_data_breach_security_of_processing_decisionpublic_final.

pdf (visited on 08/02/2021).

[73] ElizabethDenham. Penatly Notice. Penatly Notice COM0804337. United

Kingdom: Information Commissioner’s Office, Oct. 2020. url: https:

//web.archive.org/web/20210802034347/https://edpb.europa.

eu/sites/default/files/article-60-final-decisions/uk_2020-

10_personal_data_breach_decisionpublic_final.pdf (visited on

08/02/2021).

[74] Markus von Detten. “Archimetrix: A Tool for Deficiency-Aware Soft-

ware Architecture Reconstruction”. In: 2012 19th Working Conference
on Reverse Engineering. IEEE, 2012, pp. 503–504. doi: 10.1109/WCRE.
2012.61.

[75] John Donaldson. A Case Narrative of the Project Problems with the
Denver Airport Baggage Handling System (DABHS). Tech. rep. Software
Forensics Centre Technical Report TR 2002-01, 2002.

[76] Francisco Durán et al. “Amalgamation of domain specific languages

with behaviour”. In: Journal of Logical and Algebraic Methods in Pro-
gramming 86.1 (2017), pp. 208–235. issn: 2352-2208. doi: 10.1016/j.

jlamp.2015.09.005.

[77] FranciscoDurán et al. “ComposingModel-BasedAnalysis Tools (Dagstuhl

Seminar 19481)”. In: Dagstuhl Reports 9.11 (2020). Ed. by Francisco

Durán et al. issn: 2192-5283. doi: 10.4230/DagRep.9.11.97. url:

https://drops.dagstuhl.de/opus/volltexte/2020/11985.

[78] Matthew B. Dwyer and Sebastian Elbaum. “Unifying verification and

validation techniques”. In: FSE/SDP workshop on Future of software
engineering research. ACM, 2010, pp. 93–98. doi: 10.1145/1882362.

1882382.

[79] Stefan Dziwok et al. The MechatronicUML Design Method: Process and
Language for Platform-Independent Modeling. Tech. rep. tr-ri-16-352.
Version 1.0. Software Engineering Department, Fraunhofer IEM /

Software Engineering Group, Heinz Nixdorf Institute, 2016.

103

https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://doi.org/10.1109/WCRE.2012.61
https://doi.org/10.1109/WCRE.2012.61
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.4230/DagRep.9.11.97
https://drops.dagstuhl.de/opus/volltexte/2020/11985
https://doi.org/10.1145/1882362.1882382
https://doi.org/10.1145/1882362.1882382

15 Bibliography

[80] Aladin El Hamdouni, Abdelhak Seriai, andMarianneHuchard. “Component-

based Architecture Recovery from Object Oriented Systems via Rela-

tional Concept Analysis”. In: 7th International Conference on Concept
Lattices and Their Applications. Vol. 672 CEURWorkshop Proceedings.

2010, pp. 259–270.

[81] EMF Refactor. url: https://www.eclipse.org/emf-refactor (visited

on 03/27/2022).

[82] European Union. “Regulation (EU) 2016/679 of the European Parlia-

ment and of the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and on the

free movement of such data, and repealing Directive 95/46/EC (Gen-

eral Data Protection Regulation)”. In: Official Journal of the European
Union 59 (2016), pp. 1–88. url: https://eur-lex.europa.eu/eli/

reg/2016/679/oj.

[83] Irene Eusgeld and Felix C. Freiling. “Introduction to Dependability

Metrics”. In: Dependability Metrics: Advanced Lectures. Ed. by Irene

Eusgeld, Felix C. Freiling, and Ralf Reussner. Springer, 2008, pp. 1–4.

isbn: 978-3-540-68947-8. doi: 10.1007/978-3-540-68947-8_1.

[84] Alexander Fay et al. “Enhancing a model-based engineering approach

for distributed manufacturing automation systems with character-

istics and design patterns”. In: Journal of Systems and Software 101
(2015), pp. 221–235. doi: 10.1016/j.jss.2014.12.028.

[85] Walid Fdhila, Stefanie Rinderle-Ma, and Manfred Reichert. “Change

propagation in collaborative processes scenarios”. In: 8th Interna-
tional Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing. IEEE, 2012, pp. 452–461. doi: 10.4108/icst.
collaboratecom.2012.250408.

[86] Walid Fdhila et al. “Dealing with change in process choreographies:

Design and implementation of propagation algorithms”. In: Informa-
tion Systems 49 (2015), pp. 1–24. issn: 0306-4379. doi: https://doi.
org/10.1016/j.is.2014.10.004.

[87] Kathi Fisler et al. “Verification and Change-Impact Analysis of Access-

Control Policies”. In: 27th International Conference on Software En-
gineering. ACM, 2005, pp. 196–205. isbn: 1581139632. doi: 10.1145/

1062455.1062502.

[88] FluidTrust Project Website. url: https://fluidtrust.ipd.kit.edu/

home/ (visited on 03/01/2022).

104

https://www.eclipse.org/emf-refactor
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1007/978-3-540-68947-8_1
https://doi.org/10.1016/j.jss.2014.12.028
https://doi.org/10.4108/icst.collaboratecom.2012.250408
https://doi.org/10.4108/icst.collaboratecom.2012.250408
https://doi.org/https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1145/1062455.1062502
https://fluidtrust.ipd.kit.edu/home/
https://fluidtrust.ipd.kit.edu/home/

15 Bibliography

[89] Jaime Font et al. “Automating the Variability Formalization of a Model

Family by Means of Common Variability Language”. In: 19th Interna-
tional Conference on Software Product Line. ACM, 2015, pp. 411–418.

isbn: 9781450336130. doi: 10.1145/2791060.2793678.

[90] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Signature Series (Fowler). Pearson Education, 2018. isbn:

9780134757704.

[91] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

isbn: 0321712943.

[92] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide
to SysML: the systems modeling language. Morgan Kaufmann, 2014.

isbn: 0128002026.

[93] Maxime Frydman et al. “Automating Risk Analysis of Software Design

Models”. In: The Scientific World Journal 2014 (2014), pp. 1–13. doi:
10.1155/2014/805856.

[94] David Garlan et al. “Evolution styles: Foundations and tool support

for software architecture evolution”. In: 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on Software
Architecture. IEEE, 2009, pp. 131–140. doi: 10.1109/WICSA.2009.
5290799.

[95] Antonio Garmendia et al. “EMF splitter: A structured approach to

EMF modularity”. In: 3rd Workshop on Extreme Modeling. Vol. 1239
CEUR Workshop Proceedings. 2014, pp. 22–31.

[96] Susan Gasson. “A Framework for the Co-design of Business and IT

Systems”. In: 41st Annual Hawaii International Conference on System
Sciences. IEEE, 2008, pp. 348–348. doi: 10.1109/HICSS.2008.20.

[97] Christopher Gerking, David Schubert, and Eric Bodden. “Model Check-

ing the Information Flow Security of Real-Time Systems”. In: In-
ternational Symposium on Engineering Secure Software and Systems.
Springer, 2018, pp. 27–43. isbn: 978-3-319-94495-1. doi: 10.1007/978-

3-319-94496-8_3.

[98] Michael Goldapp, Ulrich Grottker, and Gregor Snelting. “Validierung

softwaregesteuerter Meßsysteme durch Program Slicing und Con-

straint Solving”. In: Statusseminar des BMBF Softwaretechnologie (1996),
pp. 405–425.

105

https://doi.org/10.1145/2791060.2793678
https://doi.org/10.1155/2014/805856
https://doi.org/10.1109/WICSA.2009.5290799
https://doi.org/10.1109/WICSA.2009.5290799
https://doi.org/10.1109/HICSS.2008.20
https://doi.org/10.1007/978-3-319-94496-8_3
https://doi.org/10.1007/978-3-319-94496-8_3

15 Bibliography

[99] Cláudio Gomes et al. “Co-Simulation: A Survey”. In: ACM Computing
Surveys 51.3 (2018), pp. 1–33. issn: 0360-0300. doi: 10.1145/3179993.

[100] Johannes Grohmann et al. “Detecting Parametric Dependencies for

Performance Models Using Feature Selection Techniques”. In: 2019
IEEE 27th International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems. IEEE, 2019, pp. 309–
322. doi: 10.1109/MASCOTS.2019.00042.

[101] Johannes Grohmann et al. “SARDE: A Framework for Continuous and

Self-Adaptive Resource Demand Estimation”. In: ACM Transactions
on Autonomous and Adaptive Systems 15.2 (2021), pp. 1–31. issn: 1556-
4665. doi: 10.1145/3463369.

[102] IEEE Architecture Working Group. IEEE Std 1471-2000, Recommended
practice for architectural description of software-intensive systems. Tech.
rep. IEEE, 2000, pp. i–23.

[103] Sebastian Hahner. “Architectural Access Control Policy Refinement

and Verification under Uncertainty”. In: Companion Proceedings of the
15th European Conference on Software Architecture. Vol. 2978. CEUR
Workshop Proceedings. 2021.

[104] Daniel Hedin et al. “A Principled Approach to Tracking Information

Flow in the Presence of Libraries”. In: 6th International Conference
on Principles of Security and Trust. Springer, 2017, pp. 49–70. isbn:
9783662544549. doi: 10.1007/978-3-662-54455-6_3.

[105] Robert Heinrich. “Aligning Business Process Quality and Informa-

tion System Quality”. PhD thesis. Heidelberg University, Software

Engineering Heidelberg, 2013. doi: 10.11588/heidok.00016033. url:

http://www.ub.uni-heidelberg.de/archiv/16033.

[106] Robert Heinrich. “Architectural Run-time Models for Performance

and Privacy Analysis in Dynamic Cloud Applications”. In: ACM SIG-
METRICS Performance Evaluation Review 43.4 (2016), pp. 13–22. issn:

0163-5999. doi: 10.1145/2897356.2897359.

[107] Robert Heinrich. “Architectural runtime models for integrating run-

time observations and component-based models”. In: Journal of Sys-
tems and Software 169 (2020). issn: 0164-1212. doi: https://doi.org/
10.1016/j.jss.2020.110722.

106

https://doi.org/10.1145/3179993
https://doi.org/10.1109/MASCOTS.2019.00042
https://doi.org/10.1145/3463369
https://doi.org/10.1007/978-3-662-54455-6_3
https://doi.org/10.11588/heidok.00016033
http://www.ub.uni-heidelberg.de/archiv/16033
https://doi.org/10.1145/2897356.2897359
https://doi.org/https://doi.org/10.1016/j.jss.2020.110722
https://doi.org/https://doi.org/10.1016/j.jss.2020.110722

15 Bibliography

[108] Robert Heinrich, Kiana Busch, and Sandro Koch. “A Methodology for

Domain-spanning Change Impact Analysis”. In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications. IEEE,
2018, pp. 326–330. doi: 10.1109/SEAA.2018.00060.

[109] Robert Heinrich, Misha Strittmatter, and Ralf Heinrich Reussner. “A

Layered Reference Architecture for Metamodels to Tailor Quality

Modeling and Analysis”. In: IEEE Transactions on Software Engineering
47.4 (2019), pp. 775–800. issn: 0098-5589. doi: 10.1109/TSE.2019.

2903797.

[110] Robert Heinrich et al. “An Architectural Model-Based Approach to

Quality-Aware DevOps in Cloud Applications”. In: Software Architec-
ture for Big Data and the Cloud. Ed. by Ivan Mistrik et al. Morgan Kauf-

mann, 2017, pp. 69–89. isbn: 978-0-12-805467-3. doi: 10.1016/B978-

0-12-805467-3.00005-3.

[111] Robert Heinrich et al. “Architectural run-time models for operator-in-

the-loop adaptation of cloud applications”. In: IEEE 9th International
Symposium on the Maintenance and Evolution of Service-Oriented and
Cloud-Based Environments. IEEE, 2015, pp. 36–40. doi: 10 . 1109 /
MESOCA.2015.7328124.

[112] Robert Heinrich et al. “Architecture-based change impact analysis

in cross-disciplinary automated production systems”. In: Journal of
Systems and Software 146 (2018), pp. 167–185. issn: 0164-1212. doi:
10.1016/j.jss.2018.08.058.

[113] Robert Heinrich et al. “Challenges in the Evolution of Palladio—

Refactoring Design Smells in a Historically-Grown Approach to Soft-

ware Architecture Analysis”. In: Composing Model-Based Analysis
Tools. Ed. by Robert Heinrich et al. Springer, 2021, pp. 235–257. isbn:

978-3-030-81915-6. doi: 10.1007/978-3-030-81915-6_11.

[114] Robert Heinrich et al. Composing Model-Based Analysis Tools. Ed. by
Robert Heinrich et al. Springer, 2021. isbn: 978-3-030-81915-6. doi:

10.1007/978-3-030-81915-6.

[115] Robert Heinrich et al. “Integrating business process simulation and

information system simulation for performance prediction”. In: Soft-
ware & Systems Modeling 16.1 (2017), pp. 257–277. issn: 1619-1366.

doi: 10.1007/s10270-015-0457-1.

107

https://doi.org/10.1109/SEAA.2018.00060
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1016/B978-0-12-805467-3.00005-3
https://doi.org/10.1016/B978-0-12-805467-3.00005-3
https://doi.org/10.1109/MESOCA.2015.7328124
https://doi.org/10.1109/MESOCA.2015.7328124
https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1007/978-3-030-81915-6
https://doi.org/10.1007/s10270-015-0457-1

15 Bibliography

[116] Robert Heinrich et al. “Integration and Orchestration of Analysis

Tools”. In: Composing Model-Based Analysis Tools. Ed. by Robert Hein-

rich et al. Springer, 2021, pp. 71–95. isbn: 978-3-030-81915-6. doi:

10.1007/978-3-030-81915-6_11.

[117] Robert Heinrich et al. “The Palladio-Bench for Modeling and Simu-

lating Software Architectures”. In: 40th International Conference on
Software Engineering: Companion Proceeedings. ACM, 2018, pp. 37–40.

doi: 10.1145/3183440.3183474.

[118] Nikolas Roman Herbst et al. “Self-Adaptive Workload Classifica-

tion and Forecasting for Proactive Resource Provisioning”. In: 4th
ACM/SPEC International Conference on Performance Engineering. ACM,

2013, pp. 187–198. doi: 10.1145/2479871.2479899.

[119] Sebastian Herold et al. “CoCoME - The Common Component Model-

ing Example”. In: The Common ComponentModeling Example: Compar-
ing Software Component Models. Ed. by Andreas Rausch et al. Springer,
2008, pp. 16–53. isbn: 978-3-540-85289-6. doi: 10.1007/978-3-540-

85289-6_3.

[120] Bernhard Hoisl, Stefan Sobernig, and Mark Strembeck. “Modeling and

enforcing secure object flows in process-driven SOAs: an integrated

model-driven approach”. In: Software & Systems Modeling 13.2 (2014),

pp. 513–548. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-012-

0263-y.

[121] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. “Soft-

ware language engineering in the large: towards composing and

deriving languages”. In: Computer Languages, Systems & Structures 54
(2018), pp. 386–405. doi: 10.1016/j.cl.2018.08.002.

[122] Kevin Soo Hoo, Andrew W Sudbury, and Andrew R Jaquith. “Tangi-

ble ROI through Secure Software Engineering”. In: Secure Business
Quarterly 1.2 (2001), pp. 1–3.

[123] André van Hoorn. “Model-Driven Online Capacity Management for

Component-Based Software Systems”. PhD thesis. Kiel University,

Department of Computer Science, 2014. isbn: 978-3-7357-5118-8.

[124] IEEE 1278.2-1995. Standard for Distributed Interactive Simulation -
Communication Services and Profiles. 1995. doi: 10.1109/IEEESTD.
1996.80824.

108

https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1145/3183440.3183474
https://doi.org/10.1145/2479871.2479899
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/s10270-012-0263-y
https://doi.org/10.1007/s10270-012-0263-y
https://doi.org/10.1016/j.cl.2018.08.002
https://doi.org/10.1109/IEEESTD.1996.80824
https://doi.org/10.1109/IEEESTD.1996.80824

15 Bibliography

[125] IEEE 1516-2010. Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) (Revision of IEEE Std 1516-2000). 2010. doi:
10.1109/IEEESTD.2010.5553440.

[126] Center for Internet Security. The SolarWinds Cyber-Attack: What You
Need to Know. 2021. url: https://www.cisecurity.org/solarwinds/
(visited on 02/02/2022).

[127] Jim Isaak andMina J Hanna. “User Data Privacy: Facebook, Cambridge

Analytica, and Privacy Protection”. In: Computer 51.8 (2018), pp. 56–
59. doi: 10.1109/MC.2018.3191268.

[128] ISO/IEC 25010:2011. Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and
software quality models. 2011.

[129] ISO/IEC 27000:2018(E). Information technology – Security techniques –
Information security management systems – Overview and vocabulary.
2018.

[130] ISO/IEC/IEEE 42010:2011(E). Systems and software engineering - Ar-
chitecture description (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000). 2011. doi: 10.1109/IEEESTD.2011.6129467.

[131] ISO/TC 176. Quality Concepts and Terminology, part 1: Generic Terms
and Definitions, Document ISO/TC 176/SC 1 N 93. 1992.

[132] Dragan Ivanovic,Manuel Carro, andManuel Hermenegildo. “Constraint-

based runtime prediction of SLA violations in service orchestrations”.

In: International Conference on Service-Oriented Computing. Springer,
2011, pp. 62–76. doi: 10.1007/978-3-642-25535-9_5.

[133] Pooyan Jamshidi and Claus Pahl. “Business process and software

architecture model co-evolution patterns”. In: 2012 4th International
Workshop on Modeling in Software Engineering. IEEE, 2012, pp. 91–97.
doi: 10.1109/MISE.2012.6226021.

[134] Hans Jense, N.H.L. Kuijpers, and A.C.M. Dumay. “DIS and HLA: con-

necting people, simulations and simulators in the military, space and

civil domains”. In: 48th International Astronautical Congress. 1997.

[135] Reiner Jung and Marc Adolf. “Extracting Realistic User Behavior

Models”. In: Software Engineering Workshops 2018. Vol. 2066. CEUR
Workshop Proceedings. 2018, pp. 47–50.

[136] Jan Jürjens. Secure Systems Development with UML. Springer, 2005.
isbn: 978-3-540-00701-2. doi: 10.1007/b137706.

109

https://doi.org/10.1109/IEEESTD.2010.5553440
https://www.cisecurity.org/solarwinds/
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1007/978-3-642-25535-9_5
https://doi.org/10.1109/MISE.2012.6226021
https://doi.org/10.1007/b137706

15 Bibliography

[137] Jan Jürjens. “UMLsec: Extending UML for Secure Systems Develop-

ment”. In: UML 2002 — The Unified Modeling Language. Vol. 2460,
Lecture Notes in Computer Science. Springer, 2002, pp. 412–425. isbn:

978-3-540-44254-7. doi: 10.1007/3-540-45800-X_32.

[138] Huzefa Kagdi, Jonathan I. Maletic, and Andrew Sutton. “Context-Free

Slicing of UML Class Models”. In: 21st IEEE International Conference
on Software Maintenance. IEEE, 2005, pp. 635–638. isbn: 0769523684.
doi: 10.1109/ICSM.2005.34.

[139] Kuzman Katkalov et al. “Model-Driven Development of Information

Flow-Secure Systems with IFlow”. In: 2013 International Conference
on Social Computing. IEEE, 2013, pp. 51–56. doi: 10.1109/SocialCom.
2013.14.

[140] Lennart C. L. Kats and Eelco Visser. “The Spoofax Language Work-

bench. Rules for Declarative Specification of Languages and IDEs”.

In: 25th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 2010, pp. 444–463. doi:

10.1145/1869459.1869497.

[141] R. Kazman et al. “SAAM: A Method for Analyzing the Properties of

Software Architectures”. In: 16th International Conference on Software
Engineering. IEEE Computer Society Press, 1994, pp. 81–90. doi: 10.

1109/ICSE.1994.296768.

[142] Rick Kazman et al. “The Architecture Tradeoff Analysis Method”.

In: 4th International Conference on Engineering of Complex Computer
Systems. IEEE, 1998, pp. 68–78. doi: 10.1109/ICECCS.1998.706657.

[143] Udo Kelter, Jürgen Wehren, and Jörg Niere. “A generic difference

algorithm for UML models”. In: Software Engineering 2005. Ed. by
Peter Liggesmeyer, Klaus Pohl, and Michael Goedicke. Gesellschaft

für Informatik e.V., 2005, pp. 105–116. isbn: 3-88579-393-8.

[144] Emre Kiciman and Benjamin Livshits. “AjaxScope: A Platform for

Remotely Monitoring the Client-Side Behavior of Web 2.0 Applica-

tions”. In: ACM Transactions on the Web 4.4 (2010). issn: 1559-1131.
doi: 10.1145/1841909.1841910.

[145] Yves Richard Kirschner. “Model-Driven Reverse Engineering of Technology-

Induced Architecture for Quality Prediction”. In: Companion Proceed-
ings of the 15th European Conference on Software Architecture. Vol. 2978.
CEUR Workshop Proceedings. 2021.

110

https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1109/ICSM.2005.34
https://doi.org/10.1109/SocialCom.2013.14
https://doi.org/10.1109/SocialCom.2013.14
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1109/ICSE.1994.296768
https://doi.org/10.1109/ICSE.1994.296768
https://doi.org/10.1109/ICECCS.1998.706657
https://doi.org/10.1145/1841909.1841910

15 Bibliography

[146] Jóakim v. Kistowski, Nikolas Roman Herbst, and Samuel Kounev.

“Modeling Variations in Load Intensity over Time”. In: 3rd Inter-
national Workshop on Large Scale Testing. ACM, 2014, pp. 1–4. doi:

10.1145/2577036.2577037.

[147] Heiko Klare et al. “Enabling consistency in view-based system devel-

opment - The Vitruvius approach”. In: Journal of Systems and Software
171 (2021). issn: 0164-1212. doi: 10.1016/j.jss.2020.110815.

[148] Sandro Koch et al. “Feature-based Investigation of Simulation Struc-

ture and Behaviour”. In: 16th European Conference on Software Archi-
tecture. Springer, 2022.

[149] Marco Konersmann. “Explicitly Integrated Architecture - An Ap-

proach for Integrating Software Architecture Model Information with

Program Code”. PhD thesis. University of Duisburg-Essen, Paluno,

2018. url: https://nbn- resolving.org/urn:nbn:de:hbz:464-

20180509-094231-3.

[150] Marco Konersmann and Jens Holschbach. “Automatic Synchroniza-

tion of AllocationModels with Running Software”. In: Softwaretechnik-
Trends 36.4 (2016). issn: 0720-8928.

[151] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer.

“DAG-based attack and defense modeling: Don’t miss the forest for the

attack trees”. In: Computer Science Review 13-14 (2014), pp. 1–38. issn:

1574-0137. doi: https://doi.org/10.1016/j.cosrev.2014.07.001.

[152] Samuel Kounev, Fabian Brosig, and Nikolaus Huber. The Descartes
Modeling Language. Tech. rep. Department of Computer Science, Uni-

versity of Wuerzburg, 2014, p. 91. url: http : / / www . descartes -

research.net/dml/.

[153] M. Kradolfer and A. Geppert. “Dynamic Workflow Schema Evolu-

tion Based on Workflow Type Versioning and Workflow Migration”.

In: Fourth IFCIS International Conference on Cooperative Information
Systems. IEEE, 1999, pp. 104–114. doi: 10.1109/COOPIS.1999.792162.

[154] Klaus Krogmann. “Reconstruction of Software Component Archi-

tectures and Behaviour Models using Static and Dynamic Analy-

sis”. PhD thesis. Karlsruhe Institute of Technology (KIT), 2012. doi:

10.5445/KSP/1000025617.

111

https://doi.org/10.1145/2577036.2577037
https://doi.org/10.1016/j.jss.2020.110815
https://nbn-resolving.org/urn:nbn:de:hbz:464-20180509-094231-3
https://nbn-resolving.org/urn:nbn:de:hbz:464-20180509-094231-3
https://doi.org/https://doi.org/10.1016/j.cosrev.2014.07.001
http://www.descartes-research.net/dml/
http://www.descartes-research.net/dml/
https://doi.org/10.1109/COOPIS.1999.792162
https://doi.org/10.5445/KSP/1000025617

15 Bibliography

[155] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner. “Using Ge-

netic Search for Reverse Engineering of Parametric Behavior Models

for Performance Prediction”. In: IEEE Transactions on Software Engi-
neering 36.6 (2010), pp. 865–877. issn: 0098-5589. doi: 10.1109/TSE.

2010.69.

[156] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. “Choosy

and picky: configuration of language product lines”. In: 19th Interna-
tional Conference on Software Product Line. ACM. 2015, pp. 71–80. doi:

10.1145/2791060.2791092.

[157] Tri A. Kurniawan et al. “Relationship-Preserving Change Propagation

in Process Ecosystems”. In: 10th International Conference on Service-
Oriented Computing. Springer, 2012, pp. 63–78. isbn: 9783642343209.
doi: 10.1007/978-3-642-34321-6_5.

[158] Jan Ladiges, Alexander Fay, and Winfried Lamersdorf. “Automated

Determining of Manufacturing Properties and Their Evolutionary

Changes from Event Traces”. In: Intelligent Industrial Systems 2.2
(2016), pp. 163–178. doi: 10.1007/s40903-016-0048-7.

[159] M. Langhammer et al. “Automated Extraction of Rich Software Mod-

els from Limited System Information”. In: 13th Working IEEE/IFIP
Conference on Software Architecture. IEEE, 2016, pp. 99–108. doi: 10.
1109/WICSA.2016.35.

[160] Michael Langhammer. “Automated Coevolution of Source Code and

Software Architecture Models”. PhD thesis. Karlsruhe Institute of

Technology (KIT), 2019. 339 pp. doi: 10.5445/KSP/1000081447.

[161] Kevin Lano and Shekoufeh Kolahdouz Rahimi. “Slicing Techniques

for UML Models”. In: Journal of Object Technology 10 (2011), pp. 1–49.

issn: 1660-1769. doi: 10.5381/jot.2011.10.1.a11.

[162] Juan de Lara, Hans Vangheluwe, andManuel Alfonseca. “Meta-modelling

and graph grammars for multi-paradigm modelling in AToM 3”. In:

Software & Systems Modeling 3 (2004), pp. 194–209. doi: 10.1007/

s10270-003-0047-5.

[163] Manuel Leduc, Thomas Degueule, and Benoit Combemale. “Modular

Language Composition for the Masses”. In: 11th ACM SIGPLAN Inter-
national Conference on Software Language Engineering. ACM, 2018,

pp. 47–59. isbn: 9781450360296. doi: 10.1145/3276604.3276622.

112

https://doi.org/10.1109/TSE.2010.69
https://doi.org/10.1109/TSE.2010.69
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1007/978-3-642-34321-6_5
https://doi.org/10.1007/s40903-016-0048-7
https://doi.org/10.1109/WICSA.2016.35
https://doi.org/10.1109/WICSA.2016.35
https://doi.org/10.5445/KSP/1000081447
https://doi.org/10.5381/jot.2011.10.1.a11
https://doi.org/10.1007/s10270-003-0047-5
https://doi.org/10.1007/s10270-003-0047-5
https://doi.org/10.1145/3276604.3276622

15 Bibliography

[164] Meir M. Lehman. “On understanding laws, evolution, and conser-

vation in the large-program life cycle”. In: Journal of Systems and
Software 1 (1980), pp. 213–221. doi: 10.1016/0164-1212(79)90022-0.

[165] Steffen Lehnert. A review of software change impact analysis. Tech. rep.
Ilmenau University of Technology, Department of Software Systems

/ Process Informatics, 2011. url: https://www.db-thueringen.de/

receive/dbt_mods_00019544.

[166] Steffen Lehnert. “A Taxonomy for Software Change Impact Analysis”.

In: Proceedings of the 12th International Workshop on Principles of
Software Evolution and the 7th Annual ERCIM Workshop on Software
Evolution. ACM, 2011, pp. 41–50. isbn: 9781450308489. doi: 10.1145/

2024445.2024454.

[167] Sebastian Lehrig. “Applying Architectural Templates for Design-Time

Scalability and Elasticity Analyses of SaaS Applications”. In: 2nd
International Workshop on Hot Topics in Cloud Service Scalability. ACM,

2014. doi: 10.1145/2649563.2649573.

[168] Bennet P. Lientz and Burton E. Swanson. Software Maintenance Man-
agement: A Study of the Maintenance of Computer Application Software
in 487 Data Processing Organizations. Addison-Wesley, 1980. isbn:

0201042053.

[169] Yuehua Lin, JeffGray, and Frédéric Jouault. “DSMDiff: a differentiation

tool for domain-specific models”. In: European Journal of Information
Systems 16.4 (2007), pp. 349–361. issn: 1476-9344. doi: 10 . 1057 /

palgrave.ejis.3000685.

[170] K.C. Liu, L.L. Sun, and K. Bennett. “Co-design of business and IT

systems - Introduction by guest editors.” In: Information Systems
Frontiers 4.3 (2002), pp. 251–256. doi: 10.1023/A:1019942501848.

[171] Robert vonMassow, André vanHoorn, andWilhelmHasselbring. “Per-

formance Simulation of Runtime Reconfigurable Component-Based

Software Architectures.” In: 5th European Conference on Software Ar-
chitecture. Vol. 6903. Lecture Notes in Computer Science. Springer,

2011, pp. 43–58. isbn: 978-3-642-23797-3. doi: 10.1007/978-3-642-

23798-0_5.

[172] Manar Mazkatli et al. “Incremental Calibration of Architectural Per-

formance Models with Parametric Dependencies”. In: 2020 IEEE Inter-
national Conference on Software Architecture. IEEE, 2020, pp. 23–34.
doi: 10.1109/ICSA47634.2020.00011.

113

https://doi.org/10.1016/0164-1212(79)90022-0
https://www.db-thueringen.de/receive/dbt_mods_00019544
https://www.db-thueringen.de/receive/dbt_mods_00019544
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/2649563.2649573
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1023/A:1019942501848
https://doi.org/10.1007/978-3-642-23798-0_5
https://doi.org/10.1007/978-3-642-23798-0_5
https://doi.org/10.1109/ICSA47634.2020.00011

15 Bibliography

[173] GaryMcGraw. Software Security - Building Security In. Addison-Wesley

Professional, 2006. isbn: 9780321356703.

[174] Daniel A. Menascé et al. “A Methodology for Workload Character-

ization of E-commerce Sites”. In: 1st ACM Conference on Electronic
Commerce. ACM, 1999, pp. 119–128. doi: 10.1145/336992.337024.

[175] David Méndez-Acuña et al. “Leveraging software product lines en-

gineering in the development of external dsls: A systematic litera-

ture review”. In: Computer Languages, Systems & Structures 46 (2016),
pp. 206–235.

[176] David Méndez-Acuña et al. “Puzzle: A Tool for Analyzing and Extract-

ing Specification Clones in DSLs”. In: Software Reuse: Bridging with
Social-Awareness. Springer, 2016, pp. 393–396. isbn: 978-3-319-35122-3.
doi: 10.1007/978-3-319-35122-3_26.

[177] Philipp Merkle and Jörg Henss. “EventSim – An Event-driven Palladio

Software Architecture Simulator”. In: Palladio Days 2011. Karlsruhe
Reports in Informatics. 2011, pp. 15–22. url: http://digbib.ubka.

uni-karlsruhe.de/volltexte/1000025188.

[178] Marjan Mernik. “An Object-oriented Approach to Language Composi-

tions for Software Language Engineering”. In: Journal of Systems and
Software 86 (2013), pp. 2451–2464. doi: 10.1016/j.jss.2013.04.087.

[179] Ningfang Mi et al. “Burstiness in multi-tier applications: symptoms,

causes, and new models”. In: Middleware 2008 – ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open
Distributed Processing. Ed. by Valerie Issarny and Richard Schantz.

Springer, 2008, pp. 265–286. isbn: 3-540-89855-7. doi: 10.1007/978-

3-540-89856-6_14.

[180] Microsoft Corporation and iSEC Partners, Inc. Microsoft SDL: Return-
on-Investment. accessed 2022-03-25. 2009. url: https://web.archive.
org/web/20210925085942/https://www.nccgroup.com/globalassets/

our-research/us/whitepapers/isec-partners---microsoft-sdl-

return-on-investment.pdf.

[181] ObjectManagement Group (OMG).MOF 2.5.1 Core Specification (formal/2016-
11-01). 2016. url: https://www.omg.org/spec/MOF/2.5.1/.

114

https://doi.org/10.1145/336992.337024
https://doi.org/10.1007/978-3-319-35122-3_26
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
https://doi.org/10.1016/j.jss.2013.04.087
https://doi.org/10.1007/978-3-540-89856-6_14
https://doi.org/10.1007/978-3-540-89856-6_14
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://www.omg.org/spec/MOF/2.5.1/

15 Bibliography

[182] Angela Monaghan. Timeline of trouble: how the TSB IT meltdown
unfolded. The Guardian, UK. accessed 2022-04-21. June 2018. url:

https://www.theguardian.com/business/2018/jun/06/timeline-

of-trouble-how-the-tsb-it-meltdown-unfolded.

[183] David Monschein. “Enabling Consistency between Software Artefacts

for Software Adaption and Evolution”. Master Thesis. Karlsruher

Institut für Technologie (KIT), 2020.

[184] David Monschein et al. “Enabling Consistency between Software

Artefacts for Software Adaption and Evolution”. In: 2021 IEEE 18th
International Conference on Software Architecture. IEEE, 2021, pp. 1–12.
doi: 10.1109/ICSA51549.2021.00009.

[185] B. Morin et al. “Models@Run.time to Support Dynamic Adaptation”.

In: IEEE Computer 42.10 (2009), pp. 44–51. doi: 10.1109/MC.2009.327.

[186] Pieter J. Mosterman and Hans Vangheluwe. “Computer Automated

Multi-Paradigm Modeling: An Introduction”. In: SIMULATION 80.9

(2004), pp. 433–450. doi: 10.1177/0037549704050532.

[187] G.C. Murphy, D. Notkin, and K.J. Sullivan. “Software reflexion mod-

els: bridging the gap between design and implementation”. In: IEEE
Transactions on Software Engineering 27.4 (2001), pp. 364–380. doi:

10.1109/32.917525.

[188] Matthias Naab. “Enhancing architecture design methods for improved

flexibility in long-living information systems”. PhD thesis. Fraunhofer

IESE, Kaiserslautern, 2012. 232 pp. isbn: 978-3-8396-0477-9.

[189] James O’Brien and George Marakas. Introduction to Information Sys-
tems. 15th ed. McGraw-Hill, Inc., 2012. isbn: 0070167087.

[190] Object Management Group (OMG). Business Process Model and Nota-
tion (BPMN) Version 2.0 (formal/11-01-03). 2011. url: http://www.omg.
org/spec/BPMN/2.0.

[191] Object Management Group (OMG). UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems (formal/2009-11-02). 2009.
url: https://www.omg.org/spec/MARTE/1.0/PDF.

[192] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Runtime

Software Adaptation: Framework, Approaches, and Styles”. In: Com-
panion of the 30th International Conference on Software Engineering.
ACM, 2008, pp. 899–910. doi: 10.1145/1370175.1370181.

115

https://www.theguardian.com/business/2018/jun/06/timeline-of-trouble-how-the-tsb-it-meltdown-unfolded
https://www.theguardian.com/business/2018/jun/06/timeline-of-trouble-how-the-tsb-it-meltdown-unfolded
https://doi.org/10.1109/ICSA51549.2021.00009
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1177/0037549704050532
https://doi.org/10.1109/32.917525
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/MARTE/1.0/PDF
https://doi.org/10.1145/1370175.1370181

15 Bibliography

[193] Karl J. Ottenstein and Linda M. Ottenstein. “The Program Dependence

Graph in a Software Development Environment”. In: First ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments. ACM, 1984, pp. 177–184. isbn: 0897911318.

doi: 10.1145/800020.808263.

[194] Nathaniel Palmer. “Workflow Schema”. In: Encyclopedia of Database
Systems. Ed. by LING LIU and M. TAMER ÖZSU. Springer, 2009,

pp. 3558–3558. isbn: 978-0-387-39940-9. doi: 10.1007/978-0-387-

39940-9_819.

[195] Behrooz Parhami. “From Defects to Failures: A View of Dependable

Computing”. In: ACM SIGARCH Computer Architecture News 16.4
(1988), pp. 157–168. issn: 0163-5964. doi: 10.1145/54331.54345. url:

https://doi.org/10.1145/54331.54345.

[196] Daniel J. Paulish and Len Bass. Architecture-Centric Software Project
Management: A Practical Guide. Addison-Wesley, 2001. isbn: 0201734095.

[197] C. Pietsch et al. “SiPL – A Delta-Based Modeling Framework for Soft-

ware Product Line Engineering”. In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2015, pp. 852–
857. doi: 10.1109/ASE.2015.106.

[198] Nikolaos Polatidis, Michalis Pavlidis, and Haralambos Mouratidis.

“Cyber-attack path discovery in a dynamic supply chain maritime risk

management system”. In: Computer Standards & Interfaces 56 (2018),
pp. 74–82. issn: 0920-5489. doi: https://doi.org/10.1016/j.csi.

2017.09.006.

[199] Nikolaos Polatidis et al. “From product recommendation to cyber-

attack prediction: generating attack graphs and predicting future

attacks”. In: Evolving Systems 11 (2020), pp. 479–490. doi: 10.1007/
s12530-018-9234-z.

[200] Tobias Pöppke. “Design Space Exploration for Adaptation Planning

in Cloud-based Applications”. Master Thesis. Karlsruher Institut für

Technologie (KIT), 2017.

[201] Herbert Prähofer et al. “Feature-oriented development in industrial

automation software ecosystems: Development scenarios and tool

support”. In: 2016 IEEE 14th International Conference on Industrial
Informatics. IEEE, 2016, pp. 1218–1223. doi: 10.1109/INDIN.2016.
7819353.

116

https://doi.org/10.1145/800020.808263
https://doi.org/10.1007/978-0-387-39940-9_819
https://doi.org/10.1007/978-0-387-39940-9_819
https://doi.org/10.1145/54331.54345
https://doi.org/10.1145/54331.54345
https://doi.org/10.1109/ASE.2015.106
https://doi.org/https://doi.org/10.1016/j.csi.2017.09.006
https://doi.org/https://doi.org/10.1016/j.csi.2017.09.006
https://doi.org/10.1007/s12530-018-9234-z
https://doi.org/10.1007/s12530-018-9234-z
https://doi.org/10.1109/INDIN.2016.7819353
https://doi.org/10.1109/INDIN.2016.7819353

15 Bibliography

[202] Cui Qin andHolger Eichelberger. “Impact-minimizing Runtime Switch-

ing of Distributed Stream Processing Algorithms”. In: EDBT/ICDT
2016 Workshops. Vol. 1558. CEUR Workshop Proceedings. 2016.

[203] M. Reichert et al. “Adaptive process management with ADEPT2”.

In: 21st International Conference on Data Engineering. IEEE, 2005,
pp. 1113–1114. doi: 10.1109/ICDE.2005.17.

[204] Manfred Reichert and Peter Dadam. “ADEPT flex - Supporting Dy-

namic Changes ofWorkflowsWithout Loosing Control”. In: Journal of
Intelligent Information Systems 10 (1998), pp. 93–129. doi: 10.1023/A:
1008604709862.

[205] Thomas Reps. “Optimal-Time Incremental Semantic Analysis for

Syntax-Directed Editors”. In: 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 1982, pp. 169–176.

isbn: 0897910656. doi: 10.1145/582153.582172.

[206] Ralf H. Reussner et al.Modeling and Simulating Software Architectures
– The Palladio Approach. MIT Press, 2016. 408 pp. isbn: 9780262034760.

url: https://mitpress.mit.edu/books/modeling-and-simulating-

software-architectures.

[207] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. “Correctness

criteria for dynamic changes in workflow systems––a survey”. In:

Data & Knowledge Engineering 50.1 (2004), pp. 9–34. issn: 0169-023X.

doi: https://doi.org/10.1016/j.datak.2004.01.002.

[208] Stefanie Rinderle, Andreas Wombacher, and Manfred Reichert. “Evo-

lution of Process Choreographies in DYCHOR”. In: OTM Confeder-
ated International Conferences “On the Move to Meaningful Internet
Systems”. Ed. by Robert Meersman and Zahir Tari. Vol. 4275. Lec-

ture Notes in Computer Science. Springer, 2006, pp. 273–290. doi:

10.1007/11914853_17.

[209] Stefanie Rinderle, Andreas Wombacher, and Manfred Reichert. “On

the Controlled Evolution of Process Choreographies”. In: 22nd Inter-
national Conference on Data Engineering. Ed. by Ling Liu et al. IEEE,

2006, p. 124. doi: 10.1109/ICDE.2006.108.

[210] Kiana Rostami et al. “Architecture-based Assessment and Planning

of Change Requests”. In: 11th International ACM SIGSOFT Conference
on Quality of Software Architectures. ACM, 2015, pp. 21–30. isbn: 978-

1-4503-3470-9. doi: 10.1145/2737182.2737198.

117

https://doi.org/10.1109/ICDE.2005.17
https://doi.org/10.1023/A:1008604709862
https://doi.org/10.1023/A:1008604709862
https://doi.org/10.1145/582153.582172
https://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/https://doi.org/10.1016/j.datak.2004.01.002
https://doi.org/10.1007/11914853_17
https://doi.org/10.1109/ICDE.2006.108
https://doi.org/10.1145/2737182.2737198

15 Bibliography

[211] Kiana Rostami et al. “Architecture-based Change Impact Analysis in

Information Systems and Business Processes”. In: 2017 IEEE Interna-
tional Conference on Software Architecture. IEEE, 2017, pp. 179–188.
isbn: 978-1-5090-5729-0. doi: 10.1109/ICSA.2017.17.

[212] Kiana Rostami et al. “ReconstructingDevelopment Artifacts for Change

Impact Analysis”. In: Softwaretechnik-Trends 37.2 (2017). issn: 0720-
8928.

[213] G. Ruffo et al. “WALTy: a user behavior tailored tool for evaluating

Web application performance”. In: 3rd IEEE International Symposium
on Network Computing and Applications. IEEE, 2004, pp. 77–86. doi:
10.1109/NCA.2004.1347765.

[214] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer, 2017. isbn: 978-3319588612.

[215] Bernhard Rumpe. “Towards model and language composition”. In: 1st
Workshop on the Globalization of Domain Specific Languages. ACM,

2013, pp. 4–7. doi: 10.1145/2489812.2489814.

[216] Bernhard Rumpe, Katrin Hölldobler, and Oliver Kautz. MontiCore
Language Workbench and Library Handbook: Edition 2021. Shaker
Verlag, 2021. doi: 10.2370/9783844080100.

[217] Tobias Runge et al. “Lattice-Based Information Flow Control-by-

Construction for Security-by-Design”. In: 8th International Conference
on Formal Methods in Software Engineering. ACM, 2020, pp. 44–54.

doi: 10.1145/3372020.3391565.

[218] Barbara G. Ryder and Frank Tip. “Change impact analysis for object-

oriented programs”. In: 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering. Ed. by John Field

and Gregor Snelting. ACM, 2001, pp. 46–53. doi: 10.1145/379605.

379661.

[219] George Rzevski. “On conceptual design of intelligent mechatronic

systems”. In: Mechatronics 13 (2003), pp. 1029–1044. doi: 10.1016/
S0957-4158(03)00041-2.

[220] A. Sabelfeld and A.C. Myers. “Language-based information-flow secu-

rity”. In: IEEE Journal on Selected Areas in Communications 21.1 (2003),
pp. 5–19. doi: 10.1109/JSAC.2002.806121.

118

https://doi.org/10.1109/ICSA.2017.17
https://doi.org/10.1109/NCA.2004.1347765
https://doi.org/10.1145/2489812.2489814
https://doi.org/10.2370/9783844080100
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/379605.379661
https://doi.org/10.1145/379605.379661
https://doi.org/10.1016/S0957-4158(03)00041-2
https://doi.org/10.1016/S0957-4158(03)00041-2
https://doi.org/10.1109/JSAC.2002.806121

15 Bibliography

[221] Shazia Sadiq and Maria Orlowska. “Architectural Considerations in

Systems Supporting Dynamic Workflow Modification”. In: Workshop
on Software Architectures for Business Process Management. University
of Karlsruhe, 1999, pp. 118–134.

[222] Wasim Sadiq, Olivera Marjanovic, and Maria Orlowska. “Managing

Change And Time In Dynamic Workflow Processes”. In: International
Journal of Cooperative Information Systems 9 (2000), pp. 93–116. doi:
10.1142/S0218843000000077.

[223] Navid Sani, Shokoofeh Ketabchi, and Kecheng Liu. “The Co-design of

Business and IT Systems: A Case in Supply Chain Management”. In:

2012 International Conference on Information Systems, Technology and
Management. Vol. 285, Communications in Computer and Information

Science. Springer, 2012, pp. 13–27. isbn: 978-3-642-29165-4. doi: 10.

1007/978-3-642-29166-1_2.

[224] B. Schmerl et al. “Discovering Architectures from Running Systems”.

In: IEEE Transactions on Software Engineering 32.7 (2006), pp. 454–466.

issn: 0098-5589. doi: 10.1109/TSE.2006.66.

[225] Eric Schmieders and Andreas Metzger. “Preventing performance vio-

lations of service compositions using assumption-based run-time veri-

fication”. In: Towards a Service-Based Internet. Vol. 6994, Lecture Notes
in Computer Science. Springer, 2011, pp. 194–205. doi: 10.1007/978-

3-642-24755-2_19.

[226] Stephan Seifermann. “Architectural Data Flow Analysis for Detecting

Violations of Confidentiality Requirements”. PhD thesis. Karlsruhe

Institute of Technology (KIT), 2022.

[227] Stephan Seifermann, Robert Heinrich, and Ralf H. Reussner. “Data-

Driven Software Architecture for Analyzing Confidentiality”. In: IEEE
International Conference on Software Architecture. IEEE, 2019, pp. 1–10.
doi: 10.1109/ICSA.2019.00009.

[228] Stephan Seifermann et al. “Detecting Violations of Access Control

and Information Flow Policies in Data Flow Diagrams”. In: Journal of
Systems and Software 184 (2022). issn: 0164-1212. doi: https://doi.
org/10.1016/j.jss.2021.111138.

[229] Adam Shostack. Threat Modeling: Designing for Security. 1st edition.
Wiley Publishing, 2014. isbn: 1118809998.

119

https://doi.org/10.1142/S0218843000000077
https://doi.org/10.1007/978-3-642-29166-1_2
https://doi.org/10.1007/978-3-642-29166-1_2
https://doi.org/10.1109/TSE.2006.66
https://doi.org/10.1007/978-3-642-24755-2_19
https://doi.org/10.1007/978-3-642-24755-2_19
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/https://doi.org/10.1016/j.jss.2021.111138

15 Bibliography

[230] Laurens Sion et al. “Solution-aware data flow diagrams for security

threat modeling”. In: ACM Symposium on Applied Computing. ACM,

2018, pp. 1425–1432. isbn: 978-1-4503-5191-1. doi: 10.1145/3167132.

3167285.

[231] Connie U. Smith. Performance engineering of software systems. Soft-
ware Engineering Institute series in software engineering. Addison-

Wesley, 1990. isbn: 978-0-201-53769-7.

[232] Gregor Snelting et al. “Checking probabilistic noninterference using

JOANA”. In: it-Information Technology 56.6 (2014), pp. 280–287. doi:

10.1515/itit-2014-1051.

[233] Teodor Sommestad, Mathias Ekstedt, and Hannes Holm. “The Cyber

Security Modeling Language: A Tool for Assessing the Vulnerability

of Enterprise System Architectures”. In: IEEE Systems Journal 7.3
(2013), pp. 363–373. doi: 10.1109/JSYST.2012.2221853.

[234] Hui Song et al. “Supporting runtime software architecture: A bidirectional-

transformation-based approach”. In: Journal of Systems and Software
84.5 (2011), pp. 711–723. issn: 0164-1212. doi: 10.1016/j.jss.2010.

12.009.

[235] Martín Soto. “Delta-P: Model Comparison Using Semantic Web Stan-

dards”. In: Softwaretechnik-Trends 27.2 (2007). issn: 0720-8928.

[236] Simon Spinner et al. “Evaluating approaches to resource demand

estimation”. In: Performance Evaluation 92 (2015), pp. 51–71. issn:

0166-5316. doi: https://doi.org/10.1016/j.peva.2015.07.005.

[237] Simon Spinner et al. “LibReDE: A Library for Resource Demand Esti-

mation”. In: 5th ACM/SPEC International Conference on Performance
Engineering. ACM, 2014, pp. 227–228. doi: 10.1145/2568088.2576093.

[238] Simon Spinner et al. “Online model learning for self-aware computing

infrastructures”. In: Journal of Systems and Software 147 (2019), pp. 1–
16. doi: https://doi.org/10.1016/j.jss.2018.09.089.

[239] Johannes Josef Stammel. “Architekturbasierte Bewertung und Pla-

nung von Änderungsanfragen”. PhD thesis. Karlsruhe Institute of

Technology (KIT), 2015. doi: 10.5445/IR/1000053953.

[240] Christian Stier. “Adaptation-Aware Architecture Modeling and Analy-

sis of Energy Efficiency for Software Systems”. PhD thesis. Karlsruhe

Institute of Technology (KIT), 2018. doi: 10.5445/IR/1000083402.

120

https://doi.org/10.1145/3167132.3167285
https://doi.org/10.1145/3167132.3167285
https://doi.org/10.1515/itit-2014-1051
https://doi.org/10.1109/JSYST.2012.2221853
https://doi.org/10.1016/j.jss.2010.12.009
https://doi.org/10.1016/j.jss.2010.12.009
https://doi.org/https://doi.org/10.1016/j.peva.2015.07.005
https://doi.org/10.1145/2568088.2576093
https://doi.org/https://doi.org/10.1016/j.jss.2018.09.089
https://doi.org/10.5445/IR/1000053953
https://doi.org/10.5445/IR/1000083402

15 Bibliography

[241] Misha Strittmatter. “A Reference Structure for Modular Metamodels

of Quality-Describing Domain-Specific Modeling Languages”. PhD

thesis. Karlsruhe Institute of Technology (KIT), 2020. doi: 10.5445/

KSP/1000098906.

[242] Misha Strittmatter et al. “Challenges in the Evolution of Metamodels:

Smells and Anti-Patterns of a Historically-Grown Metamodel”. In:

10th International Workshop onModels and Evolution. CEURWorkshop

Proceedings Vol-1706. 2016, pp. 30–39.

[243] Daniel Strüber, Matthias Selter, and Gabriele Taentzer. “Tool Support

for Clustering Large Meta-Models”. In: Workshop on Scalability in
Model Driven Engineering. ACM, 2013. isbn: 9781450321655. doi: 10.

1145/2487766.2487773.

[244] Daniel Strüber et al. “Splitting Models Using Information Retrieval

and Model Crawling Techniques”. In: 17th International Conference
on Fundamental Approaches to Software Engineering. Springer, 2014,
pp. 47–62. isbn: 9783642548031. doi: 10.1007/978-3-642-54804-8_4.

[245] Sagar Sunkle, Vinay Kulkarni, and Suman Roychoudhury. “Analyzing

Enterprise Models Using Enterprise Architecture-Based Ontology”. In:

ACM/IEEE 16th International Conference on Model Driven Engineering
Languages and Systems. Springer, 2013, pp. 622–638. isbn: 978-3-642-
41532-6. doi: 10.1007/978-3-642-41533-3_38.

[246] Carolyn Talcott et al. “Composition of Languages, Models, and Anal-

yses”. In: Composing Model-Based Analysis Tools. Ed. by Robert Hein-

rich et al. Springer, 2021, pp. 45–70. isbn: 978-3-030-81915-6. doi:

10.1007/978-3-030-81915-6_11.

[247] Emre Taspolatoglu and Robert Heinrich. “Context-based Architectural

Security Analysis”. In: 13th Working IEEE/IFIP Conference on Software
Architecture. IEEE, 2016, pp. 281–282. doi: 10.1109/WICSA.2016.55.

[248] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software
architecture: foundations, theory, and practice. Wiley Publishing, 2009.

isbn: 0470167742.

[249] Yong Meng Teo and Claudia Szabo. “CODES: An integrated approach

to composable modeling and simulation”. In: 41st Annual Simulation
Symposium. IEEE, 2008, pp. 103–110. doi: 10.1109/ANSS-41.2008.24.

121

https://doi.org/10.5445/KSP/1000098906
https://doi.org/10.5445/KSP/1000098906
https://doi.org/10.1145/2487766.2487773
https://doi.org/10.1145/2487766.2487773
https://doi.org/10.1007/978-3-642-54804-8_4
https://doi.org/10.1007/978-3-642-41533-3_38
https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1109/WICSA.2016.55
https://doi.org/10.1109/ANSS-41.2008.24

15 Bibliography

[250] K.C. Thramboulidis. “Using UML in control and automation: a model

driven approach”. In: 2nd IEEE International Conference on Industrial
Informatics. IEEE, 2004, pp. 587–593. doi: 10 . 1109 / INDIN . 2004 .
1417414.

[251] Kleanthis Thramboulidis. “The 3+1 SysML View-Model in Model

Integrated Mechatronics”. In: Journal of Software Engineering and
Applications 3.2 (2010), pp. 109–118. doi: 10.4236/jsea.2010.32014.

[252] Frank Tip. “A Survey of Program Slicing Techniques”. In: Journal of
Programming Languages 3 (1995), pp. 121–189.

[253] K. Tuma, R. Scandariato, and M. Balliu. “Flaws in Flows: Unveiling

Design Flaws via Information Flow Analysis”. In: IEEE 16th Interna-
tional Conference on Software Architecture. IEEE, 2019, pp. 191–200.
doi: 10.1109/ICSA.2019.00028.

[254] Katja Tuma et al. “Automating the Early Detection of Security Design

Flaws”. In: 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. ACM, 2020, pp. 332–342. isbn:

9781450370196. doi: 10.1145/3365438.3410954.

[255] Fatih Turkmen et al. “Analysis of XACML Policies with SMT”. In: 4th
International Conference on Principles of Security and Trust. Springer,
2015, pp. 115–134. isbn: 9783662466650. doi: 10.1007/978-3-662-

46666-7_7.

[256] I.T.P. Vanderfeesten et al. “Quality metrics for business process mod-

els”. In: 2007 BPM and workflow handbook. Ed. by L. Fischer. Future

Strategies, 2007, pp. 179–190. isbn: 978-0-9777527-1-3.

[257] Valeria Vittorini et al. “The OsMoSys approach to multi-formalism

modeling of systems”. In: Software & SystemModeling 3 (2004), pp. 68–
81. doi: 10.1007/s10270-003-0039-5.

[258] Thomas Vogel and Holger Giese. “Adaptation and Abstract Runtime

Models”. In: 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems. ACM, 2010, pp. 39–48. isbn: 978-1-60558-

971-8. doi: 10.1145/1808984.1808989.

[259] B. Vogel-Heuser et al. Researching Evolution in Industrial Plant Automa-
tion: Scenarios and Documentation of the Pick and Place Unit. Report
No. TUM-AIS-TR-01-14-02. Tech. rep. 2014. url: https://mediatum.
ub.tum.de/doc/1208973/1208973.pdf.

122

https://doi.org/10.1109/INDIN.2004.1417414
https://doi.org/10.1109/INDIN.2004.1417414
https://doi.org/10.4236/jsea.2010.32014
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1007/978-3-662-46666-7_7
https://doi.org/10.1007/978-3-662-46666-7_7
https://doi.org/10.1007/s10270-003-0039-5
https://doi.org/10.1145/1808984.1808989
https://mediatum.ub.tum.de/doc/1208973/1208973.pdf
https://mediatum.ub.tum.de/doc/1208973/1208973.pdf

15 Bibliography

[260] B. Vogel-Heuser et al. “Towards a common classification of changes

for information and automated production systems as precondition

for maintenance effort estimation”. In: 2016 IEEE 14th International
Conference on Industrial Informatics. IEEE, 2016, pp. 166–172. doi:
10.1109/INDIN.2016.7819152.

[261] Birgit Vogel-Heuser. “Usability Experiments to Evaluate UML/SysML-

Based Model Driven Software Engineering Notations for Logic Con-

trol in Manufacturing Automation”. In: Journal of Software Engineer-
ing and Applications 7.11 (2014), pp. 943–973. doi: 10.4236/jsea.

2014.711084.

[262] Birgit Vogel-Heuser et al. “Evolution of software in automated pro-

duction systems: Challenges and research directions”. In: Journal
of Systems and Software 110 (2015), pp. 54–84. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2015.08.026.

[263] Christian Vögele et al. “Modeling Complex User Behavior with the

Palladio Component Model”. In: Softwaretechnik-Trends 35.3 (2015).
issn: 0720-8928.

[264] Christian Vögele et al. “WESSBAS: extraction of probabilistic work-

load specifications for load testing and performance prediction—a

model-driven approach for session-based application systems”. In:

Software & Systems Modeling 17.2 (2018), pp. 443–477. issn: 1619-1374.
doi: 10.1007/s10270-016-0566-5.

[265] Markus Völter. “Language and IDE Modularization, Extension and

Composition with MPS”. In: 2011 International Summer School on
Generative and Transformational Techniques in Software Engineering.
Vol. 7680, Lecture Notes in Computer Science. Springer, 2011, pp. 383–

430. isbn: 978-3-642-35991-0. doi: 10.1007/978-3-642-35992-7_11.

[266] Markus Völter et al. “Mbeddr: An extensible C-based programming

language and IDE for embedded systems”. In: 3rd Annual Conference
on Systems, Programming, and Applications: Software for Humanity.
ACM, 2012, pp. 121–140. doi: 10.1145/2384716.2384767.

[267] Michael Waidner and Michael Kasper. “Security in industrie 4.0 -

challenges and solutions for the fourth industrial revolution”. In: 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2016, pp. 1303–1308. doi: 10.3850/9783981537079_1005.

123

https://doi.org/10.1109/INDIN.2016.7819152
https://doi.org/10.4236/jsea.2014.711084
https://doi.org/10.4236/jsea.2014.711084
https://doi.org/https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1007/s10270-016-0566-5
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1145/2384716.2384767
https://doi.org/10.3850/9783981537079_1005

15 Bibliography

[268] Jürgen Walter et al. “An Expandable Extraction Framework for Archi-

tectural Performance Models”. In: 8th ACM/SPEC International Confer-
ence on Performance Engineering Companion. ACM, 2017, pp. 165–170.

doi: 10.1145/3053600.3053634.

[269] MaximilianWalter, Robert Heinrich, and Ralf Reussner. “Architectural

Attack Propagation Analysis for Identifying Confidentiality Issues”.

In: 19th IEEE International Conference on Software Architecture. IEEE,
2022, pp. 1–12. doi: 10.1109/ICSA53651.2022.00009.

[270] Maximilian Walter et al. “Architectural Optimization for Confiden-

tiality under Structural Uncertainty”. In: 15th European Conference on
Software Architecture Post-Proceedings. Springer, 2022.

[271] B.C. Warboys, R.M. Greenwood, and P. Kawalek. “Modelling the Co-

Evolution of Business Processes and IT Systems”. In: Systems Engi-
neering for Business Process Change: Collected Papers from the EPSRC
Research Programme. Springer, 2000, pp. 10–23. isbn: 978-1-4471-1146-
7. doi: 10.1007/978-1-4471-0457-5_2.

[272] Matthias Weidlich, Mathias Weske, and Jan Mendling. “Change Prop-

agation in Process Models Using Behavioural Profiles”. In: 2009 IEEE
International Conference on Services Computing. IEEE, 2009, pp. 33–40.
doi: 10.1109/SCC.2009.58.

[273] MonikaWeidmann et al. “Business process changemanagement based

on process model synchronization of multiple abstraction levels”. In:

2011 IEEE International Conference on Service-Oriented Computing and
Applications. IEEE, 2011, pp. 1–4. doi: 10.1109/SOCA.2011.6166253.

[274] Herb Weisbaum. Trust in Facebook has dropped by 66 percent since
the Cambridge Analytica scandal. accessed 2021-08-20. Apr. 2018. url:

https://web.archive.org/web/20210820004535/https://www.

nbcnews.com/business/consumer/trust-facebook-has-dropped-

51-percent-cambridge-analytica-scandal-n867011.

[275] Mark Weiser. “Program Slicing”. In: 5th International Conference on
Software Engineering. IEEE, 1981, pp. 439–449. isbn: 0897911466.

[276] Christian Wende, Nils Thieme, and Steffen Zschaler. “A Role-Based

Approach towards Modular Language Engineering”. In: 2nd Interna-
tional Conference on Software Language Engineering. Vol. 5969, Lecture
Notes in Computer Science. Springer, 2009, pp. 254–273. isbn: 978-3-

642-12106-7. doi: 10.1007/978-3-642-12107-4_19.

124

https://doi.org/10.1145/3053600.3053634
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1007/978-1-4471-0457-5_2
https://doi.org/10.1109/SCC.2009.58
https://doi.org/10.1109/SOCA.2011.6166253
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://doi.org/10.1007/978-3-642-12107-4_19

15 Bibliography

[277] Alexander Wert, Henning Schulz, and Christoph Heger. “AIM: Adapt-

able Instrumentation and Monitoring for Automated Software Perfor-

mance Analysis”. In: 2015 IEEE/ACM 10th International Workshop on
Automation of Software Test. IEEE, 2015, pp. 38–42. isbn: 978-1-4673-
7022-6. doi: 10.1109/AST.2015.15.

[278] Felix Willnecker et al. “Comparing the accuracy of resource demand

measurement and estimation techniques”. In: European Workshop
on Performance Engineering. Vol. 9272, Lecture Notes in Computer

Science. Springer. 2015, pp. 115–129. doi: 10.1007/978-3-319-23267-

6_8.

[279] Katharina Wolter, Thorsten Krebs, and Lothar Hotz. “Ontology-based

Model Comparison”. In: Softwaretechnik-Trends 27.2 (2007). issn: 0720-
8928.

[280] Murray Woodside, Greg Franks, and Dorina C. Petriu. “The Future

of Software Performance Engineering”. In: 2007 Future of Software
Engineering. IEEE, 2007, pp. 171–187. isbn: 0769528295. doi: 10.1109/
FOSE.2007.32.

[281] Workflow Management Coalition. The Workflow Management Coali-
tion Specification – Terminology & Glossary (WFMC-TC-1011). 1999.

[282] Y. Brun et al. “Engineering Self-Adaptive Systems Through Feedback

Loops”. In: Software Engineering for Self-Adaptive Systems. Vol. 5525,
Lecture Notes in Computer Science. Springer, 2009, pp. 48–70. doi:

10.1007/978-3-642-02161-9_3.

[283] Mark Yampolskiy et al. “Systematic analysis of cyber-attacks on CPS-

evaluating applicability of DFD-based approach”. In: 2012 5th Interna-
tional Symposium on Resilient Control Systems. IEEE, 2012, pp. 55–62.
doi: 10.1109/ISRCS.2012.6309293.

[284] Sanghyun Yoo et al. “Rule-based Dynamic Business Process Modifica-

tion and Adaptation”. In: 2008 International Conference on Information
Networking (2008), pp. 1–5. doi: 10.1109/ICOIN.2008.4472793.

[285] Bintao Yuan et al. “An Attack Path Generation Methods Based on

Graph Database”. In: 2020 IEEE 4th Information Technology, Network-
ing, Electronic andAutomation Control Conference. IEEE, 2020, pp. 1905–
1910. doi: 10.1109/ITNEC48623.2020.9085039.

125

https://doi.org/10.1109/AST.2015.15
https://doi.org/10.1007/978-3-319-23267-6_8
https://doi.org/10.1007/978-3-319-23267-6_8
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1109/ISRCS.2012.6309293
https://doi.org/10.1109/ICOIN.2008.4472793
https://doi.org/10.1109/ITNEC48623.2020.9085039

15 Bibliography

[286] Bernard P. Zeigler, Alexandre Muzy, and Ernesto Kofman. Theory of
Modeling and Simulation: Discrete Event and Iterative System Com-
putational Foundations. 3rd edition. Academic Press, Inc., 2018. isbn:

0128133708.

[287] Steffen Zschaler and Francisco Durán. “GTSMorpher: Safely Com-

posing Behavioural Analyses Using Structured Operational Seman-

tics”. In: Composing Model-Based Analysis Tools. Ed. by Robert Hein-

rich et al. Springer, 2021, pp. 189–215. isbn: 978-3-030-81915-6. doi:

10.1007/978-3-030-81915-6_9.

126

https://doi.org/10.1007/978-3-030-81915-6_9

Band 1 Steffen Becker
 Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
 ISBN 978-3-86644-271-9

Band 2 Heiko Koziolek
 Parameter Dependencies for Reusable Performance

Specifications of Software Components.
 ISBN 978-3-86644-272-6

Band 3 Jens Happe
 Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
 ISBN 978-3-86644-381-5

Band 4 Klaus Krogmann
 Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
 ISBN 978-3-86644-804-9

Band 5 Michael Kuperberg
 Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
 ISBN 978-3-86644-741-7

Band 6 Thomas Goldschmidt
 View-Based Textual Modelling.
 ISBN 978-3-86644-642-7

Band 7 Anne Koziolek
 Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8 Lucia Happe
 Configurable Software Performance Completions through

Higher-Order Model Transformations.
 ISBN 978-3-86644-990-9

Band 9 Franz Brosch
 Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
 ISBN 978-3-86644-859-9

Band 10 Christoph Rathfelder
 Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
 ISBN 978-3-86644-969-5

Band 11 Henning Groenda
 Certifying Software Component

Performance Specifications.
 ISBN 978-3-7315-0080-3

Band 12 Dennis Westermann
 Deriving Goal-oriented Performance Models

by Systematic Experimentation.
 ISBN 978-3-7315-0165-7

Band 13 Michael Hauck
 Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
 ISBN 978-3-7315-0138-1

Band 14 Zoya Durdik
 Architectural Design Decision Documentation through

Reuse of Design Patterns.
 ISBN 978-3-7315-0292-0

Band 15 Erik Burger
 Flexible Views for View-based Model-driven Development.
 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16 Benjamin Klatt
 Consolidation of Customized Product Copies
 into Software Product Lines.
 ISBN 978-3-7315-0368-2

Band 17 Andreas Rentschler
 Model Transformation Languages with

Modular Information Hiding.
 ISBN 978-3-7315-0346-0

Band 18 Omar-Qais Noorshams
 Modeling and Prediction of I/O Performance

in Virtualized Environments.
 ISBN 978-3-7315-0359-0

Band 19 Johannes Josef Stammel
 Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 ISBN 978-3-7315-0524-2

Band 20 Alexander Wert
 Performance Problem Diagnostics by Systematic Experimentation.
 ISBN 978-3-7315-0677-5

Band 21 Christoph Heger
 An Approach for Guiding Developers to

Performance and Scalability Solutions.
 ISBN 978-3-7315-0698-0

Band 22 Fouad ben Nasr Omri
 Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 ISBN 978-3-7315-0472-6

Band 23 Michael Langhammer
 Automated Coevolution of Source Code and

Software Architecture Models.
 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24 Max Emanuel Kramer
 Specification Languages for Preserving Consistency between

Models of Different Languages.
 ISBN 978-3-7315-0784-0

Band 25 Sebastian Michael Lehrig
 Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 ISBN 978-3-7315-0756-7

Band 26 Georg Hinkel
 Implicit Incremental Model Analyses and Transformations.
 ISBN 978-3-7315-0763-5

Band 27 Christian Stier
 Adaptation-Aware Architecture Modeling and

Analysis of Energy Efficiency for Software Systems.
 ISBN 978-3-7315-0851-9

Band 28 Lukas Märtin
 Entwurfsoptimierung von selbst-adaptiven Wartungs-

mechanismen für software-intensive technische Systeme.
 ISBN 978-3-7315-0852-6

Band 29 Axel Busch
 Quality-driven Reuse of Model-based

Software Architecture Elements.
 ISBN 978-3-7315-0951-6

Band 30 Kiana Busch
 An Architecture-based Approach for Change

Impact Analysis of Software-intensive Systems.
 ISBN 978-3-7315-0974-5

Band 31 Misha Strittmatter
 A Reference Structure for Modular Metamodels of

Quality-Describing Domain-Specific Modeling Languages.
 ISBN 978-3-7315-0982-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 32 Markus Frank
 Model-Based Performance Prediction for Concurrent Software
 on Multicore Architectures. A Simulation-Based Approach.
 ISBN 978-3-7315-1146-5

Band 33 Manuel Gotin
 QoS-Based Optimization of Runtime Management of Sensing
 Cloud Applications.
 ISBN 978-3-7315-1147-2

Band 34 Heiko Klare
 Building Transformation Networks for Consistent Evolution of

Interrelated Models.
 ISBN 978-3-7315-1132-8

Band 35 Roman Pilipchuk
 Architectural Alignment of Access Control Requirements

Extracted from Business Processes.
 ISBN 978-3-7315-1212-7

Band 36 Stephan Seifermann
 Architectural Data Flow Analysis for Detecting Violations of

Confidentiality Requirements.
 ISBN 978-3-7315-1246-2

Band 37 Sofia Ananieva
 Consistent View-Based Management of Variability in

Space and Time.
 ISBN 978-3-7315-1241-7

Band 38 Robert Heinrich
 Architecture-based Evolution of Dependable
 Software-intensive Systems.
 ISBN 978-3-7315-1294-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

38

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

R
o

b
er

t
H

ei
n

ri
ch

Ensuring dependability of increasingly heterogeneous and complex software-
intensive systems requires to address the following challenges. There is (i) little
support for reasoning about dependability in early development, (ii) little flex-
ibility for evolving modelling languages and analysis techniques, and (iii) a gap
of abstraction between data of the operation phase, architectural models and
source code of the development phase which results in loss of architectural
knowledge and deprecates models.

This work, proposes concepts for (i) modelling and analysing dependability
based on architectural models of software-intensive systems early in develop-
ment, (ii) decomposition and composition of modelling languages and analysis
techniques to enable more flexibility in evolution, and (iii) bridging the divergent
levels of abstraction between data of the operation phase, architectural models
and source code of the development phase. Ev

o
lu

ti
o

n
 o

f
D

ep
en

d
ab

le
 S

o
ft

w
ar

e-
in

te
n

si
ve

 S
ys

te
m

s

ISSN 1867-0067
ISBN 978-3-7315-1294-3
Gedruckt auf FSC-zertifiziertem Papier

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	Introduction
	Motivation
	Architecture-based Modelling and Analysis of Dependability
	Evolution of Modelling Languages and Analysis Techniques
	System Development and Operation

	Challenges, Objectives, and Research Questions
	Overview of Contributions
	Outline

	Terms and Definitions
	Basic Terms
	Modelling and Analysis Terms

	State of the Art
	Architecture-based Modelling and Analysis of Dependability
	Architecture-based Modelling and Analysis of Maintainability
	Architecture-based Modelling and Analysis of Confidentiality

	Decomposition and Composition of Modelling Languages and Analysis Techniques
	Decomposition and Composition of Modelling Languages
	Decomposition and Composition of Analysis Techniques

	Bridging the Divergent Levels of Abstraction between Development and Operation
	Concluding Remark

	Approaches to Architecture-based Evolution of Dependable Software-intensive Systems
	Publication Overview
	Discussion of Contributions
	Architecture-based Modelling and Analysis of Maintainability and Confidentiality
	Decomposition and Composition of Modelling Languages and Analysis Techniques
	Bridging the Divergent Levels of Abstraction between Development and Operation

	Architecture-based Change Impact Analysis in Cross-disciplinary Automated Production Systems
	Architecture-based Change Impact Analysis in Information Systems and Business Processes
	Data-driven Software Architecture for Analyzing Confidentiality
	Detecting Violations of Access Control and Information Flow Policies in Data Flow Diagrams
	Architectural Attack Propagation Analysis for Identifying Confidentiality Issues
	A Layered Reference Architecture for Metamodels to Tailor Quality Modeling and Analysis
	Integrating Business Process Simulation and Information System Simulation for Performance Prediction
	Architectural Run-time Models for Performance and Privacy Analysis in Dynamic Cloud Applications
	Architectural Runtime Models for Integrating Runtime Observations and Component-based Models
	Enabling Consistency between Software Artefacts for Software Adaption and Evolution
	Conclusion
	Summary
	Outlook
	Architecture-based Quality Modelling and Analysis
	Decomposition and Composition of Modelling Languages and Analysis Techniques
	Bridging the Divergent Levels of Abstraction between Development and Operation

	Bibliography

