
 

A method and framework to evaluate system architecture
candidates on reliability criteria
Citation for published version (APA):
Filippidis, K. F. (2015). A method and framework to evaluate system architecture candidates on reliability criteria.
[EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 25/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/b4613f9d-143a-475f-9e42-533aac73537d


 

  
 A method and framework to 
evaluate system architecture 

candidates on reliability criteria 
 

Konstantinos Filippidis 
 

2015 
 



 

 

A method and framework to evaluate system 

architecture candidates on reliability criteria. 

 
Konstantinos Filippidis 

September 2015 

 



 

 



 

 

A method and framework to evaluate system architecture 

candidates on reliability criteria 
 

 

 

Eindhoven University of Technology 

Stan Ackermans Institute / Software Technology 

 

 

Partners 

 
 

Philips Lighting Eindhoven University of Technology 

 

Steering Group Henk Stevens 

Tanir Ozcelebi 

Konstantinos Filippidis 

 

Date September 2015 



 

 

 

Contact  

Address 

Eindhoven University of Technology 

Department of Mathematics and Computer Science 

MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands 

+31402474334 

 

Published by Eindhoven University of Technology 

Stan Ackermans Institute 

 

Printed by Eindhoven University of Technology 

UniversiteitsDrukkerij 

 

ISBN A catalogue record is available from the Eindhoven University of Technology Library  

ISBN: 978-90-444-1375-5 

 (Eindverslagen Stan Ackermans Instituut ; 2015/037) 

Abstract Philips Lighting is moving from a lighting component business towards lighting solutions 

business in professional environments, offering lighting solutions for energy saving, 

productivity and effect creation. In these solutions (consisting of light sources, sensors and 

control devices) networked based systems are essential and software makes it possible to 

add intelligence into the system. Reliability aspects at system level are getting more im-

portant and architectural analysis is done during brainstorm sessions to evaluate possible 

system architecture candidates on reliability criteria. It is crucial that the reliability of the 

architectures is evaluated more formally, for example based on a model of each of the archi-

tectural candidates. This report describes the design, the implementation, and the experi-

mentation with such a method that predicts the reliability and other non-functional criteria 

of the architecture candidates. Lighting entities, their attributes, behavior, and relationships 

are the core of evaluating a system on reliability criteria. This approach relies heavily on 

modeling principle. The results of the project show whether such an approach can been 

used to determine and evaluate an architecture candidate, and give input on how architec-

ture evaluation can be done in the future. 

 

Keywords 

Software architecture, Reliability, Evaluation, Component based architecture, performance 

evaluation, system architecture evaluation, Performance, Software component, CBSE, Pre-

diction, Modelling, Measurement 

 

Preferred  

reference 

A method and framework to evaluate system architecture candidates on reliability criteria, 

SAI Technical Report, September 2015. (978-90-444-1375-5) 

 



 

 

Partnership This project was supported by Eindhoven University of Technology and Philips Lighting. 

 

Disclaimer 

Endorsement 

Reference herein to any specific commercial products, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the Eindhoven University of Technology or Philips 

Lighting. The views and opinions of authors expressed herein do not necessarily state or re-

flect those of the Eindhoven University of Technology or Philips Lighting, and shall not be 

used for advertising or product endorsement purposes.  

 

Disclaimer  

Liability 

While every effort will be made to ensure that the information contained within this report is 

accurate and up to date, Eindhoven University of Technology makes no warranty, represen-

tation or undertaking whether expressed or implied, nor does it assume any legal liability, 

whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of 

any information. 

 

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of 

their respective owners. We use these names without any particular endorsement or with the 

intent to infringe the copyright of the respective owners. 

 

Copyright Copyright © 2015. Eindhoven University of Technology. All rights reserved. 

 No part of the material protected by this copyright notice may be reproduced, modified, or 

redistributed in any form or by any means, electronic or mechanical, including photocopy-

ing, recording, or by any information storage or retrieval system, without the prior written 

permission of the Eindhoven University of Technology and Philips Lighting. 





 

 

Foreword 
 
How do we take care that we have selected the right System Architecture to fulfill the 

needs of the application? Different architecture may be thought of or variations with-

in a certain architecture. An architecture needs to be defined in an early stage of a 

project. So validation of the architectural choices is an important aspect, as modifica-

tions on architectural level may be costly at a later stage in the project. The starting 

point for an Architect are the user requirements and related quality criteria are clear. 

The architect need to validate them in the possible architectural compositions, and to 

compare architectural compositions, to select the best one.  

 

Architects may use own experiences to evaluate an architecture, or use the white-

board to do some rough calculations. But it will take time to evaluate each architec-

tural composition on the related criteria. A tool for an architect, which he can use to 

quickly model the architectural compositions, to model the usage of the system, and 

model the actual resources, would be very welcome. The tool should provide enough 

information on the quality and performance aspects of the architecture for a good 

first analysis. 

The architectural modelling is relevant as it gives guidelines to the architect what is 

needed to do a first analysis. The architect needs to think on usage of the system and 

resource needs, to feed the model, and to get some useful results. 

 

Konstantinos made clear to the stakeholder that such a tool is relevant and will help 

the architects to better understand the architectural choices. After some research on 

tools and methods Konstantinos proposed to use the Palladio tool. He put a lot of 

effort in understanding the tool and how to make the typical architectural composi-

tions for Lighting Applications. He experienced that the tool was causing some prob-

lems, either within the definition of the models or the composite structure its elves. 

Maybe we selected the wrong tool? But Konstantinos was convinced that it was the 

right choice, and came up with some interesting “design patterns” for the architectur-

al composition. When looking back, the learnings of the project is that it is not only 

about the tool, but by modelling the architecture like this, the architects are enforced 

to get information on the table on system usage and resource needs, to do a better 

evaluation. Konstantinos expressed that to us and to the stakeholders, many times. 

 

Henk Stevens 

 

14 September 2015 

 

 





 

 

Preface 
This report presents the “a method and framework to evaluate system architecture 

candidates on reliability criteria” project that was carried out by Konstantinos 

Filippidis at Philips Lighting HTC, Eindhoven, The Netherlands. The project was 

conducted as a full-time, nine-month graduation assignment in the context of a 

two-year technological designer program in Soft-ware Technology popularly 

known as the “OOTI” program. This post-master program is offered by the Eind-

hoven University of Technology under the auspices of the Stan Ackermans Insti-

tute. 

 

The project’s goal is to evaluate the author as a software designer, while provid-

ing Philips Lighting with a proposal framework that will be used by architects 

when making decisions on which architecture candidate to apply on a new sys-

tem. This report contains the design solution as well as a description of the pro-

cess that led there. Therefore, in addition to the new design, the domain, project 

management conclusions, and retrospective are explained in corresponding chap-

ters. 

 

Konstantinos Filippidis  

14 September 2015  

 

       





 

 

Acknowledgements 
This project could not have been completed if it were not for the help of a large 

group of people. Therefore, I would like to thank all people that have contributed 

to my project and I would like to take the opportunity to thank the following peo-

ple explicitly. 

 

Within Philips Lighting I was in very close contact with my supervisor. I want to 

thank Henk Stevens for providing continuous support, feedback, and guidance 

throughout the project. He assisted me in getting familiar with the lighting do-

main and also in developing personally as a software engineer. I would also like 

to thank Rob van Twist, for his contribution in the project and the feedback, espe-

cially during the mid-period of the project, he gave a lot of information and sup-

port to continue this project. I would also like to thank Berkvens Winfried, for the 

help and support in the first phase of the project. His input was valuable. 

 

From the university side I am grateful to my supervisor, Tanir Ozcelebi, for the 

support and steering he provided in the duration of this project. I also would like 

to thank the director of the PDEng Software Technology program, Ad Aerts and 

the scientific director Johan Lukkien for giving me the opportunity to be part of 

the program, and the program’s secretary, Maggy de Wert, for assisting with all 

the issues regarding me and my colleagues for the past two years. 

 

I would also like to thank all my Software Technology colleagues for all the 

feedback, support and nice memories during our time together. 

 

Additionally, I would like the express my gratitude to my parents, my brother and 

my friends in Greece for their support regardless of the distance. Moreover, I 

would like to thank my close friends here in Eindhoven, Chara, Lena, and Antoni, 

for their continuous support these nine months of the project. 

 

Finally, I want to thank all others that I failed to mention for any kind of contribu-

tion throughout the nine months of the project. 

 

14 September 2015 

Konstantinos Filippidis 

 





 

 

Executive Summary 
 
Currently, when implementing a new system at Philips Lighting, software archi-

tects need to evaluate the architecture candidates for that system based on their 

past experience and by using PUGH analysis. This evaluation process is inade-

quate in two respects: 

 

   It fails to give an accurate form of the architecture candidate for a sys-

tem. Past experience can give some insight on how some parts that 

were used previously can behave; however, it is based only on some 

knowledge that only architects have 

 

  It is based on assumptions. PUGH analysis matrix is constructed in such 

way that every element of the architecture candidate has a weight. In 

the end, the best balance for between the different elements of the ma-

trix is decided, and that is ow the architecture design for the system is 

defined. 

 
This report describes a project to design that process in a more automated way. 

All requirements for the new system are acknowledged when introducing an ar-

chitecture candidate, however, gives the opportunity to model in such way to pro-

vide simulation results of that candidate.  

 

The basic concept is to define a use case scenario from the architecture candidate. 

This provides the parts (components) need to be modelled. A step further is to 

take the components used in that scenario and modeled them, in a similar way to 

UML modelling. Furthermore, giving specification for each component is part of 

the process. This part introduces the functions and the resources that every com-

ponent uses. Additionally, a composite structure is implemented (which is the 

architecture candidate for the evaluation), showing the connection and communi-

cation between the different components.  

  

But this is not enough, resource environment modeling is needed. In order to pro-

vide simulation results, and more specifically performance results, specification 

of resource environment, such as CPU and HDD, needs to be defined for the sys-

tem.   

 

Finally, the usage model for the system, is defined. The latter includes triggering 

events for the system, and what enables the system to run. 

 

By implementing all the above inside the tool, the architect is now able to make 

simulation tests and gets results on the performance of a proposed system, more 

specifically, on the architecture candidate proposed. Moreover, the architect can 

make changes on every step of the modeling and run new simulations.  

 

The process that is described in this report provides the architect with an envi-

ronment to model all the parts that are crucial to evaluate an architecture candi-

date. From a matrix in excel sheet we moved to a tool based modeling environ-

ment that allows a more automotive process for deciding an architecture to fol-

low.   

 

In the end, the architect is the one that will make the choice of the most suitable 

architecture to implement, however, now he experiments and simulates the differ-

ent candidates and he can actually see simulation results on the performance of 

each one. 



 

 

Table of Contents 

 

Foreword..................................................................................................... i 

Preface...................................................................................................... iii 

Acknowledgements ................................................................................... v 

Executive Summary ................................................................................vii 

List of Figures ........................................................................................... xi 

List of Tables ......................................................................................... xiii 

1. Introduction ....................................................................................... 1 

1.1 Context ......................................................................................... 1 

1.2 Introductory Concepts .................................................................. 1 
1.2.1. Software architecture ................................................................. 1 
1.2.2. Software Reliability ................................................................... 1 
1.2.3. Component-Based Software development................................. 2 

1.3 Project Scope ................................................................................ 2 

2. Stakeholder Analysis ......................................................................... 3 

2.1 Introduction .................................................................................. 3 

2.2 Stakeholders Categories ............................................................... 4 
2.2.1. Philips Stakeholders .................................................................. 4 
2.2.2. TU/e Stakeholders ..................................................................... 4 

3. Problem Analysis ............................................................................... 7 

3.1 Context ......................................................................................... 7 

3.2 Roadmaps ..................................................................................... 8 
3.2.1. Business Roadmap ..................................................................... 8 
3.2.2. Technology Roadmap ................................................................ 9 
3.2.3. Product Roadmap ...................................................................... 9 

4. Domain Analysis .............................................................................. 11 

4.1 Introduction ................................................................................ 11 

4.2 General knowledge about the domain ........................................ 12 

4.3 Clients and users ........................................................................ 12 
4.3.1. User Stories.............................................................................. 13 

4.4 The environment ......................................................................... 13 

4.5 Tasks and procedures currently performed ................................ 14 

4.6 Competing software .................................................................... 14 

5. Feasibility Analysis .......................................................................... 15 

5.1 Issues .......................................................................................... 15 
5.1.1. Software architecture evaluation based on reliability .............. 15 



 

 

5.1.2. Philips lighting domain familiarization ................................... 15 
5.1.3. Poor architecture documentation ............................................. 15 
5.1.4. Communication with stakeholders .......................................... 16 

5.2 Risks ........................................................................................... 16 
5.2.1. Pilot project to follow .............................................................. 16 
5.2.2. LM-IP architecture .................................................................. 16 
5.2.3. People involve ......................................................................... 17 
5.2.4. Reliability of different components ......................................... 17 
5.2.5. Tool to use ............................................................................... 17 

6. System Requirements ...................................................................... 19 

6.1 Introduction ................................................................................ 19 

6.2 System requirements ................................................................... 19 

6.3 Design opportunities .................................................................. 20 

6.4 Selected tool for evaluation ........................................................ 21 

7. System Architecture ........................................................................ 23 

7.1 Introduction ................................................................................ 23 

7.2 System’s architecture overview .................................................. 23 

7.3 Development process ................................................................. 23 

7.4 4+1 Architectural view .............................................................. 25 
7.4.1. Use case scenarios ................................................................... 26 
7.4.2. Logical view ............................................................................ 29 
7.4.3. Process view ............................................................................ 29 
7.4.4. Development view ................................................................... 30 
7.4.5. Physical view ........................................................................... 30 

8. System Design .................................................................................. 33 

8.1 Core of the design ...................................................................... 33 

8.2 Component modeling ................................................................. 33 
8.2.1. Components repository ............................................................ 34 
8.2.2. Service effect specification ...................................................... 34 

8.3 Assembly model .......................................................................... 35 

8.4 Allocation model ........................................................................ 36 

8.5 Usage model ............................................................................... 37 

8.6 Configuration ............................................................................. 38 

8.7 Transaction ................................................................................ 38 

9. Verification & Validation ............................................................... 39 

9.1 Use case scenario ....................................................................... 39 
9.1.1. LM-IP scenario ........................................................................ 39 

9.2 Input models/ validation ............................................................. 40 
9.2.1. Components repository ............................................................ 40 
9.2.2. Assembly model ...................................................................... 43 
9.2.3. Allocation model ..................................................................... 44 
9.2.4. Usage model ............................................................................ 44 



 

 

9.3 Results and verification .............................................................. 45 
9.3.1. Response time of the usage scenario ....................................... 45 
9.3.2. Utilization of resource container ............................................. 47 

9.4 Conclusion .................................................................................. 48 

10. Conclusions ................................................................................... 49 

10.1 Conclusions............................................................................. 49 

10.2 Lessons learned and limitations ............................................. 49 
10.2.1. Lessons learned ...................................................................... 49 
10.2.2. Limitations ............................................................................. 50 

10.3 Future work ............................................................................ 51 

11. Project Management .................................................................... 53 

11.1 Introduction ............................................................................ 53 
11.1.1. Scrum approach ..................................................................... 53 
11.1.2. Other events ........................................................................... 54 

11.2 Work-Breakdown structure (WBS) ......................................... 54 

11.3 Project planning and scheduling ............................................ 55 

11.4 Conclusions............................................................................. 56 

12. Project Retrospective ................................................................... 57 

12.1 Good practices ........................................................................ 57 
12.1.1. Make a plan to follow ............................................................ 57 
12.1.2. Contact company supervisors. ............................................... 57 
12.1.3. Creating minutes .................................................................... 57 

12.2 Improvement points ................................................................ 57 
12.2.1. Communication with stakeholders ........................................ 58 
12.2.2. Report issues .......................................................................... 58 

12.3 Design opportunities revisited ................................................ 58 

Glossary ................................................................................................... 59 

Bibliography ............................................................................................ 61 

References ............................................................................................. 61 

Additional Reading ................................................................................ 61 

About the Authors .................................................................................. 63 



 

 

List of Figures 
[All figures in the report should be numbered and should have an appropriate 

title.] 

 

Figure 1 – Philips Lighting well positioned to capture growth opportunities ....... 9 
Figure 2 – Evaluation of an architecture candidate .......................................... 11 
Figure 3 – Evaluation of an architecture candidate with the proposed framework.

 .......................................................................................................... 12 
Figure 4 – System Architect Use case ............................................................ 13 
Figure 5 – System Architecture ..................................................................... 23 
Figure 6 – Development Process ................................................................... 24 
Figure 7 – Palladio Tool inputs ..................................................................... 24 
Figure 8 – 4+1 Architectural View ................................................................ 26 
Figure 9 – Classes and interfaces on the components logical view ................... 29 
Figure 10 – Activity diagram showing specfification of component. ................ 30 
Figure 11 –Assembly model on the components process view ......................... 30 
Figure 12 – Physical View. ........................................................................... 31 
Figure 13 – Core of the Design ..................................................................... 33 
Figure 14 – Components repository. .............................................................. 34 
Figure 15 – Service Effect Specification. ....................................................... 35 
Figure 16 – Composite Structure/ Assembly System ....................................... 36 
Figure 17 – Allocation Model ....................................................................... 37 
Figure 18 – Usage Model ............................................................................. 37 
Figure 19 – Components repository for specific scenario ................................ 41 
Figure 20 – noOccupncy service in Multiplexer ............................................. 42 
Figure 21 – Report Occupncy service in Multiplexer ...................................... 42 
Figure 22 – GetOccupancy implementation in Controller ................................ 43 
Figure 23 – Composite structure of the system ............................................... 44 
Figure 24 – Usage Model ............................................................................. 45 
Figure 25 – Triggering events distibuted in time. ............................................ 46 
Figure 26 – Probability of response times of usage scenario. ........................... 46 
Figure 27 – Cumulative distribution function of usage scenario. ...................... 47 
Figure 28 – Different events triggering the system, distributed in time. ............ 47 
Figure 29 – Utilization of the server (CPU). ................................................... 48 
Figure 30 – Project Plan ............................................................................... 55 
Figure 31 – Example monthly sprint.............................................................. 55 
 

 

 





 

 

List of Tables 
[All tables in the report should be numbered and should have an appropriate ti-

tle.] 

 

Table 1 – Stakeholders ................................................................................... 3 
Table 2 – Risk Management Table ................................................................ 16 
Table 3 – System Requirements .................................................................... 19 
Table 4 – Selected tools for architecture evalaution ........................................ 21 
Table 5 – Comparison of selected tools ......................................................... 22 
Table 6 – Provide Models to the system Use Case .......................................... 26 
Table 7 – Differentiate Structure Use case ..................................................... 27 
Table 8 – Differentiate Triggering events Use case ......................................... 27 
Table 9 – Differentiate on Non-functional requirements .................................. 28 
Table 10 – Comparison of results,  to PUGH Sheet......................................... 28 
Table 10 - Default Behavior of an un-commissioned system (Use case from LM-

IP) ...................................................................................................... 39 
Table 11 – Time Limitation .......................................................................... 50 
Table 12 – Scrum Roles ............................................................................... 53 
Table 13 – Scrum Events .............................................................................. 53 
Table 14 – Tasks per Sprint .......................................................................... 55 
 

 

 





 
 

1 
 

1.Introduction 
 

Abstract –This chapter presents the main motivation idea of this project, which is the 

implementation of a framework to evaluate architecture candidates based on reliabil-

ity criteria. Introductory concepts are presented, as well as the project scope.  

 

1.1    Context 
 
Philips Lighting is moving from a lighting component business towards lighting solu-

tions business in professional environments (e.g., office buildings, shops), offering 

lighting solutions for energy saving, productivity, and effect creation. In these solu-

tions (consisting of light sources, sensors, and control devices) networked based sys-

tems are essential and software makes it possible to add intelligence into the system. 

 

The networked based intelligent lighting systems are complex systems, in which 

software has a dominant role. Reliability aspects at system level are becoming more 

important and architectural analysis is done during brainstorm sessions to evaluate 

possible system architecture candidates on reliability criteria. It is crucial that the 

reliability of the architectures is evaluated more formally, for example, based on a 

model of each of the architectural candidates. A method is required that predicts the 

reliability and other non-functional criteria of the architecture candidates.  

1.2    Introductory Concepts   
 

1.2.1.  Software architecture 

 
Software Architecture (SA) has been attracting more and more attention from re-

searchers, since the early periods of the last decade of the 20th century. Complexity 

and demand for quality in software systems are two of the most crucial issues that 

have led to the increase in the interest in this sub-discipline of software engineering. 

 

Although there are numerous definitions of what software architecture is, we can 

conclude that the core of all of them is the notion that the architecture of a system 

describes its gross structure [1]. This structure illuminates the top-level design deci-

sions, including how the system is composed of interacting parts, where the main 

pathways of interaction are, and what the key properties of the parts are. Additional-

ly, an architectural description includes sufficient information to allow high-level 

analysis and critical appraisal. 

 

A good architecture can help ensure that a system satisfies key requirements in areas 

such as performance, reliability, portability, scalability, and interoperability. As a 

consequence to that, a bad architecture can be disastrous. 

1.2.2.  Software Reliability 

 
Software reliability is defined by ISO 9126, as “The capability of the software prod-

uct to maintain a specified level of performance when used under specified condi-

tions”. In other words, software reliability is the probability of a failure-free opera-

tion of a software system for a specified period of time in a specified environment. 

This standard states three key components of reliability: recoverability, fault toler-

ance, and maturity. Recoverability is “The capability of the software product to re-

establish a specified level of performance and recover the data directly affected in the 

case of a failure”. Fault tolerance is “The capability of the software product to main-



 

 

tain a specified level of performance in cases of software faults or of infringement of 

its specified interface”. Maturity is “the capability of the software product to avoid 

failure as a result of faults in the software”. 

 

In practice, architects may have different architectural compositions, which need to 

be evaluated, with limited time, to go through a full reliability scenario. Systems con-

sists of hardware and software parts. Reliability can have impact on both; however, 

system architecture evaluation aims at already improving reliability of software ar-

chitectures during early development stages. Especially when we are talking about 

component based systems, the latter will help the software architects to determine the 

software components mostly affecting the system’s reliability, the sensitivity of each 

component is reliability towards the system’s reliability, and in the end, support deci-

sions between different architecture candidates.  

 

1.2.3.  Component-Based Software development 

 
The term component-based in software development is used to describe the process 

of assembling components, in order for them to interact as intended. This approach is 

mainly used to improve final product quality and to improve software maintainability 

and reliability.  

 

In addition to component-based software development, when it comes to reliability 

there are two aspects to be considered: 

 Reliability of a component: Reliability assessment of the components and 

how reliability models are affected by different component usage. 

 Reliability of a component based system: Reliability assessment of an appli-

cation developed using software components as their building blocks. 

 

1.3    Project Scope 
 
The project focused on implementing a framework to evaluate architecture candi-

dates that supports architects on the decision when it comes to choosing a project’s 

architecture. 

 

When it comes to architects perspective of architecture, two things are important: 

 Software architecture that reflects the structure of the software product.  

 Software architecture that is as simple as possible. 

 

The scope of this 9-month project is to implement a framework that should include: 

 method to evaluate the proposed architectures using identified components 

 adaptation of properties in the model based on non-functional requirements 

 execution environment to run (repeatable) test scenarios for reliability as an 

objective judgment of architectures  

 

The project is not about creating a complete tool of evaluating architecture models. 

However, the framework should provide results that give information on whether to 

create a complete tool at a later stage. Architecture is both related to software and 

hardware, when it comes to reliability issues. Evaluation of an architecture is done 

manly on system level, and there both software and hardware parts play key role. For 

this project, the hardware part was out of the scope.■ 

 



 
 

3 
 

2.Stakeholder Analysis 
 

Abstract –The previous chapter gave some insight about the problem statement, 

while this chapter attempts to analyze the people that are mostly involve in this pro-

ject and affected by it. 

 

Traditional software development has been driven by the need of the delivered soft-

ware to meet the requirements of users. Although the definition of the term user var-

ies, all software development methods are based around this principle in one way or 

another. 

 

However, the people affected by a software system are not limited to those who use 

it. Software systems are not just used: They have to be built and tested, they have to 

be operated, they may have to be repaired, they are usually enhanced, and of course 

they have to be paid for. Each of these activities involves a number – possibly a sig-

nificant number – of people in addition to the users. 

 

Each one of these groups of people has their own requirements, interests, and needs 

to be met by the software system. We refer collectively to these people as stakehold-

ers. Understanding the role of the stakeholder is fundamental to understanding the 

role of the architect in the development of a software product or system. 

 

2.1    Introduction 
 

A stakeholder of a project is an individual, team, organization, or classes thereof, 

having an interest in the realization of the system. Most system development projects 

include representatives from most if not all of these stakeholder groups, although 

their relative importance will obviously vary from project to project.  

 

Stakeholders can affect or be affected by the organization's actions, objectives, and 

policies. Some examples of key stakeholders are creditors, directors, employees, 

government (and its agencies), owners (shareholders), suppliers, unions, and the 

community from which the business draws its resources. 

 

Not all stakeholders are equal. A company's customers are entitled to fair trading 

practices but they are not entitled to the same consideration as the company's em-

ployees. 

 

For my project I can identify two major categories of stakeholders: Philips stakehold-

ers and Tue stakeholders. Both categories have their interest in the project but with 

different perspectives. Both want to have a successful project in the end; however, 

their focus towards the procedure to follow in order to achieve the end result is the 

main difference.   

 

Table 1 – Stakeholders 

 

Stakeholder Role Responsibility 

Henk Stevens  Project Owner   Providing architecture vision 

and high level information. 

 Overlooking the progress of 

the project and offering guid-

ance. 

Tanir Ozcelebi Tu/e supervisor  Overlooking progress of the 

project, offering guidance, 

deal with stakeholders’ satis-



 

 

faction, planification, and 

writing the final report. 

Berkvens Winfried System Architect  Provide pilot project to follow 

in order to implement mine. 

 Providing guidance when it 

comes to architecture deci-

sions. 

Peter Fitski System Architect  Overlooking the progress of 

the project, and at later point 

join the experiments. 

Mark Verberkt System Architect  Overlooking the progress of 

the project, and at later point 

join the experiments, when 

results are promising. 

Rob van Twist System Software Architect  Overlooking the progress of 

the project, and at later point 

join the experiments. 

 Offering tutoring on the LM-

IP architecture. 

 Define example scenario to 

use for the experiments. 

 Provide data information for 

the experiments. 

Dick Schenkelaars Quality Systems Manager  Overlooking the progress of 

the project, from a quality 

perspective. 

 

2.2    Stakeholders Categories 
 
As mentioned previously there are two stakeholder categories for the System Archi-

tecture Evaluation project. This section defines these two categories. 

 

2.2.1.  Philips Stakeholders 

 
The first category refers to the Philips Lighting employees that connect to the System 

Architecture Evaluation project. We can divide these stakeholders into subcategories, 

because stakeholders are not equal by belonging to the same category, it does not 

mean that they have the same perspectives towards the project.  

 

The project owner focuses more on the end result, meaning that the project is suc-

cessful as long as it meets the requirements for an implemented system that is run-

ning. However this is not the case when it comes to the system’s architect’s require-

ments, which are how they can benefit from the provided tool, what choices will be 

made at the implementation phase of the tool, and why this tool will help them when 

it comes to decision making.   

 

Quality managers are interested in having an assessment method, which justifies the 

choices made by the architect. They are more interested in the process and the cor-

rectness of the assessment. 

2.2.2.  TU/e Stakeholders 

 
 
The other stakeholder category concerns TU/e. The supervisor from TU/e, is mostly 

concerned about the whole procedure towards the project solution. Although he in-

terested in having a functional system in the end, he is mostly concerned with every 



 

 

step that is made. To be clearer about the latter, risk management, stakeholders’ man-

agement, project outline, action points and everything that is done is in his interest.■ 

 

 

 





 
 

7 
 

3.Problem Analysis 
 

In this chapter we define the problem that we intend to solve with the tool that we are 

going to use. Previously we mentioned the stakeholders, and what they require from 

our solution. However, we have not mentioned a description of the actual problem.  

 

Problem analysis is the process of understanding real-world problems and user needs 

and proposing solution to meet those needs. The goal of problem analysis is to gain a 

better understanding of the problem being solved before development begins. 

 

 

3.1    Context 
 
Abstract –Philips Lighting is moving from a lighting component business towards 

lighting solutions business in professional environments (e.g., office buildings, 

shops), offering lighting solutions for energy saving, productivity and effect creation. 

In these solutions (consisting of light sources, sensors and control devices) networked 

based systems are essential and software makes it possible to add intelligence into the 

system. 

 

The networked based intelligent lighting systems are complex system, in which soft-

ware has a dominant role. Reliability aspects at system level are getting more im-

portant and architectural analysis is done during brainstorm sessions to evaluate pos-

sible system architecture candidates on reliability criteria. It is crucial that the relia-

bility of the architectures is evaluated more formally, for example based on a model 

of each of the architectural candidates. A method is required that predicts the reliabil-

ity and other non-functional criteria of the architecture candidates.   

 

The quality of an architectural design is critical for successful development of a sys-

tem. Two most commonly reasons are: 

 

1. Architecture design sets the foundation for the successful achievement of 

quality requirements  

 

2. Architecture design helps to deal with the ever-increasing complexity of to-

day’s embedded systems. 

 
 

Decisions made in the architecture design phase are aspects that have a very large 

impact on the cost and quality of the final system. An additional aspect, is that quali-

ty requirements can often conflict with one another and with economic constraints. 

 

The growing complexity of today’s embedded systems is a factor that mainly induced 

by customers requiring more and more functionality. Another factor is that the design 

of embedded systems is presently moving from standalone and partitioned systems to 

functionally integrated architectures, which are characterized by extensive sharing of 

information and hardware resources. In such architectures, shared processors and 

communication channels allow a large number of configuration options at design 

time and a large number of reconfiguration options at runtime. 

 

Component-Based System development is a promising approach when it comes to 

developing large and complex systems, while providing efficiency, reliability, and 

maintainability. This approach allows the software architect to rely on the composed 

structure, which is not only crucial for the functional requirements but also non-

functional properties and software quality as well.  

 



 

 

 

3.2    Roadmaps 
 
Philips as a company is divided in three major domains, Lighting, Healthcare, and 

Consumer Lifestyle, thus has different perspectives when it comes to roadmaps. This 

section describes these perspectives, mostly focusing on Philips Lighting. First we 

describe the Business Roadmap followed by Technology and Product Roadmaps. 

3.2.1.  Business Roadmap 

 
Since Philips focuses on the three domains, mentioned previously, it is crucial for all 

domains to strive to capture highly attractive market opportunities. Their Business 

Roadmaps are going towards that in order to achieve their goals.  

 

Philips Healthcare focuses on the HealtTech opportunity, by serving the Health Con-

tinuum and leveraging strengths of Healthcare and Consumer Lifestyle. Healthy Liv-

ing, prevention, diagnosis, treatment, recovery, and home care are the main business 

roadmaps of Philips Healthcare domain. 

 

Philips Lighting focuses on lighting opportunity, by offering stand-alone Lighting 

solutions. Their target business groups are: 

 Light Sources and Electronics  

 Consumer actuators 

 Professional Lighting Solutions 

 

What can easily be observed at Philips Lighting is the movement of the business 

from a traditional lighting producer towards digital lighting and related services. On 

the technology roadmap, it is described the focus on new technologies to provide 

lighting solutions. Their strategy of connected lighting captures the attractive value of 

lighting solutions. Their aim is to improve people’s lives by delivering unique value 

and energy efficient solutions to consumers. 

 

By following these roadmaps Philips wants to achieve: 

 higher growth and profitability 

 improved customer focus in attractive markets 

 faster decision making 

 options for capital market access for Philips Lighting.  

 

 

 

 



 

 

 
Figure 1 – Philips Lighting well positioned to capture growth opportunities 

 

3.2.2.  Technology Roadmap 

 
For this section, our main focus is Philips Lighting. Their technology roadmap is 

formulated of the world’s need. There is need for more light, more energy efficient 

light, and more digital light. These needs have led their technology map on the LED 

technology to progress by 34% per year. This can be seen on the LED components, 

LED lamps and modules, LED actuators, and as a result, this reflects on the lighting 

systems and services. 

 

Moreover, their LED research and development department investments led to game 

changing innovation and technology revolution.  

 Capture high value in the market through High Power products.  

 Leverage High Power capabilities into the Mid Power LED. 

 Shape the transformation to digital lighting. 

 

Although new technologies are always good to be implemented, another thing that is 

in the focus of their technology roadmap is performance issues, mainly on operation-

al performance, which has improved supported by strong growth margin manage-

ment and structural cost savings. Digital lighting is IP based and connected Lighting, 

which enables the path for Systems and Services. Collecting data via sensors, being 

part of the digital infrastructure of lighting, will give the opportunity to analyze the 

data and provide services to improve lighting conditions, energy consumption, or 

building performance. Connected lighting will allow other domains, such as HVAC, 

to interact with the lighting system in a seamless way. 

 

3.2.3.  Product Roadmap  

 
The previous section is about technology roadmaps. As long as technology is im-

proving, the results can be reflected in the products Philips Lighting is implementing.  

 

Connected intelligent lighting is an area of future innovation in office as well as in 

home application. 

 

Their product roadmap now is to provide services, not just lighting or application, but 

both. Taking for example the home automation, this can contain lighting, security, 

maintenance, and actually that is what they want to provide to the customer, every-

thing as a service and not just a stand-alone application. In the technology roadmap 

section, it was mentioned that Digital lighting enables the path for Systems and Ser-

vices. Home automation is a very strong example of what Philips wants to provide to 



 

 

customers. Finally, we may conclude that the company wants to achieve more ser-

vices than products in the future, which will add more value and more money. 

 

 



 
 

11 
 

4.Domain Analysis 
 

Abstract –This section describes background information that has been gathered 

about events in organizations and how they are handled. This information is to be 

used to guide the development of software to automate the process of evaluating ar-

chitecture candidates. 

4.1    Introduction 
 

 

For every system that is implemented inside Philips Lighting, there might be several 

architecture candidates. Figure 2 shows the procedure as it is currently at Philips 

Lighting when a new architecture is proposed.  

 

 
Figure 2 – Evaluation of an architecture candidate 

 

The goal of the proposed evaluation framework is to help the user come up with the 

best architecture solution, by allowing the user to model parts of each candidate and 

run simulations to gather measurements.  

 

Using this application, a user will be able to obtain different types of results based on 

the measurements he chooses to have. Figure 3, shows how the evaluation of an ar-

chitecture candidate is done with the proposed methods, and where actually it is go-

ing to be placed in the current process. The outcome of this process is the Architec-

tural Accepted milestone. For the evaluation process, all related architectural ques-

tions and issues should be clarified and reviewed with the product development team. 

At the end of the process, the result should reflect all the decision that have been 

made on the accepted ‘quality’. 

 



 

 

 
Figure 3 – Evaluation of an architecture candidate with the proposed framework. 

 

Architects are the main users; however another type of user could be someone who 

can model part of the architecture candidate, before the simulation starts. 

4.2     General knowledge about the domain 
 

 Architecture is one of the most crucial parts when it comes to implementing 

a new system. 

 Architects have brainstorming sessions to figure the best option for architec-

ture. 

 In these sessions the architecture candidates are analyzed. 

 System requirements play a significant role in choosing the best approach. 

 Quality requirements are crucial for architecture decisions. 

4.3     Clients and users 
 
Potential users of the system would be the architects of Philips Lighting.  

 

 The system’s primary goal is to help the architects make a better selection 

when different architecture candidates exist.  

 Architects will be the ones who benefit the most; however they are not the 

only users.  

 Quality person, can be anyone who wants to use it in order to model a spe-

cific architecture and make some measurements from it. This user can also 

be someone who just helps an architect to make the model inside the tool. 

 

Figure 4, shows the use case of an architect that uses the proposed framework. 

 
 

 
 



 

 

 
Figure 4 – System Architect Use case 

 

4.3.1.  User Stories 

 

This section provides use cases of the proposed system, to help understanding the 

actual purpose of such a tool. Before the cases, there is the description of what an 

architect should provide to the system, and, later on, what to expect as output. 

 

A software architect should be able to provide to the system components, intended 

behavior of the system, structure, resources that the systems needs and the usage sce-

nario. 

 

Once the architect provide such information, then he/she could work on the following 

inside the tool:  

 

1) Differentiate behavior 

A software architect can change the behavior of a component in order to see 

different measurements, e.g. implement a method once in actuator and once 

in a controller. 

2) Differentiate composite structure. 

A software architect, can experiment with different composite structures 

with the same components to examine the performance. 

3) Differentiate usage scenario 

A software architect, can define different number of events that trigger the 

usage scenario of the system. 

4) Measurements 

a. Utilization of resources 

b. Histograms on prediction vs simulation 

4.4    The environment 
 
All actors have a computer on their desks; it is most common for this to be MS-

Windows based, but a significant minority of potential clients use other platforms. 

Since it is an Eclipse1 based system that will not cause potential problems. 

 

The tool is a different instance of Eclipse Software development kit, and a potential 

user only needs to install it on their computer in order to be able to use it.  

 

                                                      
1 Palladio-Bench release version 3.5.0. 



 

 

4.5     Tasks and procedures currently performed 
 
The following section describes what can be done inside the system. 

 

 Create component repository, where the different parts of the system are 

first defined. 

 Create service effect specification (SEFF), where behavior is added to the 

different components of the system. 

 Create system model, where the composite structure is defined, to see the 

whole system interactions. 

 Create deployment model, where we define the number resources for our 

system, such as hard drive and CPU. 

 Create usage model, where we model the interaction of the user with the 

system. 

  

4.6    Competing software 
                                           
Several approaches for evaluating architecture exist; however not all of them are im-

plemented, and there for not many software tools are available to evaluate an archi-

tecture. Similarities exist in all methodologies especially when evaluation is done 

based on quality attributes. However, the most difficult part in all the systems that 

exist is how to model quality criteria in order to run simulation and gather measure-

ments, when it comes to evaluating a potential architecture candidate. ■ 



 
 

15 
 

5.Feasibility Analysis 
 

 

Abstract – In this chapter, the feasibility analysis of the problem is presented. It is 

based, mainly, on the issues and risks that were identified at an early stagy. However 

due to the substance of the problem, additional challenges were identified all the way 

till the end of the project. For this project, issues and risks are really depended, that is 

often due to the fact that in order to identify a risk you need to check what issue may 

cause a potential risk. 

 

5.1    Issues 
 
Since the very beginning of the project, many issues have arisen, and needed to take 

into account in order to proceed to the solution of the given problem. Issues can vary, 

because they can include different aspects, such as declaration of ‘what is reliability 

of a software architecture,’ or ‘what is actually needed from the stakeholders’. 

 

5.1.1.  Software architecture evaluation based on reliability 

 

The key aspect on the problem that needs solution is reliability. Moreover, what 

makes a software architecture reliable? Even more what is a reliable system when it 

comes to the lighting domain.  

 

From the very start of the project, a concrete definition of the term reliability on a 

software architecture made in order to avoid conflicts late. To do so, brainstorm ses-

sions took place, where different reliabilities issues proposed and finally conclude to 

one, the response time of the system. Based on that the evaluation should be made. 

 

5.1.2.  Philips lighting domain familiarization  

 

In order to proceed and start working on a solution for the problem, one needs to be 

familiar with the context of Philips Lighting. Philips Lighting domain is huge and 

explicit. Usually, it takes employers quite some time to get familiar with the domain, 

the context, the tools and the way of working.  

 

Moreover, for this project that was even more crucial. Since the goal of the project is 

architecture evaluation, we should be able to take an already implemented architec-

ture of a Philips Lighting system, and evaluate it. It becomes clear, that familiarizing 

with the lighting domain is crucial to the goal of the project. The potential architec-

ture candidates that will be evaluated are in lighting domain, and how a lighting sys-

tem works is crucial for making a correct evaluation.  

 

Communication and contacting the right people make the procedure of familiarizing 

with the context of Philips Lighting quicker. 

 

5.1.3.  Poor architecture documentation 

 
The goal of the project is to provide architects with a tool that will make the decision 

procedure of implementing a new architecture easier. In order to do that, we need to 

see how an architect thinks. The ‘place’ to get such information is the documentation 

of already implemented architectures of lighting systems.  



 

 

 

From the very beginning of the project, the research for documented software archi-

tectures, in order to understand the lighting domain, gave poor results. Either there 

was no documentation for projects or documentation was there but not as detailed as 

was expected and also not in sync with the actual implementation. Adding to that, the 

architects’ choices were not described.   

 

5.1.4.  Communication with stakeholders 

The project has to be in line with the architects, since they are the ones to use it. Get-

ting requirements from each one, plus convince them to be part of the project was an 

imperative part of the project.  

5.2    Risks 
Potential risks that could have a large impact on the outcome of the project, identified 

at an early stage. However, risks were examined as the project continued. The most 

important risks and their strategies are mentioned below. Table 2, shows the potential 

risks, effects, and chance for each one to happened. Following, there is more expla-

nation for each risk. 

 

Table 2 – Risk Management Table  

  

Risk Effect  Chance 

Pilot Project to follow High Medium 

LM-IP Architecture Medium Medium 

People involve High Medium 

Define reliability High High 

Weight reliability  High High 

Tool to use High High 

LM-IP variables Medium Medium 

No documented architectures Medium High 

StarSense Project   Medium High 

Existing Architectures High Medium 

 

5.2.1.  Pilot project to follow 

 
The intention at the beginning was to find a project inside Philips Lighting that was 

about to start, and follow the architect on the decision that he will make, and get clear 

view on how an architect works. By following a project called StarSense, we could 

have an insight on the software architects point of view, plus an architecture candi-

date to evaluate, since the architect would make one for that project.  

 

However, although we started following the StarSense project, we had to drop that 

and find another project to follow, since there was the risk designing the architecture 

for that project may delay, causing also delays to our project. If that would happened, 

then the effect for the project would be not to have an architecture candidate as input 

to continue with evaluation process. Instead we focused on using the LM-IP projects 

architecture as an input candidate. 

5.2.2.  LM-IP architecture  

 
In order to avoid the risk of not having an implemented architecture to evaluate, or an 

existing architecture to evaluate, we decided to follow the one that had the most doc-

umentation among all the architectures, the LM-IP architecture.  



 

 

However, since a lot of information needs to be understood, mainly about how that 

system works, people that are actually participate in the LM-IP project, invited to 

participate in this project, to eliminate the risk of misleading results. 

5.2.3.  People involve 

 
The system architecture evaluation project, required a lot on knowledge transfer. Ar-

chitects and engineers that participate in the LM-IP project, are crucial to involve. 

Therefore, planning and meeting on a regular basis was needed in order not to lose 

valuable time.   

5.2.4.  Reliability of different components 

 
The goal of the project is to evaluate software architecture based on reliability crite-

ria. However, how to define reliability on architecture and moreover on each compo-

nent, that is part of an architecture? At first, there was the issue to decide which as-

pect of reliability to use when evaluating an architecture.  

  

5.2.5.  Tool to use 

 
During the research that made, methodologies and tools were found to be followed 

towards architecture evaluation. A risk here is selecting a tool that does not work as 

expected because of lack experience.  

 

Another risk that a potential tool could have is not having the results that are needed. 

Probably a tool might found really promising, but in the end what it provides to us 

won’t be the intended. A potential solution to that risk would be to be able to extend 

such a tool with new methods. 





 
 

19 
 

6.System Requirements 
 

 

Abstract – In this chapter, the project’s requirements are presented, which are the 

result of having meetings and discussion with the main stakeholders of the project, 

the architects. Then, the identified design competencies that are important for the 

success of this project are given, and finally the tool to continue our approach is pre-

sented to conclude this chapter. 

6.1    Introduction 
 
In chapter 4, there is the description of the problem analysis. The requirements of the 

proposed solution are analyzed in this section. First of all, stakeholders investigation 

was really important, because they are the ones that use the tool; moreover they are 

the ones to state the systems requirements. 

 

In chapter 3, the stakeholder’s analysis describes the whole procedure that defined 

the ones that are involved in the project. The rest on this chapter describes the sys-

tems requirements that the stakeholders want from the proposed solution to have. 

 

Based on the architect’s needs, the system’s requirements can be categorized in 3 

main categories: 

 Model different parts of a use case scenario of an architecture 

 Run simulation for the modelled scenario 

 View simulation results   

 

6.2    System requirements 
 
 

 

The following section provides the gathered requirements from the architects. Previ-

ously, the categorization of the requirements mentioned; Table 3 follows this catego-

rization and presents the listed requirements in such order. 

 

 

Table 3 – System Requirements 

 

ID  Requirement Note 
Priority 

 

SR1 User Input 
A user could be able to create different models that are 

defined in an architecture model. 
Must 

SR2 Data visualization 
Having input from user, the output can be visualized, in 

different diagrams.  
Must 

SR3 
Create components repos-

itory 

A place to model the different parts (components) that 

participate in a specified use case. 
Must 

SR4 
Modeling specification of 

components 

A place to give the components behavior specifications, 

towards a use case. 
Must 

SR5 Create System model 
Model a composite structure of a use case that is part of 

an architecture. 
Must 

SR6 

Create different system 

models for same reposito-

ry 

Having specified a components repository, make several 

models of a composite structure to run simulations. 
Should 

SR7 Modelling Resources  A place to specify resource environment specifications. Must 

SR8 Modelling usage profile A place to specify the usage characteristics of the use Must 



 

 

case. What is triggering the system? 

SR9 Create allocation diagram Allocation diagram maps components to resources. Must 

SR10 
Validation of components 

repository 
Check if an implemented repository has validation issues. Should 

SR11 
Validation of System 

model 

Check whether the composite structure has validation 

issues. 
Should 

SR12 
Extend components re-

pository 
Ability to add/ remove components from the repository. Should 

SR13 
Change/update specifica-

tions of components  

Ability to change specifications on each component after 

modelling them.  
Should 

SR14 
Change/update System 

model 

Ability to change the composite structure after imple-

menting it or after run a simulation. 
Should 

SR15 Change/update resources  
Ability to add/ remove resources from the resource envi-

ronment. 
Should 

SR16 
Change/update usage pro-

file 

Ability to change/update the usage profile, by adding or 

removing things between different simulation runs. 
Should 

SR17 
Define different configu-

rations files. 
Have different configuration files per simulation. Must 

SR18 

Run simulation of the 

modelled environments,  

based on the configuration 

files 

Choose configuration file to run the simulation. Must 

SR19 
Visualize results of the 

simulation 

Diagrams showing the data collecting from the simula-

tions. 
Must 

SR20 

Visualize and compare 

different simulation re-

sults 

Diagrams showing results from different simulation runs. Must 

SR21 Export simulation data Save simulation data to an excel file. Should 

SR22 
Connect different reposi-

tories 

Create system model by referring to different repositories 

of components. 
Must 

SR23 
Create library of compo-

nents  

Create library to include different parts that are common-

ly used in system’s model, for later use. 
Should 

SR24 Ease of use tool Friendly and easy to use environment of tool. Should 

SR25 
Compatible with Philips 

OS environment 
No special modification to use the tool. Must 

 

6.3    Design opportunities 
 

For this project three design criteria were selected by the very beginning, and in this 

section we are going to analyze them. Moreover, by having this criteria in the design, 

we show what our system will be able to do. At the end of the project, these criteria 

were reflected upon and explains how the quality of the design was improved for the 

important criteria. 
 

The design criteria that are of interest for this project are: 

 

 Flexibility  

 Reusability  

 Complexity 

 

Flexibility implies a design that can easily accommodate the changes. This can either 

means adding more of the same kind of functionality or adding different functionali-

ty. Since we are in the Philips lighting and we need to evaluate architecture candi-

dates, an example of that could be that we have a sensor that mainly detects motion. 

However, we implement another sensor component that does the same, but its func-

tionality is different. In the end we will see which of the two sensors components is 



 

 

more beneficial for us, but our system should be able to handle this changes, and 

produce results.  

 

Reusability implies that designing a software system in such way that components of 

a developed system can be used again in developing new applications. Reusability is 

an important factor in producing low cost applications. Since the architecture evalua-

tion is for lighting systems, it is really crucial that when implementing a system to 

evaluate the architecture candidate, to be able to use that again, or part of it such as 

the components that participate. 

 

Complexity is the last of the three selected design criteria. The whole effort is to pro-

vide the architect with a procedure to make the choices he needs easily and not 

spending too much time in creating different models.  

6.4    Selected tool for evaluation 
 
This section provide information on tools for architecture evaluation, that found dur-

ing the research that was made. Table 4 gives a description of each tool, with the ad-

vantages and disadvantages of each tool while Table 5 presents a comparison be-

tween the different tools that guide to the selection of one. 3 

 

Table 4 – Selected tools for architecture evalaution 

   

Tools Pros Cons Description 

SHEsim/POOSL Analysis and realiza-

tion of a system. 

Evaluation and per-

formance analysis. 

New tool maybe not 

support will provided. 

Standalone tool, con-

nect it with e.g. 

Eclipse is not sure.  

Uses POOSL Language 

(similar to UML nota-

tion) to model hard-

ware/software systems. 

Build-in methods and 

techniques for evalua-

tion. 

Palladio Tool Predicting reliability 

of a system by solv-

ing parameter de-

pendencies, deter-

mining probabilities 

of system states, 

generate and solve 

Markov chains. 

 

 1) Make Palladio Com-

ponent Model. 

2) Make use case sce-

nario and then define 

reliabilities/ dependen-

cies etc. 

3) Allows you to model 

different aspects of a 

system, using a domain 

specific modelling lan-

guage 

SBRA Technique Uses framework in 

eclipse to generate 

code from model. 

Not commonly used 1) Define scenarios for 

interaction between 

components 

2) Model Component 

Dependency Graph 

3) Run Algorithm to 

analyze reliability of 

each component  

PSO Technique  Palladio component 

modelling + QML. 

Uses Ecore plugin to 

model inside eclipse 

and then define 

framework to evalu-

ate reliability of a 

system. 

QML, lack of 

knowledge. 

1)Make Palladio com-

ponent model 

2)Model quality re-

quirements with QML 

3)Run algorithm to 

evaluate  

4) Provide results in 

graphs  



 

 

 

Table 5 – Comparison of selected tools   

  SHEsim/POOSL Palladio  SBRA Technique PSO Technique 

Stand Alone tool     

Open source       

Eclipse Based     

Generated from 

Ecore 

    

Probabilistic meth-

ods used for meas-

urements 

    

Ready for use tool     

Documentation     

Forum     

 

Given the requirements from the stakeholders, and the description of the problem, the 

tool that is selected to continue the research for the solution, Palladio tool is selected 

for the purpose.  

 

Palladio is an Eclipse based open source tool. Uses probabilistic methods to make the 

measurements, similar to the ones found in the research made, SBRA technique or 

PSO technique. As most of the other methodologies Palladio also needs a use case 

scenario of the systems architecture, with well-defined characteristics in order to be 

able to make measurements. Right now Palladio and Ecore, which is a plugin in 

eclipse similar to UML modeling, were the two tools that was actually a ready envi-

ronment to work with. The difference is that Ecore is more general when Palladio is 

specific for architecture evaluation. A reason to follow Palladio than Ecore at first 

place was that Palladio is generated from Ecore.  

 

As for the other methodologies, is that at this moment they were just step by step 

guidance to build a tool to use, although Palladio not only was a step by step meth-

odology to evaluate architecture but also a ready-made tool to use.■  

 



 
 

23 
 

7.System Architecture 
 

 

Abstract – In this chapter the overall architecture is described. Development process 

followed by the 4+1 model are explained, towards the tool that selected in chapter 6. 

7.1    Introduction 
 

In previous chapters, the descriptions of the problem, domain analysis and the re-

quirements were presented. This chapter provides an overview of the system’s archi-

tecture. First, this overview is given and then we go into more details about each of 

the parts of this architecture. The purpose is to give the whole image to the reader 

and later on explain what each part represents. 

 

7.2    System’s architecture overview 
 

 
Figure 5 – System Architecture  

 

Figure 4, shows the architecture overview of the system, indicating the inputs of the 

tool and the outputs it gives. 

 

The system’s architecture contains the following: 

 An architecture candidate. 

 Metamodeling of the candidate. 

 Palladio tool.  

 Configuration. 

 Results. 

 

 

 

7.3    Development process 
 

The development process starts from the collection of the requirements (requirement 

phase). Later on, the software architect, gives the specification of the architecture and 



 

 

the components (specification phase). When everything is specified, performance 

predictions can be carried out from the Palladio tool (QoS-Analysis). With the results 

the software architect can either continue to the implementation of the architecture 

(deployment phase), or change specifications to run another round of simulation 

(provisioning phase). Figure 6, shows the development process as it is described in 

this section. 

 

 
Figure 6 – Development Process  

 

 
Given an architecture candidate, an architect wants to measure the performance as 

stated in the requirements section. In order to do so, different metamodeling tech-

niques are needed. When we are referring to a software architecture model different 

layers of that architecture needs to be defined properly, to be given as inputs for the 

Palladio tool.  

 

 
Figure 7 – Palladio Tool inputs  

 

Palladio provides a domain-specific modelling language for each input, which is re-

stricted to concepts known to this role.  Figure 7 shows the inputs Palladio needs in 

order to evaluate a potential architecture. Let now have a clearer view of what is 

shown in Figure 7 as input: 

 

 Component Specification: components taking part in an architecture can-

didate, and their performance-related behavior.  

 Assembly Model: composite structure and communication between the 

components introduced. 



 

 

 Allocation Model: model of the resource environment plus the allocation of 

the components to this environment. 

 Usage Model.  

 

After providing this modelling information to Palladio tool, and before running the 

simulation, a configuration is needed to determine the circumstances of the experi-

ments. That is the final input for the tool. All the inputs combine and create an in-

stance of the candidate architecture model. That instance is the one that will be eval-

uated.  

 

Palladio offers different performance evaluation techniques. For analyzing use cases 

without concurrency, an instance can be transformed into a stochastic regular expres-

sion (SRE), which offers a fast way of predicting response times in presence of re-

source demands specified as general distribution functions. For cases with multiple 

users, an instance can be transformed into a queuing network based simulation mod-

el. The simulation model is less restricted than the SREs, but its execution is usually 

more time consuming than solving the SREs. Finally, there are transformations to 

derive Java code skeletons from an instance, to provide a starting point for imple-

menting the modeled architecture. 

7.4    4+1 Architectural view  
 
 

The 4+1 architectural view describes the architecture of software systems, based on 

the use of multiple, concurrent views. In each view, different stakeholders are con-

sidered. In addition, a selection of use case scenarios describes the overall picture as 

'plus one'. Hence the model contains 4+1 views: 

 

 The logical view: This contains information about the various parts of the 

system. In UML the logical view is modelled using Class, Object, State ma-

chine and Interaction diagrams (e.g. Sequence diagrams. 

 Process view: The process view considers non-functional, dynamic aspects 

such as performance, scalability and throughput. It addresses the issues of 

concurrency, distribution and fault tolerance. The process view can be rep-

resented with sequence diagrams, activity diagrams and communication dia-

grams. 

 The development view: The development view focusses on software mod-

ules and subsystems. In UML, Package and Component diagrams are used 

to model the development view. 

 The physical view: The physical view encompasses the nodes that form the 

system’s hardware topology on which the system executes. It focusses on 

distribution, communication and provisioning and is represented by de-

ployment diagrams. 

 The use case view: This view describes the functionality of the system from 

the perspective from outside world. It contains diagrams describing what the 

system is supposed to do from a black box perspective. This view typically 

contains Use Case diagrams. All other views use this view to guide them. 

 

These five views are connected to each other, Figure 8. The logical view will help the 

developer to extract the development and process views. Then these two view can be 

used together to come up with a physical view. During this process the scenarios can 

be used to see the big picture and make all these view consistent with each other. 

 



 

 

 
Figure 8 – 4+1 Architectural View  

 

7.4.1.  Use case scenarios 

 
Use case scenarios show how users interact with the system. Basically, it shows the 

behavior of the system as seen by its end users and other stakeholders. This behavior 

needs to reflect the requirements stated in the domain analysis description. In this 

section, the five main use case scenarios are explained. Table 6 - Table 9 describe the 

use case scenarios that are implemented by the system. 

 

Table 6 – Provide Models to the system Use Case 

 

Features Description 

Use Case:  SAE1 

Name: Provide Models to system 

Scope: Software Architecture Evaluation (SAE) 

Level: User-goal 

Primary Actor: System or Software architect 

Stakeholders & Interests:  Project Manager and QPL (Quality Pro-

ject Leader) 

Precondition: Tool is installed and running 

Software architect (SA) have concrete 

specification of what is going to be mod-

elled 

Minimal Guarantees: t.b.w 

Success Guarantees: Successfully provide the 5 types of mod-

elling of a software architecture. 

Main Success Scenario:  

(1) SAE: Provides environment so 

SA can model a system 

(2) SA: Models components used in 

his scenario, retrieves existing 

components and creates new one 

if needed 

(3) SA: Gives the service effects 

specifications (SEFFs) 

(4) SA: Makes composite structure 

(5) SA: Gives the resource envi-



 

 

ronment variables 

(6) SA: Makes usage profile 

(7) SAE: Runs simulation 

(8) SAE: Provides results 

 

Table 7 – Differentiate Structure Use case 
 

 

Features Description 

Use Case:  SAE2 

Name: Differentiate composite structure  

Scope: Software Architecture Evaluation (SAE) 

Level: User-goal 

Primary Actor: System or Software architect (SA) 

Stakeholders & Interests:  Project Manager and QPL (Quality Pro-

ject Leader) 

Precondition: SA had already model and run once a 

simulation 

Minimal Guarantees: t.b.w 

Success Guarantees: Successfully change composite structure 

Main Success Scenario:  

(1) SAE: Provides the SA with 

structure that was already im-

plemented  

(2) SA: Changes the structure of the 

communication and the interac-

tion between the components 

that are used in the scenario 

(3) SAE: Runs simulation 

(4) SAE: Provides results 

 

Table 8 – Differentiate Triggering events Use case 
 

 

Features Description 

Use Case:  SAE3 

Name: Differentiate events triggering usage sce-

nario  

Scope: Software Architecture Evaluation (SAE) 

Level: User-goal 

Primary Actor: System or Software architect (SA) 

Stakeholders & Interests:  Project Manager and QPL (Quality Pro-

ject Leader) 

Precondition: SA had already model and run once a 

simulation 

Minimal Guarantees: t.b.w 

Success Guarantees: Successfully run different scenarios with 

triggering events 

Main Success Scenario:  

(1) SAE: Provides the SA with the 

modelling architecture that was 

made  

(2) SA: Change the usage scenar-

io(e.g. number of events) 

(3) SAE: Runs simulation 

(4) SAE: Provides results 

(5) SA: change again usage scenario 

(6) SAE: Runs simulation 



 

 

(7) SAE: Provides results 

(8) SAE: Compare results in same 

charts 

 

Table 9 – Differentiate on Non-functional requirements 

 

 

Features Description 

Use Case:  SAE4 

Name: Design same components, differentiate 

them in non-functional requirements  

Scope: Software Architecture Evaluation (SAE) 

Level: User-goal 

Primary Actor: System or Software architect (SA) 

Stakeholders & Interests:  Project Manager and QPL (Quality Pro-

ject Leader) 

Precondition: SA had already model and run once a 

simulation 

Minimal Guarantees: t.b.w 

Success Guarantees: Successfully run different scenarios with 

triggering events 

Main Success Scenario:  

(1) SAE: Provides environment so 

SA can model a system 

(2) SA: Models components used in 

his scenario 

(3) SA: Gives the service effects 

specifications (SEFFs) 

(4) SA: Makes composite structure 

(5) SA: Gives the resource envi-

ronment variables 

(6) SA: Makes usage profile 

(7) SAE: Runs simulation 

(8) SAE: Provides results 

 
Table 10 – Comparison of results,  to PUGH Sheet 

 

 

Features Description 

Use Case:  SAE5 

Name: Comparison of Results  

Scope: Software Architecture Evaluation (SAE) 

Level: User-goal 

Primary Actor: System or Software architect, Quality 

Project Leader 

Stakeholders & Interests:  Project Manager and QPL (Quality Pro-

ject Leader) 

Precondition: SA had already model and run simula-

tions 

Minimal Guarantees: t.b.w 

Success Guarantees: Successfully run different scenarios with 

triggering events 

Main Success Scenario:  

(1) SAE: Provides simulation re-

sults 

(2) QPL: Select to export results to 

excel sheet 



 

 

(3) SAE: Export results in excel 

files. 

 

7.4.2.  Logical view 

 

In this view, the logical layout of the project is given. Mainly it shows the interfaces 

and the classes that participate in a use case scenario that is part of an architecture 

candidate that is going to be evaluated. For this project this view contains the com-

ponents repository (interfaces and classes) as shown in Figure 9. 

 

 
Figure 9 – Classes and interfaces on the components logical view  

 

7.4.3.  Process view 

 
The process view describes the processes of elements that interact with each other. 

The parts (interfaces, classes) that introduces in the Logical View, have specification. 

These specification are analyzed in the process view with activity like diagrams. 

Adding to that the usage models are also behavior descriptive.  

 



 

 

 
Figure 10 – Activity diagram showing specfification of component.  

 

7.4.4.  Development view 

The development view shows the components, which will be the units of deploy-

ment.  Since in the logical view there are the parts that take place in an architecture, 

the process view describes the behavior of each part, in the development view basi-

cally we can see the actual composite structure of the use case scenario. The assem-

bly model shows the composite structure, and more over the communication between 

the different components which is achieved by ‘provide’ or ‘require’ an interface. 

Each interface contains methods that components use to communicate with the dif-

ferent parts inside a system.  

 

 
Figure 11 –Assembly model on the components process view  

 

7.4.5.  Physical view 

 

The view described in this section deals with the deployment of the developed soft-

ware on the hardware / execution environment. Figure 12, shows that, where we see 

the mapping on the resource containers, for each assembly context.  



 

 

 

 
Figure 12 – Physical View.  





 
 

33 
 

8.System Design 
 

 

Abstract – After explaining the main system architecture in chapter 7, this chapter 

provides a more detailed look on parts of the architecture.  The metamodeling part of 

the inputs as long as the configuration are examined in this chapter. Core of the deign 

gives the main idea behind which the evaluation process is done. 

8.1    Core of the design 
 
The system architecture that described in the previous chapter, is the core where the 

design of the system is based. In Philips lighting, when implementing a new system 

the components that participate are mostly sensors, controllers, and actuators. When 

evaluating an architecture candidate, the need is to see which candidate performs 

better than the others. These can have different aspects, in implementation, composite 

structure, functionalities etc.   

 

Following is the system design. It consists of the sensors, controllers, and actuators; 

however, there is another component, the multiplexer. A simple use case of a lighting 

system is a detection from sensor, reported to controller, and actuators take command 

from the controller according to that detection. The proposed multiplexer component 

helps us in the measurements when a controller has multiple inputs from different 

sensors. In a specified area several sensors exist to detect motion, and report that to a 

controller. In order to make our evaluations more concrete, we need to have a multi-

plexer component to get the inputs from the sensors. 

 

 
Figure 13 – Core of the Design  

 

What is actually happening is that, when there is detection of movement by the sen-

sors, we need to report that to the controller. The multiplexer does that. Its output is a 

logical OR, since it takes the inputs from the sensors, and send it to the controller.  

 

However, when using the Palladio tool, there are several steps that need to be done 

before the composite structure. These steps are also part of the design, since they 

need to be in a concrete form, so that the simulation can provide results for the evalu-

ation of an architecture candidate. The following sections describe that steps and de-

sign inside the Palladio tool. 

8.2    Component modeling 
 



 

 

The component modeling includes all that software parts that are defined in a use 

case scenario. More specifically, the components and each behavior. Firstly, all com-

ponents need to be stored in a repository and then the behavior needs to be modelled, 

so later on, can be used for the deployment of the system. 

 

8.2.1.  Components repository 

 

 

 
Figure 14 – Components repository.  

 

 

Figure 14 shows a small example of a component repository. In such repositories, 

interfaces, data types, components can be declared. Components can provide or re-

quire interfaces. If a component provides an interface, this means that the component 

includes an implementation of the methods (services) declared in the interface. In the 

example of Figure 14, the Sensor component, provides the ISensor interface, and 

additionally, includes the implementation of the method that the interface provides. If 

a component requires an interface, can access the methods in the interface though the 

component that provide the interface. The next section analyses the specification of 

the services. 

 

8.2.2.  Service effect specification 

 
After modelling the components repository, and additionally the services that each 

component provides or require from interfaces, the next step is to specify these ser-

vices.  

 

The service effects specification can be declared in a similar way as the activity dia-

grams do in UML. Main use, is to specify the performance of the components. What 

can be seen in this specification can vary. Control flow of actions, resource demands, 

and parametric dependencies.  

 



 

 

Control flow shows internal actions, the component executes internally some code, or 

external call actions, which are the actions that a component requires from an inter-

face. 

 

Resource demands can be specified here. Components in order to execute their ser-

vices use resources (CPU, HDD). Figure 15, shows an example of a service effect 

specification. CPU demands specified first, and then and external call action is speci-

fied. Parametric dependencies can cause different performance behavior. It is very 

common, to specify the resources demands depending on an input value. So for ex-

ample if the resources needed are depending in the byte size of an input file, then the 

performance is different for files with different byte sizes.   

 

 

 
Figure 15 – Service Effect Specification.  

 

8.3    Assembly model 
After the components repository is imported, plus the specification of services have 

been declared, then the composition of the architecture can been deployed. The com-

posite structure, represents the system that the architect needs to implement. Basical-

ly, the architect uses the components from the repository and deploys the system. At 

this point, no more specifications are needed, because everything is already imple-

mented on the previous step. 

 

A very important thing for this part of modelling is that for every component several 

instances may be used. In order to do so, all components used are in assembly con-

text which represents an instance of the component.  

 

The provided and required roles, first declared in the components repository imple-

mentation, have a crucial role here, since they help to connect the assembly compo-

nents in the composite structure.    

 

A small example of an assembly model shows Figure 16. It is clear that there are two 

instances of components, one for the sensor component, and one for the controller 

component. The provided and required roles are also obvious from the model. For 

example, controller requires a role from the sensor, as an input. If there were more 

instances of a sensor here, then also in the controller instance would be as many re-

quired roles from the sensor as the actual instances of the sensors.  

 



 

 

 

 
Figure 16 – Composite Structure/ Assembly System  

 

8.4    Allocation model 
 

There are two parts of modeling, when it comes to the allocation model. First, is the 

need to specify the resource environment, and second, to allocate the assembly com-

ponents to the resources.  

 

For the resource environment, resource containers can be specified (e.g. Server). The 

latter can contain CPU, hard disk, and connection delays. The resources have a pro-

cessing rate, which is used to convert demands of the services specification into tim-

ing values. In section 8.1, the service effect specification explained, naming that the 

resources needed for each action should be declared. At the resource environment the 

whole processing rate of the resources is given, so when later simulation run, these 

two declaration will actually provide the numerical values of the simulation. 

 

After specifying the resources, allocation context is used to specify that a resource 

container executes an assembly context. For example, having two servers helps put-

ting different parts of a system in one server and others in the other server.  

 

Figure 17, that follows shows exactly one Server, containing allocation context for 

every assembly context. For the example, all executions are done in one resource 

container. 



 

 

 
Figure 17 – Allocation Model  

 

8.5    Usage model 
 

In the usage model, what is actually shown is the user interaction with the system. It 

is the input that will trigger the system to be executed. It can have one simple input, 

or more complicated inputs, characterized by probabilistic actions. Control flows 

connected with branch actions, can show the user behavior. The more specified a 

usage model is, the more realistic the simulation could be. 

 

 
Figure 18 – Usage Model  

 

Figure 18, shows a simple usage model, where the triggering event, can actually have 

different population of elements, since it is specifies as a distribution function of an 

integer. For example, this can help simulate a system where every minute we want to 

see the how many users are entering.  

 

That is the final input in order to evaluate an architecture of a system. The only thing 

left is the configuration, before starting the simulation. 

 



 

 

8.6    Configuration 
 

At this point, the modeling part should have finished, and the simulation part is about 

to start. However, there is mapping missing of the part that will part in the simulation 

run. This mapping is the configuration file, which specifies the assembly model, allo-

cation model, and usage model that are in the simulation. Besides that, the number of 

experiments is also declared at this point. Different configuration, can lead to differ-

ent measurements, which may needed from an architect, in order to make his deci-

sion on the architecture to be implemented. 

 

8.7    Transaction 
 

An important factor for evaluating a lighting system’s architecture candidate, is the 

transaction. Transaction, mainly should include information about network commu-

nication, and communication between the different components of a scenario. An 

example of that could be how many messages are exchanged between a sensor and a 

controller per minute.  

 

Due to time limitation and no data information on this subject, we left it out of the 

scope when experimenting. Nevertheless, it should be included on future work, espe-

cially when network aspects need to be included. 

■ 



 
 

39 
 

9.Verification & Validation 
 

 

Abstract – In this chapter, the capability of the proposed methodology and tool to 

provide a feasible result is shown. In order to do so, a use case scenario from an ar-

chitecture candidate is selected. Afterwards, all the modelling behavior implemented 

as described in chapter 8. Finally, results are provided. 

 

9.1    Use case scenario 
To illustrate the performance of the selected tool, and the inputs that it needs, this 

section provides a use case scenario, of an implemented architecture inside Philips 

Lighting, the LM-IP. The system under analysis controls the behavior of light inside 

a building. The following example is mainly focuses on one scenario of the system. 

9.1.1.  LM-IP scenario 

 
This LM-IP architecture, has many and different use cases. For the purpose of the 

verification and validation of this project, a specific scenario is selected. The Table 

11 that follows presents that scenario. 

 

Table 11 - Default Behavior of an un-commissioned system (Use case from LM-IP) 
 

 

Features Description 

Name:  Everyday use 

Description: Default Behavior of an un-commissioned 

system program to react as single group 

of actuators. 

Trigger event:  Actor entering a room. Every actuator 

has a sensor 

Actors: Office Workers, Installer, Worker 

User Objective:  Performing tasks in appropriate lighting 

conditions 

Pre-conditions: 1) All system components installed 

and powered  

2) Power and network available 

Post-conditions: If any sensor detects movement all actua-

tors turn on. 

If no movement detected, all actuators 

turn off. 

Result: Appropriate lighting conditions 

Main Scenario: 1) Actor enters any room or area in 

the building 

2) All lights in the sub-network are 

switched on to the defined light 

output 

3) Option 1 

If no occupancy is detected, the 



 

 

Actuator switches off 

If occupancy is detected by 

those sensors, entire Sub-net 

will switch on to the defined 

light level 

Qualities: One Group, One Light Level, Reaction 

Time 1s. 

 

 

A small description of the scenario is the following: upon detection of motion, the 

sensor reports occupancy to the controller using the occupancy attribute. The control-

ler reacts by turning on all actuators. 

 

In case stable occupancy is present (the user moves under the actuator), the actuator 

reports this and the controller dims the lights to task level. In case not stable presence 

is detected, the controller decides to turn off the actuators. 

 

For this scenario the components that take place are the following: 

 

 Sensor 

 Controller 

 Actuator 

 

In order to our approach more feasible, we introduce a new component, a Multiplex-

er. The purpose of that was to make more concrete our measurements. This compo-

nents takes as input multiple events from the different sensors. Moreover, when 

simulation is done it is able to provide results and measurements for each sensor, and 

each method that a sensor contains. This is analyzed more in section 9.3.  

 

For the rest of this chapter, this is the requirements specified for the model that are 

implemented in the next sections. 

 

 

9.2    Input models/ validation 
 
As described in chapter 8, the designing part of the input model is crucial since they 

need to be in specific forms in order to be used for simulation. Taking into account 

the components included in the scenario and their behavior, the repository and the 

specification of them can be constructed. 

9.2.1.  Components repository 

 
Based on the description of the use case, Figure 19, presents the components reposi-

tory. The design of it follows the specification named in chapter 8. The components 

that participate in the scenario are implemented. Roles of providing and requiring an 

interface are also there. The only thing that differentiates is the Load Balancer com-

ponent, whose implementation is for handling requests from different sensors.  

 

The service of each component, is also declared in the repository. The main purpose 

of the use case is to report the occupancy, if a sensor detects it. Different components 

implement different services. For example, Sensor reports occupancy, while the Con-

troller requires that report in order to send to Actuators message whether to turn on or 

off.  



 

 

 
Figure 19 – Components repository for specific scenario 

 
Following the design of the repository is to provide the specification of each compo-

nents services. From Figure 19, it can be observed, which component provides which 

interface, and which component requires an interface.  

 

 Below, Figure 20 and Figure 21, show the implementation of the reportOccupancy 

and noOccupancy services. Both contain internal and external call actions. In the 

internal action the CPU load for the execution is declared. Both Sensor and Multi-

plexer components using them. However, there is difference between the uses. Sen-

sor just detects or not detects motion. According to that, the Multiplexer, implements 

the behavior of each service.  

 

 



 

 

 
Figure 20 – noOccupncy service in Multiplexer 

 

For the Multiplexer, the implementation is similar, thought the branch actions and 

probabilities refer to the sensor that will be triggered for the input event. 

 

 
Figure 21 – Report Occupncy service in Multiplexer 



 

 

 

The controller component need to get the report of the occupancy. And after it gets 

the occupancy or not, can provide the actuators with a turn on or off message. The 

service the controller provide is the get Occupancy. Figure 22 shows the implementa-

tion of that service. Again, the amount of CPU load is declared first. The external call 

action here is to get the output of the reportOccupancy service. 

 

 
Figure 22 – GetOccupancy implementation in Controller 

 

9.2.2.  Assembly model 

 
Once the components taking part in the use case are imported and the services have 

been declared, the Assembly model can be composite, as it is describes in chapter 8. 

For the scenario that is examined, the composition of the components shown in Fig-

ure 23. The flow between the different parts is clear and reflects the specifications of 

the scenario description. First, sensors detect the occupancy, then report that to the 

controller and finally the information arrives at the actuator. 



 

 

 
Figure 23 – Composite structure of the system 

 

9.2.3.  Allocation model 

 
For the allocation model, first, the resources need is declared. Only CPU loads are 

decided to be the performance measurement. In addition to that, the whole system is 

running on a server, which can operate 700 CPU operations per second. 

9.2.4.  Usage model 

 
For the usage model, we defined two scenarios containing branch probabilities each 

one. Since we modeled two sensors then, we need to declare these two scenarios each 

one affect one of the sensor. However, in the end both scenarios are taken into ac-

count or the simulations. Each scenario contains probabilities that either the sensor 

will detect motion or not. Moreover, for that specific usage model, ten event are 

modelled to trigger the system repeatedly, with a time difference of 1 second between 

each other, for Sensor 1, and for Sensor 2 only 5 events are modelled. Considering an 

office room, the placing of sensors gives different distribution of triggering event. 

Figure 24, shows the Usage model. 

 



 

 

 
Figure 24 – Usage Model 

 

9.3    Results and verification 

 

This section provides the simulation results for the inputs provided to the Palladio 

tool. For the inputs that were given to the tool, we can have simulation results on the 

response time of the system, on response time of the different methods inside the 2 

sensors, plus utilization of the resource container. This section is going to describe 

these results, and draw some conclusions about the experiments that can be made in 

such a tool. For the purpose of our experiments, mainly the stochastic process algebra 

and queuing networks simulation were used. 

 

9.3.1.  Response time of the usage scenario 

 
In section 9.2, the inputs are given, more specifically components take place, behav-

ior of them, assembly model, allocation model, and usage model. Simulation results 

show performance of the system provided. Performance results for the whole system; 

however results for specific components can be also made. Results can show from 

how much time one event consumes from the time it detected from sensor until it 

affect the actuator until which events trigger the whole system during the simulation 

run. 

 

In order to make it more understandable results in graphs follows. These graphs are 

actually the outcome of the simulations. For the usage scenario, we can have results 

such as execution time per event, meaning how much time the system will run start-

ing from a triggering event, distribution of the events triggering the system in the 

execution time (Figure 25), shows when events are coming. Then probability of 

reaching a response time according to specifications defined to the system (Figure 

26), and finally the cumulative distribution function of the usage scenario (Figure 

27). The cumulative distribution function shows the time needed for the coming 

event in added probabilities. The time needed for one detection from the sensor until 

the actuator turn on, was 0,177 seconds. However, we can have results also per 

method, basically because of the use of the multiplexer. For our experiment the 

methods used by the two sensors were the same so we have similar results in time 



 

 

measurement. Still that is great input to know as a simulation result, which method 

and from which sensor was triggered, and moreover to see the time that it consumes. 

 

 

 
Figure 25 – Triggering events distibuted in time. 

 

 
Figure 26 – Probability of response times of usage scenario. 

  



 

 

 
Figure 27 – Cumulative distribution function of usage scenario. 

 

To get more information on the performance results, by introducing the multiplexer 

component we can have more clear view on the events inside the systems. Above we 

presented the results for the usage scenario, now we will show the same results with 

the difference that now we will show which method and from which sensor now trig-

gers the system. For this experiment we introduced two sensors that detect occupancy 

or not. If we now see the triggering events coming to the system, we can actually see 

which kind of event is triggering the system in Figure 28. Basically that figure shows, 

whether the event that comes trigger sensor 1 or sensor 2, and whether it is an occu-

pancy detection or not. 

 

 
Figure 28 – Different events triggering the system, distributed in time. 

 

9.3.2.  Utilization of resource container 

Results show also the utilization of resources. For our experiment we have declared 

one server with CPU that can run 700 cycles/s. Let us see now what results we got 



 

 

for the resources. The events that we had modelled for the usage scenarios are 10 

with thinking time of 1 second for sensor 1, and 5 with thinking time of 1 second for 

sensor 2. The following pie chart shows the distribution of time among the CPU of 

our server. Each percentage represents the time that the CPU was busy processing a 

number of jobs to the whole time the simulation ran. For example, 17.9% of the 

whole execution time the CPU was busy with processing two jobs (events) that were 

inside our simulated system. 

 
Figure 29 – Utilization of the server (CPU). 

 

9.4    Conclusion 
 
In order to validate and verify our system, we make a small usage example and test it. 

In this chapter we show all the specification of that system, but also the results we 

got. The system is rather small for a light system, however it shows that by giving 

inputs in a specified form, Palladio tool is able to provide results towards the perfor-

mance of such a system.   

 

We modelled two sensors that triggered by events and give the whole system reason 

to run. In a real room there will be more sensors and more actuators. Due to time 

limitation, the experiment minimize some parts.  

 

It is a good input though that having different components as input in the Palladio 

tool, provide results for each one, even if components are duplicates. Another input 

from using that tool is that you can have different specification for components that 

do the same thing. That helps the architect in order to see if for example an expensive 

sensor in CPU operation will it be a better solution from sensor not that expensive. 

All are relevant. It is the limits that someone puts to balance performance and quality 

on a working system. 

 ■ 



 
 

49 
 

10. Conclusions 
 

 

Abstract – In this chapter the results of this project are shown. Conclusions of the 

project are presented, an overview of what has been achieved. Following, is the les-

sons learned and limitation section that shows different challenges that come across, 

and finally future work is discussed. 

10.1    Conclusions 
 

This project proposes a tool for evaluating architecture candidates, based on reliabil-

ity criteria. When it comes to reliability, first of all you need to define what reliability 

for a system is. The evaluation of an architecture is based on key points: 

 Specify use case scenario: given an architecture candidate, you have to take 

a use case in that architecture. That helps breaking the architecture into 

smaller parts, making it easier to evaluate it. 

 Specify components on that scenario: after specifying the use case, you 

can specify the components that take place in that use case. That actually is 

a key point in order to evaluate the architecture. That is because the re-

quirements and the specifications of each component define the evaluation 

of the architecture composition. 

 Specify reliability: the definition of the reliability for the system should be 

reflected on the components. The way the components constructed should 

eventually when the simulation for the evaluation starts to provide specifica-

tion for the reliability. 

 

For this project, research made and methodologies for evaluating architecture found. 

Palladio tool selected to proceed with the experiments, because it was an implement-

ed tool that follows the methodologies. It gives the opportunity to make several sce-

narios and test them, in a graphical environment.  

 

The main challenge for this project was to construct an architecture from Philips 

Lighting inside the Palladio tool, in order to provide simulation results. Adding to 

that the reliability specification should be defined. What was needed to be proved is 

that with this tool and by following the methodologies for evaluating architecture can 

actually lead to results that will help architects in their decision. This was achieved in 

some level as the results in the previous chapter describe. 

10.2    Lessons learned and limitations 
 

10.2.1.  Lessons learned 

 

Lessons learned from this project, can be categorized, in two categories one contains 

lessons from working in a big company and second contains lessons more technical 

in order to provide results.  

 

Gathering requirements, requesting for meetings, and convince people to be part of a 

project can be really tough. When different people are involved in the project you 

have to collect requirements from all of them. Basically you have to see the expecta-

tions they have, and eventually discuss if you can achieve to meet these expectations. 

 

Requesting for meetings and convincing people to participate in the project is hard. 

People in a large company tend to be really busy, especially when the people you 

need are architects. They need good explanation of why what are you making is go-

ing to be a helpful tool for them and that their input helps providing a better result.  



 

 

Architectural documentation is very important, especially when your project has to 

do with architecture evaluation. I experienced that in StarSense project that at first 

was the intension to follow. Because there was no documentation it was difficult for 

an outsider to get familiar with the architecture. Also here the method and tool can 

help, as it forces the architects to provide information on the architectural composi-

tion and usage model. Later on others can use the model to see which compositions 

were evaluated. 
 

On the more technical aspects, the lessons learned mainly have to do with the archi-

tecture specification, and that can be a great input also for architects. When you want 

to evaluate architecture, you have to be concrete and specific. By following the pro-

cess described in this project you manage to do that. System’s architecture can be 

huge. You have to break it into smaller pieces, by providing structures for the scenar-

ios that are provided from that architecture. Architecture evaluation is not only the 

composition you apply to a system, it is a whole process you need to follow.  

 

 

10.2.2.  Limitations 

 

Limitations when using the Palladio tool, and furthermore when using a methodology 

to evaluate an architecture candidate, has to do with minimum required complexity of 

the system you want to evaluate. Why is that? The more complex is the system the 

more dependency parameters you have, which is making simulation run really slow. 

You have to find the correct balance for that.  

 

Another limitation, also resulting from the above is that the more complex your sys-

tem, may contain multiple instances of a component. Basically, that means that you 

have to define everything hard coding in your model.  

 

Time limitations can be seen in Table 12. The values that are shown are for the ex-

ample used in chapter 9 that was used to validate the tool. It is a rather easy example 

from the perspective of complexity and modelling. Take into account that when im-

plementing the system in the tool, all information and specification were known. 

 

Table 12 – Time Limitation 
 

 

Features Time needed for implementing 

Creating components repository 30 minutes 

Creating Service specification 30 minutes  

Creating System model 30 minutes  

Creating resource environment 10 minutes 

Creating usage model 10 minutes. 

 

Table 12 shows the time needed for constructing different parts of an architecture and 

run a simple experiment. If you need to run another simulation, basically you need to 

change different parts, e.g. create more usage models or different composite struc-

tures or different services of each component, but that is something that cannot be 

defined. If multiple instances need to take part in the composite structure than a sim-

ple way to check the time needed is increasing the time spent on the repository mod-

elling and the system modelling with the number of the instances. Moreover, to it’s 

the complexity of the models that change also, connections lines are increasing since 

there is more connectivity between components, more ‘clicks’ are needed.  

 

To show the above in a simple example, a composite structure with 25 sensors, one 

controller, and 50 actuators, needs a lot more clicks in the construction and connect-

ing line between the components then one with only one instance of each component. 



 

 

10.3    Future work 
 

The need of tools to automate the process of creating the model that is are going to be 

evaluated. A small example for that is described in the previous sector. Plus, from the 

Limitation table above we understand that the more complex the model the more 

time it needs the model to be constructed.■ 





 
 

53 
 

11. Project Management 
 

 

Abstract – In this chapter an overview of the project management techniques used for 

this project is presented.  

11.1    Introduction 
 

The Project management strategy used mainly for this project was mainly based on 

Scrum. This approach is an agile methodology, consists of having close communica-

tion with the client. 

 

11.1.1.  Scrum approach  

Scrum has roles and events, to handle the project management. More explanation of 

these in Table 9 and 8. 

 

Table 13 – Scrum Roles 

 

Roles Description 

Product Owner  Accountable to represent the stakehold-

ers. 

Scrum Master  Accountable for removing impediments 

to the ability of the team to deliver the 

product goals and deliverables. 

Development Team Accountable for completing the work. 

 

Table 14 – Scrum Events 

 

Roles Description 

Daily Scrums  The daily scrum meetings is basically 

stand up meetings to discuss in short 

time(5-15 minutes) what took place the 

previous day and what will be the main 

actions for the current day. For this pro-

ject there were weekly meetings between 

Henk and Konstantinos and monthly pro-

gress meetings, where Tanir also partici-

pated.  

Planning Sessions  Meetings where the key points of what 

have been done to the project is discussed 

but also evaluated and there comes the 

planning for what should be the next 

steps. The planning sessions took place at 

the beginning of each sprint. Two events 

take place regards of Planning sessions. 

The one event is occurring concurrently 

every week, between Henk and Konstan-

tinos, and it is about what happened, if 

everything is on schedule and different 

problems that may arise. Furthermore, 

there will be also discussion for the goals 

of the coming week, what are the main 



 

 

targets to be full field during the next 

spring iteration. The second event of 

planning session is the work that needs to 

be done. By that we mean, the action 

points of a previous planning session 

should have come to the wanted state. 

Any problems arising should be 

acknowledged. This actions are done by 

Konstantinos, and have to do with the 

sprints results.  

Sprint Structure Each sprint has a duration of one month, 

and it categorized in four weeks (4 

scrums). There is a Week 0, implies that 

before each sprint probably planning 

should be done. On every weekly meet-

ing there will be discussed the progress 

that have been done, deliverable, if any, 

should be shown, and generally every 

little progress will be in the agenda. Henk 

(project owner) will have a clear view of 

what is going on with the project and will 

be able to determine the progress of the 

project and if what have been done con-

nects to the user stories discussed in the 

planning session. 

 

11.1.2.  Other events 

 
In general there are another two events that will take place towards my project. 

 

 Tu/e Progress Meeting: occurs every two weeks between the Tu/E supervi-

sor Tanir and Konstantinos. The discussion is mainly about the progress of 

the project, and more specific about the quality of the architecture and the 

documentation that should be delivered along with the product of the pro-

ject. 

 Progress Steering Group Meeting: occurs every last Friday of each month. 

In that meeting, every stakeholder towards this project can join, and discuss 

the progress of the project and give ideas and suggestions on how to contin-

ue.  

11.2    Work-Breakdown structure (WBS) 
 
The initial WBS for the project was done relatively early in the project, in order to be 

a guideline to follow. It was mainly an estimate, however, it gives insights on the 

time spent on the specific topics. Since it was an estimation, and knowledge of the 

domain and the project itself was limited, changes were expected to happen to this 

plan in later stages. The following Figure 30 shows the initial project planning that 

was made at an early stage of the project.  

 



 

 

 

Figure 30 – Project Plan 

 

11.3    Project planning and scheduling   
 
Scrum approach was followed mainly for this project, as section 11.1 describes. The 

project planning was divided in smaller sprints, in order to break the tasks in smaller 

and deal with them, towards finding the solution for the project. Sprints have the du-

ration of one month. Figure 31, shows an example of a monthly sprint structure. 

Clearly, 4 weeks of different tasks are showing.  

 

 
Figure 31 – Example monthly sprint 

 

As time went by, the tasks on each sprint became more concrete. First there was the 

need to research about the architecture evaluation and familiarize with the domain. 

Then choose a concrete approach to follow. Table 15 shows the major tasks per 

sprint iteration. 

 

Table 15 – Tasks per Sprint 

 

Sprint Tasks 

January Familiarize with Philips Lighting do-

main. 

Project Plan Outline. 

Analysis of the problem. 

Research. 

Document chapter 1. 

February Evaluate results from research. 



 

 

Gather requirements from architects. 

Make concrete approach for the project 

goal. 

Document chapter 2. 

March  Architecture outline. 

Design decisions. 

Decision of tool to implement solution. 

Document chapter 3. 

April Implementation. 

2 weeks of vacation. 

Document chapter 4. 

May Experiment with the tool. 

First results. 

June Architects involve to make a more specif-

ic model for testing. 

Document chapter 5. 

July Experimenting with the input from the 

architects, with different projects. 

Gather simulation results. 

Document chapter 6 and 7. 

August Evaluation of results. 

Documentation. 

September Delivery of project. 

Presentation for the defense. 

 

What can actually be seen from Table 15, is the process that guide to a result for the 

project. Starting with research, continue with evaluating that results from the re-

search. Experimenting and provide results to architects. Make them want to get more 

information about the tool and the approach. Make them sit and design and experi-

ment with you and later provide to them the results. 

 

Documentation, was also very crucial for the project. Since it is a 9-month project, 

everything needed to be documented at a proper time. In every sprint there were slots 

for writing what has been already implemented. However, by the end of the project 

documentation was given much more time.  

11.4    Conclusions 
 

The creation of a plan posed significant challenges in the beginning of the project. 

The reasons were the initial ambiguity of the project goals as well as the author’s 

limited domain knowledge. This made accurate estimations very hard. The initial 

plan was made in order to have a base for the project process and additional refine-

ment had to be done throughout the duration of the project. To conclude, important 

lessons were learned about the planning process and about the improvement of time 

and effort estimations while familiarity increases with the domain.■ 

 



 

 

12. Project Retrospective 
 

 

Abstract – In this chapter reflection towards the 9-month duration of the projects is 

made. Looking back to these period can actually see what proved to be good practic-

es; however, what could have done better. Moreover, the design competencies are 

revisited and their role on the outcome of the project is discussed. 

 

12.1    Good practices 
 

Knowledge and skills that were acquired during the OOTI program, were applicable 

during this project. From planning techniques, time management up to designing 

skills. The 9-month assignment at Philips lighting, was an experience that helped you 

use the knowledge obtained in an industry project.  

 

12.1.1.  Make a plan to follow 

 

Making a plan to follow for the very beginning of the project was a very good ap-

proach. For sure changes made as long as there was progress with the project; how-

ever, creating and follow a plan, makes you work easier, since there is a goal to reach 

at the end of each week, each month, etc. For me it worked really good, since the 

beginning was really tough since I had to learn a lot in the domain of Philips lighting, 

and by making a plan and following, working life became easier. 

 

12.1.2.  Contact company supervisors. 

 

Coming into the environment of Philips Lighting, there are a lot that need be learned 

and the fastest you can do it is better for the process of the project. For me the case 

was that my supervisor, was always easy to reach to discuss such issues, and also 

pointing people that were also ones that I should contact to get information. 

 

12.1.3.  Creating minutes 

 

Towards the 9 months there were lots of meetings that involved different people. 

Meetings that important decisions were made, meeting were requirements were dis-

cussed. For that purpose I found very crucial for the project and also for me, to create 

minutes of every meeting that took place regarding my project. It helped me resolve 

issues and conflicts, and also help people that were involved to keep track of what is 

happening to the project. 

 

12.2    Improvement points 
 
Now, that the project is finished, by looking back to how things happened and with 

the experience gained, reflection can be made of things that could have done differ-

ently. This section provides that reflection. 

 

 



 

 

12.2.1.  Communication with stakeholders 

 

In a project that a lot of people are involved there is the need for good and clear 

communication. Sometimes I achieved that while others I have not. I got that feeling 

also from the stakeholders, who sometimes were telling me we do not understand 

you, you have to be more concrete on what you are saying. What I would do better, 

plan more meetings, state more clearly what I am doing, which requirements are go-

ing to be implemented and which not.  

12.2.2.  Report issues  

 

Adding to the previous aspect, I would continue with reporting potential issues. To-

wards the process of finding solution for the project, there were potential issues that I 

was striving to solve alone, and not report them to anyone of the stakeholders. Some-

times I was succeeding and everything was good, other times I did not succeed. The 

latter one was causing delays, and stakeholders, due to the fact they haven’t been 

informed about the potential issues, were unhappy about it. I would definitely change 

that. I would informed better now about any issue, not only because they may cause 

delays, but also to get help with them.2■ 

12.3    Design opportunities revisited 
 

In Section 6.3 the design competencies that were deemed relevant to this project at 

the beginning of the project were described. At the end of the project, these compe-

tencies are revisited to determine their fulfillment. 

 

 Flexibility: The flexibility aspect, was proven, when implementing an archi-

tecture candidate and simulation run, and afterwards, changes on different 

layers of the candidate needed, in order to re-run simulation. That changes 

were adapted without any serious problems caused to the parts that were not 

changed. 

 Reusability: The reusability aspect was proven, when implementing differ-

ent architecture scenarios to evaluate candidates. Being able to reuse reposi-

tories, already existed, made the time constraints to reduce a lot when intro-

ducing a new candidate inside the tool. 

 Complexity: Complexity was one of the issues that needed to be tackled. 

This made it an important competency to keep in mind and use for the new 

design. Indeed, the use of Palladio assisted significantly towards the direc-

tion of reducing complexity, toughs making it simple and easy to use do-

main specific language to model the different aspects of an architecture can-

didate.   



 

 

Glossary 
 

Sensor A sensor is an object whose purpose is to detect motion events in a lighting system 

Controller  Gets input from a sensor, that either motion is detected or not. According to that 

sends message to actuator. 

Actuator Represent the output of the lighting system. 

LM-IP  A lighting system implemented by Philips Lighting. Its architecture used to exper-

iment towards this project. 

SA Software Architect 

SAE Software Architect evaluation 

SEFF Service Effect Specification, related to components behavior. 

Scrum An iterative and incremental agile software development framework for managing 

software projects and product or application development.  
OOTI  Onwerpersopleiding Technische Informatica  

PSO  Partial swarm optimization  

SBRA Software Based reliability architecture 

 

 





 

 

Bibliography 

References 
Cockburn, Alistair, Agile Software Development. Cockburn, Alistair and Highsmith, 

James A. (Eds.), The Agile Software Development Series. Boston: Addison-Wesley, 

2002. (0-201-69969-9) 

 

Day, George S., Schoemaker, Paul J.H., and Gunther, Robert E., Wharton on Manag-

ing Emerging Technologies. New York: John Wiley and Sons, Inc., 2000. (0-471-

36121-6) 

 

Highsmith, James. A., Adaptive Software Development: A Collaborative Approach 

to Managing Complex Systems. New York: Dorset House Publishing, 2000. (0-

932633-40-4) 

 

Kerth, Norman L., Project Retrospectives: A Handbook for Team Reviews. New 

York: Dorset House Publishing, 2001. (0-932633-44-7) 

 

Additional Reading 
Kelley, Tom, The Art of Innovation. New York: Doubleday, 2001. (0-385-499984) 

 

Adil A. Aziz, Wan M. N. Wan Kadir, A. Yousif, An Architecture-based Approach to 

Support Alternative Design Decision in Component-Based System: A Case Study 

from Information System Domain. International Journal of Advanced Science and 

Technology Vol. 38, January, 2012 

 

V. Firus, S. Becker, Towards Performance Evaluation of Component Based Software 

Architectures. FESCA 2004 Short Paper 

 

Koziolek, Heiko. Performance evaluation of component-based software systems: A 

survey. Ladenburg, Germany, 2009. 

 

S. M. Yacoub, B. Cukic, H. H. Ammar, Scenario-Based Reliability Analysis of 

Component-Based Software.  

 

William W. Everett, Software component reliability analysis.  

 

K. G. Popstojanova, and K. TRIVEDI, Architecture based software reliability. 

 

F. Brosch, Integrated Software Architecture-Based Reliability Prediction for IT Sys-

tems. 

 

A. L. GOEL, Software Reliability Models: Assumptions, Limitations, and Applica-

bility 

 

 





 

 

About the Author 

  

Konstantinos Filippidis received his Diploma in Infor-

mation and Communication Systems Engineering from 

the Aegean University, Greece in June 2012. During his 

studies he specialized in Software Technology, Systems 

Architecture Design and Analysis. His diploma thesis is 

titled “Design and Implementation of Behavioral-Driven 

games for modern mobile platforms”. The goal was to 

create a cognitive Android App employing machine-

learning algorithms to interactively adapt to the user gam-

ing expertise, thus offering a more realistic and exciting 

game experience. In 2013 he joined the two-year PDEng 

Software Technology program of the Eindhoven Univer-

sity of Technology. 

  

 



 


