645 research outputs found

    5G-PPP Software Network Working Group:Network Applications: Opening up 5G and beyond networks 5G-PPP projects analysis, Version 2

    Get PDF
    It is expected that the communication fabric and the way network services are consumed will evolve towards 6G, building on and extending capabilities of 5G and Beyond networks. Service APIs, Operation APIs, Network APIs are different aspects of the network exposure, which provides the communication service providers a way to monetize the network capabilities. Allowing the developer community to use network capabilities via APIs is an emerging area for network monetization. Thus, it is important that network exposure caters for the needs of developers serving different markets, e.g., different vertical industry segments. The concept of “Network Applications” is introduced following this idea. It is defined as a set of services that provides certain functionalities to verticals and their associated use cases. The Network Applications is more than the introduction of new vertical applications that have interaction capabilities. It refers to the need for a separate middleware layer to simplify the implementation and deployment of vertical systems on a large scale. Specifically, third parties or network operators can contribute to Network Applications, depending on the level of interaction and trust. In practice, a Network Application uses the exposed APIs from the network and can either be integrated with (part of) a vertical application or expose its APIs (e.g., service APIs) for further consumption by vertical applications. This paper builds on the findings of the white paper released in 2022. It targets to go into details about the implementations of the two major Network Applications class: “aaS” and hybrid models. It introduces the Network Applications marketplace and put the light on technological solution like CAMARA project, as part of the standard landscape. <br/

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    A unifying orchestration operating platform for 5G

    Get PDF
    5G will revolutionize the way ICT and Telecommunications infrastructures work. Indeed, businesses can greatly benefit from innovation introduced by 5G and exploit the new deep integration between ICT and networking capabilities to generate new value-added services. Although a plethora of solutions for virtual resources and infrastructures management and orchestration already exists (e.g., OpenDaylight, ONOS, OpenStack, Apache Mesos, Open Source MANO, Docker Swarm, LXD/LXC, etc.), they are still not properly integrated to match the 5G requirements. In this paper, we present the 5G Operating Platform (5G-OP) which has been conceived to fill in this gap and integrate management, control and orchestration of computing, storage and networking resources down to the end-user devices and terminals (e.g., smart phone, machines, robots, drones, autonomous vehicles, etc.). The 5G-OP is an overarching framework capable to provide agnostic interfaces and a universal set of abstractions in order to implement seamless 5G infrastructure control and orchestration. The functional structure of the 5G-OP, including the horizontal and vertical interworking of functions in it, has been designed to allow Network Operators and Service Providers to exploit diverse roles and business strategies. Moreover, the functional decoupling of the 5G-OP from the underneath management, control and orchestration solutions allows pursuing faster innovation cycles, being ready for the emergence of new service models

    Semi-automated creation of converged iTV services: From macromedia director simulations to services ready for broadcast

    Get PDF
    While sound and video may capture viewers’ attention, interaction can captivate them. This has not been available prior to the advent of Digital Television. In fact, what lies at the heart of the Digital Television revolution is this new type of interactive content, offered in the form of interactive Television (iTV) services. On top of that, the new world of converged networks has created a demand for a new type of converged services on a range of mobile terminals (Tablet PCs, PDAs and mobile phones). This paper aims at presenting a new approach to service creation that allows for the semi-automatic translation of simulations and rapid prototypes created in the accessible desktop multimedia authoring package Macromedia Director into services ready for broadcast. This is achieved by a series of tools that de-skill and speed-up the process of creating digital TV user interfaces (UI) and applications for mobile terminals. The benefits of rapid prototyping are essential for the production of these new types of services, and are therefore discussed in the first section of this paper. In the following sections, an overview of the operation of content, service, creation and management sub-systems is presented, which illustrates why these tools compose an important and integral part of a system responsible of creating, delivering and managing converged broadcast and telecommunications services. The next section examines a number of metadata languages candidates for describing the iTV services user interface and the schema language adopted in this project. A detailed description of the operation of the two tools is provided to offer an insight of how they can be used to de-skill and speed-up the process of creating digital TV user interfaces and applications for mobile terminals. Finally, representative broadcast oriented and telecommunication oriented converged service components are also introduced, demonstrating how these tools have been used to generate different types of services

    Container ecosystem based PaaS solution for Telco Cloud Analysis and Proposal

    Get PDF
    Telco over Cloud, Network Function Virtualization andSoftware Defined Networking are changing thetelecommunications industry landscape, morespecifically in the Telco Service Providers networkinfrastructure and systems, by introducing cloudcomputing, virtualization paradigms and softwareapproaches which are already in use and mature intraditional IT environments.This paper introduces the current telco cloud landscapeand latest developments. It subsequently proposes acontainer based telco app orchestration mechanism.The shift of the telco cloud landscape towardscontainers is imperative as the traditional VM basedNFV and SDN solutions are running into scalabilityand performance problems and have an impact ondelivery speed and efficient resource utilization.In the solution we have derived in our lab uses a clustercontainer orchestration mechanism using ApacheMesos. A custom framework is developed to handle theTelco specific (NFV) capabilities on top of thetraditional containers. This novel approach will helptelcos to provision tons of containers in a span of shortduration adhering to the QoS Requirements of theindustry

    The digital challenge for multinational mobile network operators. More marginalization or rejuvenation?

    Get PDF
    Multinational mobile network operators (MNOs) rapidly emerged in the early 1990s and for a decade and a half were the dominant actors in their industry. We analyze the development and competitiveness of a typical MNO, Telenor. With the introduction of 4G in 2010, we show that Telenor, like other MNOs largely failed to respond to the opportunity that connectivity provided to develop digital services. Instead, these were developed by technology platform companies such as Amazon, Google and Microsoft. Telenor became a marginalized supplier of standardized internet connectivity. We argue that the ‘decade of lost opportunity’ (2010-2020) for Telenor was a product of a lack of ‘recombinant firm-specific advantages’ (FSARs). With the launch of 5G, an emerging global digital infrastructure, this sidelining is set to intensify unless Telenor responds to this new opportunity by developing B2B digital services. We analyze the FSARs that are necessary for a successful transition of capturing the value that 5G provides and the degree to which they are present, or potentially present, in Telenor
    • 

    corecore