
A Vision for the Next Generation

Platform-as-a-Service
Steven Van Rossem1, Bessem Sayadi2, Laurent Roullet2, Angelos Mimidis3, Michele Paolino4, Paul Veitch5,

Bela Berde2, Ignacio Labrador6, Aurora Ramos6, Wouter Tavernier1, Eder Ollora3 and Jose Soler3.
1Ghent University-imec, 2Nokia Bell-Labs France, 3DTU Fotonik, 4Virtual Open Systems, 5BT, 6ATOS

Abstract—In an increasingly interconnected world, new

opportunities for telecom-based services are emerging.

Innovative applications profit from cloud versatility and

scalability, but require a platform to combine the optimized 5G

network fabric with the advancements in the domain of cloud

computing, Software Defined Networking (SDN) and Network

Function Virtualization (NFV). In this multi-domain context, we

find that available service platforms are lagging, because they

tend to be tightly coupled to a constrained set of technologies. In

practice, we need the flexibility to deploy different microservices

over a heterogeneous range of infrastructure types, aggregating

various virtualization, orchestration and control mechanisms.

Moreover, the integration of the service requires collaboration

among a wide mix of actors (e.g. developers, operators,

hardware/software vendors, infrastructure/service providers or

vertical integrators). We propose a next-generation Platform-as-

a-Service (NGPaaS), devised as a modular framework for the

development and operation of network services, while targeting a

high degree of both customization and automation. The

presented architecture is built around a workflow-based

orchestrator which coordinates custom-built tasks across a

tailored group of specialized infrastructure or platforms. We also

explain how NGPaaS enhances DevOps-principles, to achieve a

more efficient integration process across the many isolated

administrative domains in the modern telco landscape.

Keywords—NFV; SDN; 5G; PaaS Architecture; DevOps; Dev-

for-Operations

I. INTRODUCTION

We consider the Platform-as-a-Service (PaaS) to be a

cloud-based environment to support the complete lifecycle of a

service, from design to operation and support. By using the

PaaS, the service developer or provider can focus directly on

the core features of the application. Many auxiliary functions

are automated by the PaaS such as service monitoring, scaling,

fault mitigation and infrastructure configuration, which

alleviate the development and maintenance effort. In a 5G-

enabled telecom context however, the notions of ‘clouds’ and

‘cloud-based applications’ require an upgraded viewpoint [1].

A traditional cloud application comprehends a client-server

setup where the server-side consists of multi-tier setups

involving one or more instances of a web-, application- and/or

database server which are deployed over one or more

datacenters. In a telco-based context, the ‘cloud’ is expanded

with many more operational domains, apps or Virtual Network

Functions (VNFs), optimized for pure packet-processing rather

than end-user application functionality. New possible target

infrastructures to deploy the VNFs are geographically spread

across local, edge, access and core networks, allowing e.g.

shorter latencies through edge computing, closer to the end-

user. From a technical perspective, the drawback is that telco-

based services now need to adapt to a wider infrastructure

variety (hardware configurations, processor types, operating

systems and network/compute configurations, to name just a

few), including a large variety of end-point apparatus (from

mobile devices over set top boxes to sensors or even self-

driving cars). Business-wise, this implies a collaborative

ecosystem between many different actors (private/public

infrastructure providers, external platform providers, vendors

or developers) including challenges regarding security or

licensing. An additional goal of the PaaS is to break the silos

between the service creation and operation process across the

multiple actors with their own operational and administrative

domains using an improved telco-grade DevOps approach that

we refer to as Dev-for-Operations.

The envisioned PaaS must support a very agile service

deployment to fully exploit network softwarization, resource

virtualization and network programmability. This requires a

wide range of virtualization, orchestration and control

mechanisms, across many distributed environments. We

therefore split up the required PaaS functionality and

implement it following a modular or microservice-based

approach. The consequences of this design are intuitively

sketched in Fig. 1, where the left side depicts the characteristics

of a slow manual service deployment on rigid hardware-based

middleboxes, meaning high capital expenditure (capex). To the

right side of Fig. 1, fast automated orchestration and

configuration of VNFs is illustrated, enabled by NFV and SDN

technologies. By decomposing the functionality, a microservice

architecture creates better efficiency, productivity, stability,

scalability and thus lowers the operational expenses (opex) [2].

The optimal PaaS design is however a trade-off, because too

fine-grained flexibility will induce again extra complexity, as

well as communication, deployment and testing overhead.

High PaaS modularity avoids vendor or technology lock-in, but

might have a negative effect on time-to-market, cost or

operational performance. To mitigate this, the PaaS must find

the right balance between custom-developed service support,

which demands a longer development time, and sub-optimal

generic operation features which are faster to integrate. The

next-generation PaaS (NGPaaS) keeps this in mind by offering

a modular framework which allows the plugging in of

specialized functionality and the reuse of existing tools.

In section II we sketch the challenges to unite different

PaaS implementations which each have their own specialized

characteristics. Section III analyzes the related work in existing

high modularity/microservice based
high level of virtualization

implementation characteristics

Capex + Lock-in
(vendor, technology)

Time-to-market

testing,
communication
overhead

cost (dev, deployment, opex)

optimal PaaS
configuration

default PaaS features
monolithic, hardware-based

Fig. 1. The PaaS architecture is microservice-based, where the right design

achieves the optimal trade-off.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/159846714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

orchestration frameworks and microservice architectures, while

section IV explains in detail our proposed architecture which

operates multiple specialized PaaS in parallel. Section V

highlights the transformation to a multi-PaaS DevOps

methodology which we call Dev-for-Operations. In Section VI,

a comparison with the ETSI NFV MANO reference

architecture is made [3].

II. REQUIREMENTS AND CHALLENGES FOR

A BUILD-TO-ORDER PAAS

In the diverse and scattered telecom landscape, there is no

one-size-fits-all solution to support the very wide range of 5G,

Telco or IoT related services with one single PaaS. We propose

a model of multiple specialized PaaS implementations, each

targeted at selected virtualization technologies or infrastructure

types (e.g. hardware acceleration, edge computing or network

control). Moreover, each PaaS can be enhanced with unique

features related to telemetry, high availability, autoscaling or

SDK toolsets. In Table I, we exemplify three possible PaaS

domains with specialized capabilities and supported services.

TABLE I. EXAMPLE PAAS TYPES AND SUPPORTED SERVICES

PaaS type
Telco

(fixed access)

5G

(mobile access)
IoT

PaaS

capabilities

-high resiliency

-high security,

isolation
-datacenter control

-EPC functionality

-flexible network
control

-RAN control

-exploit edge compute

-support many access

network types, devices
and protocols

Service

examples

-deploy vCDN

-deploy vCPE,

firewall

-subscribe to a
mobile network

-mobile

connectivity
(voice, data)

-connect a sensor
network to a cloud

gateway

-collect and process
sensor metering

Each unique PaaS, like the ones given in the columns of

Table I, is generally supporting three main operations to deploy

specialized services:

 Build a service: Next to the functional implementation, a

dedicated runnable component or descriptor is created to

exactly define and reproduce the service functionality. A

specialized toolset (SDK) can assist. This results in a

unique DevOps mechanism per PaaS.

 Ship a service for deployment: Using a selected

virtualization technique, the created service is packaged

and onboarded in the PaaS for deployment. A dedicated

repository with versioning control can assist.

 Run a service: To deploy and operate the shipped

service, the correct configuration and operation

workflows must be executed in the associated runtime

environment.

Taking the trade-offs of Fig. 1 into account, a compromise
is achieved by deploying different PaaS types in parallel and
thus enlarging the total set of capabilities. By decomposing
existing PaaS implementations we can restructure them using a
build-to-order principle. A single PaaS is designed once, built
out of microservices which can be reused and combined
multiple times thereafter. This is illustrated in Fig. 2, where the
NGPaaS is in fact a multi-PaaS environment, offering the
necessary ‘glue’ logic for service development and operation
across the different actors in this model. In the next sections we
dive deeper into the technical implementation of such a
modular framework and how it differs from existing platforms.

A. The Multi-Sided Platform

Classic cloud-based service providers tend to have a linear
value chain: A fixed and closed set of infrastructure nodes is
leased, then specialized software is installed on it and its usage
is resold under a different license. The NGPaaS must grow
beyond an integrated suite of software products and become
the enabler of an open eco-system where the interactions
between vendors, developers, service providers and end-
customers create added value. Modern cloud-based services are
often built around a platform-like business model. In industrial
economics, platforms refer to a disruptive organizational
phenomenon [4]: the platform organization, which is a ‘new
type of firm’, has a business model that creates value by
facilitating exchanges between two or more interdependent
groups, usually consumers and producers. One can think about
businesses (e.g. Uber, Ebay, Facebook) that offer an online
portal where users, cf. sellers or buyers, can interact and
generate added value themselves, producing interesting user
data to optionally analyze and resell for marketing purposes.
With the advent of omnipresent connectivity, these ecosystems
enable platforms to scale in ways that traditional businesses
cannot. The proposed NGPaaS architecture needs to be
designed with this valuable business model in mind. We revisit
this in section IV, where the multi-sided platform concept is
integrated into our architecture.

B. Specialized Operational Domains

To support a diverse range of PaaS capabilities such as

given in Table I, requires integration of a great mix of

operational domains, managed by a dedicated PaaS. Various

virtualization technologies can be chosen, each with specific

characteristics such as virtual machines for extra isolation,

containers for enhanced modularity and fast deployment or

unikernels for light-weight isolation and quick instantiation.

Specialized examples include power-efficient ARM processors

or latency sensitive functions running at edge compute nodes

or the Radio Access Network (RAN). Existing third-party

services can be integrated into a dedicated PaaS. This includes

capabilities such as: a public web portal, data storage, big data

processing or high availability and load-balancing mechanisms.

Specialized PaaS platforms can leverage on FPGA hardware

Access networks:
-Micro data centers
-Edge compute nodes

Home/Enterprise networks:
-Customer Premises
Equipment (CPE)
-Private clouds
-IoT sensors

Core network:
-Large data centers
-Public clouds

• Infrastructure provider
• Network operator
• Service provider

Business-as-a-Service (BaaS)

Dev-for-Operations

Next-Generation PaaS

• Developers
• Vendors
• End-customers

• Third-party cloud services
• OTT content providers
• Data center operators

Specialized PaaS

o
p

e
ra

ti
o

n
al

 d
o

m
ai

n
s

Actors/ Roles

Specialized PaaS Specialized PaaS…

C
o

re

n
et

w
o

rk
s

(Telco)
Fixed

Access

(5G) IoT
Edge

(5G)
Mobile
Access

Fig. 2. The next-generation PaaS eco-system unites different actors and

combines multiple specialized PaaS domains into a unified operational
environment accros many infrastructure types.

accelerators for virtual machines (VMs), containers and

unikernels thanks to specific FPGA virtualization technologies

[5]. Some examples are introduced in the next paragraphs.

Acceleration can be extensively applied in the Automotive

domain. A particular PaaS can integrate the concept of

Vehicle-As-Infrastructure, which considers vehicles (such as

cars, motorbikes, etc.) as nodes of the infrastructure in which

VNFs can be executed. The hardware capability of today’s

vehicles is continuously growing, to the point where they can

execute multiple virtual machines, accelerated through FPGAs

or GPUs. In such a scenario, the PaaS can orchestrate functions

to be executed in the vehicles, or the vehicles themselves could

also be able to migrate workloads to the network infrastructure.

FPGA virtualization (together with ARMv8 and Intel support)

is very important in this scenario, both to offload and accelerate

critical vehicle functionality (e.g. autonomous driving and

recognition of pedestrians or signals).

Combining multiple specialized PaaS domains also requires

control over the network infrastructure (both physical and

virtual). Following the SDN paradigm, SDN controllers

(SDNC) can enable a highly dynamic and programmable

network control. However, due to the multi-PaaS characteristic

of the proposed architecture, a “single controller fits all”

approach is not viable. To that end, we envision the ability to

build and instantiate a build-to-order SDNC, which meets the

requirements of a specific PaaS. Current SDNCs, like ONOS

and OpenDayLight (ODL), already offer similar levels of

functionality, which the NGPaaS can effectively reuse and

extend when necessary. For example the ONOS controller can

be packaged and configured with a specific set of features.

These features can vary from device specific drivers (e.g.

support for different OpenFlow pipelines), to protocol specific

drivers (e.g. OpenFlow, P4 and NETCONF) and even high

level network applications (e.g. firewalls and mobility support).

The different PaaS types presented in Table I (Telco, 5G, IoT),

might have very different requirements for their network

infrastructure, hence the build-to-order function of a PaaS can

take a custom SDNC into account.

In Table II, we list some examples of how to build a PaaS,

combining available technologies as described above to

implement the earlier explained build-ship-run operations.

Each row in this table is a possible PaaS, which can be

deployed using the build-to-order principle. The optimal PaaS

implementations are chosen (e.g. from Table II) to meet the

overall capabilities (e.g. required in Table I). This is a first step

towards the practical implementation of the NGPaaS proposed

in Fig. 2.

III. RELATED WORK

Many existing platforms attempt to offer a growing set of
capabilities. Commercial over-the-top (OTT) platform
providers tend to implement their proprietary control and
operation mechanisms which only apply to their own data
center pool. This complicates the implementation of a hybrid
solution where multiple private and public infrastructures must
be united. This is tackled by several 5G related research
projects. They aim to enable multi-domain orchestration across
multiple administrations. One solution is imposing a specific
model to the infrastructure domains for abstracting available

TABLE II. EXAMPLES OF PAAS IMPLEMENTATIONS

Service Type and

Descriptor

Shipping format

and repository
Execution Environment

VM creation scripts

(Packer, Vagrant)
Service descriptor using

VMs as VNFs

(HEAT, TOSCA, ETSI
descriptor, JuJu)

VM images stored in

service catalog

(JuJu Charms Store,
VNF marketplace,

OpenStack Glance)

CORD, ONAP, OSM,
SONATA Service Platform,

KVM, VirtualBox, MANO

platforms, OpenStack

Container descriptors
(Dockerfile, Docker

compose, Kubernetes API

object, Mesos Task)

Container image

stored in
private/public

container registry

(Docker Hub,
Shipyard)

Kubernetes, Mesos, Docker

Engine, Docker Swarm, LXC,
Rkt, Open Container

Unikernel (OCaml, source
code, Click script)

Rumpkernel,
MirageOS library,

ClickOS images

Modified (Xen) hypervisor,
KVM

Accelerators (VHDL,
Verilog, DPDK, SR-IOV)

FPGA bitstream,

DPDK app, kernel

modules

Tweaked x86 platform
(hypervisor, scheduler,

CPU/Cache/BIOS/kernel

optimizations), FPGA
platform

SDN network control

(custom OpenFlow rules,
NETCONF, P4)

SDN app repository

(ONOS, ODL
applications)

SDNC (ONOS, ODL),

virtual/white-box switches

App source code (C/C++,

Java)

Compiled app in

App Store
ARM / Android / IoT platform

resources to a common orchestrator (5GEx [6]). Another
approach is a federated orchestration, where each resource slice
has its own orchestrator (5G-NORMA [7]). However, both
projects share however the need for an orchestration function
which is tightly coupled to the targeted infrastructure domains.
A possible solution for including service-specific, customizable
logic into the orchestration system is proposed in SONATA
[8]. Any service deployed by the SONATA platform can
plugin custom-built managers into the orchestration
framework. This allows the execution of dedicated placement,
configuration or scaling functionalities. But this solution still
needs custom adapters for every infrastructure domain or
technology. Orchestration protocols or abstraction models need
to be defined and standardized before a wide adoption can take
place. This limits the flexibility of the platform to quickly
integrate third-party operational domains with new capabilities.

Project Superfluidity [9] defines an abstraction model for
various flavours of technology components, either generic
software (e.g. VM, containers) or specialized software (e.g.
unikernels) as well as generic hardware (e.g. x86 servers,
white-box switches) or specialized hardware (e.g. GPU,
FPGA). This model allows deploying and operating hybrid
services in a uniform way, allowing abstraction from their
execution environments. This is an important step towards a
generic orchestration function.

Several industry-driven consortia such as OSM [10] are

building a software stack aligned with ETSI NFV Management

and Orchestration (MANO) specifications [3]. This includes

multiple dedicated Virtual Infrastructure Managers (VIMs)

such as OpenStack, OpenVIM, VMWare or AWS. ONAP [11]

is also extending the ETSI NFV MANO architecture with

additional telco-grade features. ONAP includes Controllers for

various types of infrastructure including network control (using

SDN or NETCONF based protocols). ONAP’s Policy

Subsystem enables the definition of a set of custom rules that

underlie ONAP’s control, orchestration, and management

functions. This subsystem, as explained in [11], implies

however that the total set of supported policy rules and their

execution is embedded into ONAP and is not easily modifiable

in function of the required PaaS capabilities.

A specialized service runtime environment is the Central

Office Re-architected as a Datacenter (CORD) project [12],

which provides a virtualized public exchange (central office),

architected using datacenter principles. This allows

telecommunication providers to run novel connectivity services

as VNFs on top of commodity hardware. Using the

terminology of the ETSI NFV MANO architecture [3],

CORD’s main functional blocks are a VNF manager (XOS)

and two VIMs (OpenStack and ONOS). CORD is designed

using tight coupling between its different functional elements

(e.g. between XOS and ONOS), which makes it less flexible to

update or plugin new components. But it can be seen as the

execution environment for a specialized telco-grade PaaS.

A unique approach to the integration of services on multiple

infrastructure domains is done by OPNFV [13]. Through

system level integration, deployment and testing, OPNFV

creates an ecosystem for NFV solutions. Any participant can

bring its own execution environment to the platform (such as

ETSI NFV platforms or infrastructure managers). This is used

to deploy NFV-based services, brought to the platform by other

suppliers. The OPNFV framework links those two parties by

installing a Continuous Integration and Development (CI/CD)

workflow where the deployment of the services on the

execution environments is continually validated across updates.

This resembles the workings of an automation server (such as

Jenkins), but now expanded to an NFV-based eco-system.

Generic execution of workflows, such as implemented in

Mistral [14], can mean a valuable enhancement of the

orchestration mechanism. Specialized workflows can execute

non-default actions related to the service lifecycle, such as a

custom update procedure. The added value of using workflow

engines in NFV MANO frameworks is also described in [15].

IV. THE MULTI-PAAS PLATFORM

We have introduced the next-generation PaaS as a

configurable multi-PaaS environment, tailored to business-

defined capabilities. To this end, we foresee a modular

framework to easily integrate available third-party services and

platforms. To enable a quick time-to-market, we adopt the

model proposed by the cloud computing industry consisting of

a Business, Platform and Infrastructure layer. This ensures that

the whole system remains compatible with modern cloud-based

IaaS (Infrastructure-as-a-Service) providers.

A. Roles in an NFV-enabled ecosystem

From a business perspective, we define the role of NGPaaS

Operator as the actor who defines and controls the overall

platform for uniting other actors as depicted in Fig. 2. The

NGPaaS Operator deploys multiple specialized PaaS at the

disposal of Vertical Service Providers. The NGPaaS also

attracts Software Vendors who can supply their own PaaS or

service components to the NGPaaS Operator. In the

operational phase, the Vertical Service Providers will request

the NGPaaS Operator to deploy a set of available services. The

Service End-Users will affiliate with the Vertical Service

Provider to get access to the deployed services.

The different architectural blocks and the related roles

concerning the NGPaaS are illustrated in Fig. 3. On top sits the

Business Layer, where all business-related affiliations take

place. After registration, the NGPaaS Operator makes the

platform functionality available, constrained by regulated

access and license management. In the next sections, we will

further detail the underlying operational layers.

B. From B/OSS to Business-as-a-Service (BaaS)

In the on top layers, the BSS/OSS model is revisited and re-

modeled into BaaS (Business-as-a-Service), a flexible group of

available PaaS and services, adapted to the business

requirements. Via the interface at ❶ in Fig. 3, IaaS providers

can register their available resources and related costs into an

Infrastructure Registry. From here, a resource pool can be

defined that fits into the policy rules (cost-budget and

performance requirements) of the business use-case. To

promote the usage of its infrastructure, it is in the interest of the

IaaS provider to have a dedicated adapter or API available to

automate resource provisioning and monitor the status.

Dedicated policy rules and alarms processed by the Conflict

resolution, can steer the IaaS management to dynamically

scale in/out resources according to the PaaS demand. Available

open-source tools which (partly) implement this are e.g.

Manage IQ, mist.io or Scalr. The actual NGPaaS operation

starts from high-level functionality templates, called

Blueprints, which are decomposed into deployable components

and mapped to available infrastructure resources. The core

functionality can be summarized as a twofold orchestration

mechanism (given in Fig. 3-step ❷):

1) PaaS to IaaS orchestration: A specialized PaaS

(described by a PaaS Blueprint) is deployed on an initial

set of infrastructure resources. . Once a PaaS is up and

running, services can be deployed on it.

2) Service to PaaS orchestration: After one or more PaaS

are available in the Platform Layer, requested services are

orchestrated to a supporting PaaS. The actual deployment

and operation of the service is then delegated to the PaaS.

As shown at ❸ in Fig. 3, the Vertical Service Provider can

request services from the NGPaaS Operator to meet its

business requirements. In addition, the limits defined in the

Service-Level-Agreement (SLA) and the cost-budget are taken

into account in the policy definition: each deployed PaaS can

impose its own policy rules and boundaries in which IaaS

resources should be allocated to the services. The Service

Blueprint, contains all further information to initiate phase two

of the above described orchestration mechanism (e.g. VNF or

microservice images and scripts).

C. Workflow-driven Orchestration & Operation

The Blueprint execution in step ❷ boils down to linking

each Blueprint to a set of workflows which do the actual

deployment and configuration. A generic implementation is

supported by following functions:

 Blueprint Catalog: contains the needed workflow
descriptors and deployment artifacts for the PaaS and
services (e.g. VNF or microservice images, install and
configuration scripts).

 PaaS and Service Records: contain the dynamically
configured parameters, exposed after instantiation of the
PaaS or service (e.g. IP addresses, TCP port numbers,
resource allocations, access tokens, instance UUIDs).

 Service Decompose and Mapping Engine: looks up the
available decompositions of the requested PaaS or service
so the decomposed functional blocks can be mapped to the
supporting IaaS or PaaS.

 Workflow Execution: arranges that workflows are
orchestrated to the correct IaaS, PaaS and execution engine.

Possible workflow execution engines are given in Table III,

which also proposes a model to identify workflow scripts by

several attributes. The requested PaaS and services are

decomposed into deployable artifacts which can be mapped to

the associated workflows by this model. The optional

input/output parameters should be processed accordingly.

TABLE III. WORKFLOW MODEL

Input parameters Attributes
Workflow

Execution
Output

-Query from
Records

-IP, ports

-Credentials
-Image name

-Allocated

resources
-Template fill

(Jinja, …)

-Target PaaS,
IaaS

-API version

-VNF type
-Action type

(instantiation/

config/update
/scale/query)

-Ansible
-Chef

-Puppet

-Mistral
-Infrakit

-Vagrant, Packer

-Terraform
-cloud-init

-bash scripts

Receive reply after

updating:
-Records

-PaaS/IaaS resources

-VNFs
Parse the output

(regex, translate error

to alarm)

Existing service descriptors, e.g. based on the ETSI NFV

model used in OSM [17], allow only simple key/value pairs

given at deployment time to configure a VNF. More advanced

configuration scripts, e.g. for service chaining or scaling,

require that configuration information is queried from the

available records or is parsed from the output of previously

executed workflows.

D. Customized Operation & Control Features

The BaaS layer supports the execution of multi-PaaS

operation and control functions, as given in Fig. 3-❹. This is

a sub-framework where custom-built functions can be plugged

in for operational support across PaaS environments. Some

operational functionalities cannot be poured into a one-shot

executing workflow. Typical features include continuous

monitoring, data analysis for fault mitigation, steering VNF

updates across PaaS environments for high availability or

alarm and log processing for multi-PaaS services. One practical

approach can be to run them as containerized processes.

V. FROM “DEVOPS” TO “DEV-FOR-OPERATIONS”

To enable an open interaction between the different actors,

our architecture is expanded with a so-called Dev-for-

Operations layer. This layer provides platform and service

development functionality, closely coupled to the operational

PaaS. The DevOps methodology originated in the IT industry

to realize a closer and faster collaboration between

development and operation teams, within a single organization.

The NGPaaS framework aims to extend this ‘in-house’

feedback flow to a wider, telco-grade context (e.g. multi-

vendor, multi-operator) across scattered administrated domains

[16]. Adapting to the telco eco-system, the NGPaaS Operator

needs to collaborate with multiple Software Vendors. The main

feature of the Dev-for-Operations layer is here to ease the

onboarding of new or updated software components in the

NGPaaS framework. This process has different stages, as seen

in Fig. 3-❺:

 A custom BaaS Layer can be deployed in a local staging
environment. This way, third-party vendors and developers
can design and validate services, closely coupled with the
actual operational PaaS environment, because the same
orchestration workflows can be tested on a local
infrastructure.

 A vendor can upload any new or updated service or PaaS
components to the NGPaaS Operator via the Dev-for-
Operations layer. A CI/CD-as-a-Service mechanism
automatically executes unit and integration tests. Only after
successful validation, the component can be included in a
Blueprint.

 Each external vendor can be granted access to an own,
personalized slice or subset of the Dev-for-Operations
Layer. This layer can be tailored to each Vendor, with
custom access and execution rights to monitor, debug or
profile a specific service or PaaS component while it is
deployed in the operational environment.

Using the described Dev-for-Operations tools, the NGPaaS

Operator can source components from various vendors and

Compute/Storage/Network
IaaS

Compute/Storage/Network
IaaS

IaaS
Business

Layer

…
Multi-PaaS
Platform Layer

BaaS Layer

IaaS registration
Vendor registration
Vertical Service Provider registration

multi-PaaS Service operation & control functions

(Continuous Monitoring, Fault Mitigation,…)

Business Layer

Dev-for-Operations Layer

 BSS-related functions
(Affiliation, Access Control , License Management)

Business Use-Case Services:
- End-User Billing
- End-User mgmt.
- End-User consumable services
- Service operation & control

-PaaS/Service decompositions
-PaaS components, VNF images
-PaaS to IaaS deployment workflows
-Service to PaaS deployment workflows

Blueprint
Catalogs:

Policy definition

Service
Blueprints

Dev-for-Operations functions

Blueprint Execution
-orchestrate PaaS to IaaS
-orchestrate Service to PaaS
-deploy Dev-for-Operations

-CI/CD
-Vendor Specific Monitoring (eg. dashboard, performance profiling)

infrastr. registry

Conflict resolution

Build - Develop

MANO (NFVO, VNFM, VIM)

Ship - Package

PaaS n (with MANO framework)

Build - Develop

Run - Operations

Ship - Package

PaaS 2
Build - Develop

Run - Operations

Ship - Package

PaaS 1

I

Ia
aS

A

d
ap

to
rs

Ia
aS

 m
gm

t

Ia
aS

M

o
n

it
o

ri
n

g

Infrastructure
Providers

Vertical
Service
Providers

SW
Vendors

N
G

P
a

a
S O

p
era

to
r

: customizable content
(per use-case)

Legend:

: provided PaaS/IaaS
domain

: role definition

: business-wise affiliation

FPGA ARM

(extended) hypervisors

Specialized Infrastructure COTS
RANVehicle IoT sensors

Containers
Performance

tweaks

VMUnikernel
virtual / white-box switches

SoC GPU x86/x64TCAM

FPGA bitstreamcode / modules/ libs / apps

edge compute data center Infrastructure
Layer

Service
End-Users

3

2

1

4

PaaS/Service
Records

6

Local Staging
Environment

Vendor
Infrastructure

Custom BaaS
Layer

Iterative Development

5

Fig. 3. The architecture of the next-generation Platform-as-a-Service is microservice-based and supports a high degree of customization, automation and an
open development interface. In this NFV-enabled eco-system, softwarized services are deployed through selected PaaS domains upon specialized or common-of-

the-shelf (COTS) infrastructure.

technologies (avoiding lock-in). The ability to execute many

different workflows brings also advantages from a

development point of view. A fast DevOps cycle with different

development teams is maintained. This way, a large part of the

operational accountability can be shared with the Vendors. For

example, if a Vendor wants to include its VNF in a service, it

must also upload the necessary workflows to deploy, configure

and operate the VNF on a supporting PaaS.

VI. EXTENDING THE NFV MANO ARCHITECTURE

The ETSI NFV Management and Orchestration (MANO)

has emerged as the de-facto reference for NFV-based platform

architectures [3]. We see the NGPaaS as a layer above the

current MANO architecture, as we consider the MANO

framework as the runtime environment of a specialized PaaS,

as illustrated in ❻ on Fig. 3. Many MANO implementations

(like OSM, ONAP and SONATA) extend the runtime

framework though, with the earlier explained build and ship

operations, coming closer to our definition of a PaaS. They

include a dedicated design environment, a proprietary service

descriptor and catalog. Services are deployed using

orchestration (NFVO) and management (VNFM) functions

which address virtual infrastructure managers (VIMs) [3].

However, extending a MANO framework with multi-domain

orchestration capabilities tends to be an arduous effort [6]. This

is because (i) the MANO specific service descriptor and

infrastructure abstraction model need to be updated to support

new VNF types or operational domains and (ii) specialized

VIMs need to be developed and maintained to translate the

MANO internal API or message protocol to the APIs of all

supported external execution or infrastructure domains.

In our new NGPaaS architecture, this cumbersome

procedure is tackled by shifting to a workflow-based

orchestration mechanism. The API or descriptor model of the

targeted service or infrastructure manager is addressed natively

in the workflow, without an intermediate translation to an

internal model. We propose to extend the ETSI MANO

architecture as in Fig. 4, with an extra PaaS Layer which

extends the VNFM. This supports the twofold orchestration

where (i) PaaS components are orchestrated to available

infrastructure and (ii) service or VNF deployment and

operation can be delegated to isolated PaaS domains. Without

the PaaS layer, the ETSI MANO architecture tends to lock

itself into an introvert DevOps process, with tightly coupled

infrastructure managers (VIMs), orchestrator and service

descriptors, where it becomes harder to modify the platform

itself. Our proposed NGPaaS architecture on the other hand,

promotes a multi-organizational software development model,

allowing access to proprietary operational pipelines. The

higher-level Business and Dev-for-Operations layers are

agnostic about the lower-level PaaS implementation. This

facilitates the distribution of operational accountability and

integration efforts among different Vendors and Operators.

VII. CONCLUSION & FUTURE WORK

Our proposed platform architecture extends the creation

and operation of mobile apps and services, to also the broad

range of vertical industries (e.g. automotive systems, smart grid,

public safety, health or IoT-based services). The functional

platform requirements are defined by the use-case and we

enable a tailored approach to realize this platform, with a fast

time-to-market. To this end, we create a modular multi-PaaS

framework, where specialized PaaS can be plugged in to

operate in their own administrative domain, with their own

share of infrastructure resources. The Dev-for-Operations layer

additionally allows a Vendor-dedicated DevOps cycle, across

multiple PaaS domains. This disrupts the current ‘cloud

platform’ paradigm where a fixed combination of options in

each layer is imposed, increasing lock-in. The proposed next-

generation PaaS is therefore a better suited model with more

flexibility and lower barriers to unite the broad spectrum

between actors, technologies and services in the modern NFV-

based telco landscape.

The architecture of the Next-Generation PaaS, as described

in this paper, will be further devised in the European 5G-PPP

NGPaaS project. An implementation and demonstration of

pilot use-cases are targeted by mid-2019, including VM,

container and FPGA based virtualization techniques [18].

ACKNOWLEDGMENT
This work has been performed in the framework of the NGPaaS project,
funded by the European Commission under the Horizon 2020 and 5G-PPP

Phase2 programmes, under Grant Agreement No. 761 557 (http://ngpaas.eu).

REFERENCES
[1] van Lingen, F. et al.. "The Unavoidable Convergence of NFV, 5G, and

Fog: A Model-Driven Approach to Bridge Cloud and Edge." IEEE
Communications Magazine 55, no. 8 (2017): 28-35.

[2] Nadareishvili, Irakli et al. Microservice Architecture: Aligning
Principles, Practices, and Culture. " O'Reilly Media, Inc.", 2016.

[3] ETSI –NFV, Management and Orchestration. ETSI GS NFV-MAN 001
V1.1.1 , Dec 2014

[4] Hagiu, Andrei, and Julian Wright. "Multi-sided platforms." International
Journal of Industrial Organization 43 (2015): 162-174.

[5] M. Paolino, et al. "FPGA virtualization with accelerators
overcommitment for Network Function Virtualization", RECONFIG ‘17

[6] A. Sgambelluri, et al. “Orchestration of Network Services Across
Multiple Operators: The 5G Exchange Prototype”, EuCNC, 2017

[7] M. Rates Crippa, et al “Resource Sharing for a 5G Multi-tenant and
Multi-service Architecture”, European Wireless Conference, May 2017.

[8] H. Karl et al. “DevOps for Network Function Virtualization:
Architectural Approach”, ETT Journal , 2016.

[9] Salsano, S. et el. "RDCL 3D, a Model Agnostic Web Framework for the
Design of Superfluid NFV Services and Components." arXiv preprint
arXiv:1702.08242 (2017).

[10] OSM - https://osm.etsi.org

[11] ONAP-ECOMP AT&T, “Ecomp (enhanced control orchestration
management policy) architecture white paper,” 2016. Online available:
https://about.att.com/content/dam/snrdocs/ecomp.pdf

[12] CORD http://opencord.org

[13] OPNFV - https://www.opnfv.org/

[14] Mistral - https://docs.openstack.org/mistral/latest/overview.html

[15] Soenen T. et al. “Optimising Microservice-based Reliable NFV
Management & Orchestration Architectures”, RNDM, IEEE, 2017

[16] Marcus K. Weldon, ‘The Future X Network: A Bell Labs Perspective’,
Chapter 13, March 2016

[17] ETSI, VNF packaging and descriptor, ETSI GS NFV-IFA 011 V2.1.1
Oct - 2016

[18] The Next Generation Platform as a Service (NGPaaS). European 5G-
PPP phase 2 project. http://ngpaas.eu/

NFVO

VNFM

PaaS Manager

VIMNFVI

PaaS Components

VNFs

BSS/OSS

M
an

agem
en

t an
d

O

rch
estratio

n
(M

A
N

O
)

Fig. 4. Updated ETSI MANO architecture, with PaaS capabilities.

