5,995 research outputs found

    Towards More Accurate Automatic Sleep Staging via Deep Transfer Learning.

    Get PDF
    BACKGROUND: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues. This work presents a deep transfer learning approach to overcome these issues and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging. METHODS: We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks as the means for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain (i.e. the small cohort) to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on three different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, and the Surrey-cEEGrid database. The target domains are purposely adopted to cover different degrees of data mismatch to the source domains. RESULTS: Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach. CONCLUSIONS: These results suggest the efficacy of the proposed approach in addressing the above-mentioned data-variability and data-inefficiency issues. SIGNIFICANCE: As a consequence, it would enable one to improve the quality of automatic sleep staging models when the amount of data is relatively small

    Deep transfer learning for improving single-EEG arousal detection

    Full text link
    Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases.Comment: Accepted for presentation at EMBC202

    Automatic sleep staging of EEG signals: recent development, challenges, and future directions.

    Get PDF
    Modern deep learning holds a great potential to transform clinical studies of human sleep. Teaching a machine to carry out routine tasks would be a tremendous reduction in workload for clinicians. Sleep staging, a fundamental step in sleep practice, is a suitable task for this and will be the focus in this article. Recently, automatic sleep-staging systems have been trained to mimic manual scoring, leading to similar performance to human sleep experts, at least on scoring of healthy subjects. Despite tremendous progress, we have not seen automatic sleep scoring adopted widely in clinical environments. This review aims to provide the shared view of the authors on the most recent state-of-the-art developments in automatic sleep staging, the challenges that still need to be addressed, and the future directions needed for automatic sleep scoring to achieve clinical value

    Personalized automatic sleep staging with single-night data: a pilot study with Kullback-Leibler divergence regularization.

    Get PDF
    OBJECTIVE: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. APPROACH: As data from a single night are very small, thereby making model training difficult, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. MAIN RESULTS: Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. SIGNIFICANCE: We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization

    A Knowledge Distillation Framework For Enhancing Ear-EEG Based Sleep Staging With Scalp-EEG Data

    Full text link
    Sleep plays a crucial role in the well-being of human lives. Traditional sleep studies using Polysomnography are associated with discomfort and often lower sleep quality caused by the acquisition setup. Previous works have focused on developing less obtrusive methods to conduct high-quality sleep studies, and ear-EEG is among popular alternatives. However, the performance of sleep staging based on ear-EEG is still inferior to scalp-EEG based sleep staging. In order to address the performance gap between scalp-EEG and ear-EEG based sleep staging, we propose a cross-modal knowledge distillation strategy, which is a domain adaptation approach. Our experiments and analysis validate the effectiveness of the proposed approach with existing architectures, where it enhances the accuracy of the ear-EEG based sleep staging by 3.46% and Cohen's kappa coefficient by a margin of 0.038.Comment: Code available at : https://github.com/Mithunjha/EarEEG_KnowledgeDistillatio

    SleepTransformer: Automatic Sleep Staging with Interpretability and Uncertainty Quantification.

    Get PDF
    BACKGROUND: Black-box skepticism is one of the main hindrances impeding deep-learning-based automatic sleep scoring from being used in clinical environments. METHODS: Towards interpretability, this work proposes a sequence-to-sequence sleep staging model, namely SleepTransformer. It is based on the transformer backbone and offers interpretability of the models decisions at both the epoch and sequence level. We further propose a simple yet efficient method to quantify uncertainty in the models decisions. The method, which is based on entropy, can serve as a metric for deferring low-confidence epochs to a human expert for further inspection. RESULTS: Making sense of the transformers self-attention scores for interpretability, at the epoch level, the attention scores are encoded as a heat map to highlight sleep-relevant features captured from the input EEG signal. At the sequence level, the attention scores are visualized as the influence of different neighboring epochs in an input sequence (i.e. the context) to recognition of a target epoch, mimicking the way manual scoring is done by human experts. CONCLUSION: Additionally, we demonstrate that SleepTransformer performs on par with existing methods on two databases of different sizes. SIGNIFICANCE: Equipped with interpretability and the ability of uncertainty quantification, SleepTransformer holds promise for being integrated into clinical settings

    Sleep monitoring using ear-centered setups: Investigating the influence from electrode configurations.

    Get PDF
    Modern sleep monitoring development is shifting towards the use of unobtrusive sensors combined with algorithms for automatic sleep scoring. Many different combinations of wet and dry electrodes, ear-centered, forehead-mounted or headband-inspired designs have been proposed, alongside an ever growing variety of machine learning algorithms for automatic sleep scoring. OBJECTIVE: Among candidate positions, those in the facial area and around the ears have the benefit of being relatively hairless, and in our view deserve extra attention. In this paper, we seek to determine the limits to sleep monitoring quality within this spatial constraint. METHODS: We compare 13 different, realistic sensor setups derived from the same data set and analysed with the same pipeline. RESULTS: All setups which include both a lateral and an EOG derivation show similar, state-of-the-art performance, with average Cohen's kappa values of at least 0.80. CONCLUSION: If large electrode distances are used, positioning is not critical for achieving large sleep-related signal-to-noise-ratio, and hence accurate sleep scoring. SIGNIFICANCE: We argue that with the current competitive performance of automated staging approaches, there is a need for establishing an improved benchmark beyond current single human rater scoring

    Pediatric Automatic Sleep Staging: A comparative study of state-of-the-art deep learning methods.

    Get PDF
    Despite the tremendous progress recently made towards automatic sleep staging in adults, it is currently unknown if the most advanced algorithms generalize to the pediatric population, which displays distinctive characteristics in overnight polysomnography (PSG). To answer the question, in this work, we conduct a large-scale comparative study on the state-of-the-art deep learning methods for pediatric automatic sleep staging. Six different deep neural networks with diverging features are adopted to evaluate a sample of more than 1,200 children across a wide spectrum of obstructive sleep apnea (OSA) severity. Our experimental results show that the individual performance of automated pediatric sleep stagers when evaluated on new subjects is equivalent to the expert-level one reported on adults. Combining the six stagers into ensemble models further boosts the staging accuracy, reaching an overall accuracy of 88.8%, a Cohens kappa of 0.852, and a macro F1-score of 85.8%. At the same time, the ensemble models lead to reduced predictive uncertainty. The results also show that the studied algorithms and their ensembles are robust to concept drift when the training and test data were recorded seven months apart and after clinical intervention. However, we show that the improvements in the staging performance are not necessarily clinically significant although the ensemble models lead to more favorable clinical measures than the six standalone models. Detailed analyses further demonstrate "almost perfect" agreement between the automatic stagers to one another and their similar patterns on the staging errors, suggesting little room for improvement

    XSleepNet: Multi-View Sequential Model for Automatic Sleep Staging

    Get PDF
    Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve millions experiencing sleep deprivation and disorders and enable longitudinal sleep monitoring in home environments. This work proposes a sequence-to-sequence sleep staging model, XSleepNet, that is capable of learning a joint representation from both raw signals and time-frequency images. Since different views may generalize or overfit at different rates, the proposed network is trained such that the learning pace on each view is adapted based on their generalization/overfitting behavior. As a result, the network is able to retain the representation power of different views in the joint features which represent the underlying distribution better than those learned by each individual view alone. Furthermore, the XSleepNet architecture is principally designed to gain robustness to the amount of training data and to increase the complementarity between the input views. Experimental results on five databases of different sizes show that XSleepNet consistently outperforms the single-view baselines and the multi-view baseline with a simple fusion strategy. Finally, XSleepNet also outperforms prior sleep staging methods and improves previous state-of-the-art results on the experimental databases

    Towards Interpretable Sleep Stage Classification Using Cross-Modal Transformers

    Full text link
    Accurate sleep stage classification is significant for sleep health assessment. In recent years, several machine-learning based sleep staging algorithms have been developed, and in particular, deep-learning based algorithms have achieved performance on par with human annotation. Despite the improved performance, a limitation of most deep-learning based algorithms is their black-box behavior, which has limited their use in clinical settings. Here, we propose a cross-modal transformer, which is a transformer-based method for sleep stage classification. The proposed cross-modal transformer consists of a novel cross-modal transformer encoder architecture along with a multi-scale one-dimensional convolutional neural network for automatic representation learning. Our method outperforms the state-of-the-art methods and eliminates the black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. Furthermore, our method provides considerable reductions in the number of parameters and training time compared to the state-of-the-art methods. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer.Comment: 11 pages, 7 figures, 6 table
    • …
    corecore