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Abstract.

Objective: Brain waves vary between people. This work aims to improve automatic

sleep staging for longitudinal sleep monitoring via personalization of algorithms based

on individual characteristics extracted from the first night of data. Approach: As a

single night is a very small amount of data to train a sleep staging model, we propose

a Kullback-Leibler (KL) divergence regularized transfer learning approach to address

this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent

model) as a starting point and finetune it with the single-night personalization data to

derive the personalized model. This is done by adding the KL divergence between the

output of the subject independent model and the output of the personalized model to

the loss function during finetuning. In effect, KL-divergence regularization prevents the

personalized model from overfitting to the single-night data and straying too far away

from the subject independent model. Main results: Experimental results on the Sleep-

EDF Expanded database with 75 subjects show that sleep staging personalization with

a single-night data is possible with help of the proposed KL-divergence regularization.

On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen’s kappa

of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%.

Significance: We find both that the approach is robust against overfitting and that it

improves the accuracy by 4.5 percentage points compared to non-personalization and

2.2 percentage points compared to personalization without regularization.

1. Introduction

The increased awareness of the important role of sleep in protecting our mental and

physical health [1] has been translated in an increased demand in personal sleep

monitoring tools. For such purpose, automating sleep scoring is vital and indispensable
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Figure 1: Personalization with single-night data: a pretrained model is finetuned with

the labeled data of night n of an undividual and yields the personalized model which is

tested on the same individual’s unseen data of nights n+ 1, n+ 2, . . .

since manual scoring is simply too expensive, time-consuming, and labor-intensive

[2, 3]. The advance of machine learning, deep learning in particular, coupled with

the availability of large sleep databases [4, 5, 6] has stimulated a new wave of interest

in developing automatic sleep staging methods. In fact, machine performance in sleep

staging has progressed significantly, being on par with manual scoring by sleep experts,

thanks to recent methods based on deep learning [7, 8, 6].

The above-mentioned state-of-the-art classification performance is only possible

using supervised learning. That is, we need data to be recorded and manually labeled

from a cohort of subjects, followed by model training based on the labeled data. In fact,

the recent expert-level performance is only obtainable with a large cohort (i.e. hundreds

or thousands of subjects) [7, 6]. Collecting and manually scoring a large amount of

sleep data is a vast burden, particularly for wearable EEG devices like in-ear EEG [9]

or around-the-ear EEG [10, 11], in which case the work load is increased by the need

for an added PSG for reference. Utilizing and including available sleep data for training

a sleep staging algorithm in novel settings is not easy, due to channel mismatch caused

by differences in channel layouts, electrode placements, recording devices and software,

preprocessing procedure, normalization parameters, clinical cohort characteristics, etc.

[7]. The work in [12, 7] proposed a transfer learning approach to circumvent the above-

mentioned channel mismatch and enable knowledge transfer from a large dataset to a

small cohort, making a deep learning model for a different, specific setting with low

amount of data possible. However, such a transfer learning approach still requires data

from a dozen of subjects to succeed. Although collecting and labeling this relatively

small amount of sleep data would not be a big problem, here we want to push this data

constraint to its extreme and question whether it is possible to adapt a pretrained model

with single-night data of a particular subject, i.e. personalization, even without knowing

in which setting the data is recorded. By personalization, we mean the parameters of

the pretrained model are adapted to an individual’s data to convert into a personalized

model which is later tested on the same individual’s future unseen data as illustrated

in Figure 1. If personalization with single-night data in an unknwon setting is possible,

it would be convenient for one to build a model for personalized sleep monitoring using
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his/her very own minimal data recorded with a particular device. It is equally important

and necessary when privacy and security become a serious concern [13, 14, 15], and thus,

owning EEG data from others to form a cohort for transfer learning [7] would be more

and more difficult. An additional and very important benefit of personalization is that

it has previously been shown that automatic sleep scoring becomes more accurate when

the classifier can focus on the peculiarities of the individual (see [16] and [9]). This

is especially the case when using non-standard EEG montages, for instance in in-ear

EEG and around-the-ear EEG. It should be noted that this personalization problem is

different from that in [17] in which a cohort of subjects is known and a model is trained

on the cohort before personalizing for a subject in the same cohort. Here, we assume

there is no information about the cohort or recording settings but only a single-night

data of a target subject is available.

Building a deep-learning model using single-night data is challenging. First, the

model can easily overfit the data regardless of whether we train a model from scratch

or finetune a pretrained model [7]. Second, different subjects are expected to have

varying convergence/overfitting rate when training/finetuning the personalized model.

Therefore, we do not know when the model will start overfitting, as we do not have

validation data at hand for model selection as in the case of a cohort [7, 12]. Third,

regular data normalization cannot be done as a cohort’s statistics are unknown. In this

work, we take on this ‘personalization with single-night data’ challenge and propose

an approach based on transfer learning to deal with it. We employ the pretrained

SeqSleepNet [7, 18] (i.e. the subject independent (SI) model), and finetune it with single-

night data from a single subject from an unknown cohort to accomplish personalization.

Note that, the source-domain cohort which was used for pretraining the model is also

assumedly unknown. To remedy the overfitting problem, KL-divergence between the

output of the SI model and the personalized model is introduced to regularize the

network. The KL-divergence regularization, in effect, prevents the personalized model

from drifting too far away from the SI model. Once we get rid of overfitting, model

selection is no longer an issue as we can keep finetuning the SI model as long as

we need. Experiments on 75 subjects of the Sleep-EDF Expanded database [19, 20]

show that KL-divergence regularized personalization with single-night data is robust

against overfitting and achieves an average sleep staging accuracy of 79.6%, improving

4.5 and 2.2 percentage points over non-personalization and personalization without KL-

divergence regularization, respectively.

2. Material

We used the Sleep-EDF Expanded database (Sleep Cassette subset, version 2018) [19, 20]

in this study. This database consists of 78 healthy Caucasian subjects aged 25-101. It is

particularly suitable for this study as there are 75 out of 78 subjects with two subsequent

day-night PSG recordings collected for each. Three subjects (subjects 13, 36, and 52)

whose one recording was lost due to device failure were excluded from the personalization
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Figure 2: Illustration of SeqSleepNet which is composed of three components: epoch

processing block (EPB), sequence processing block (SPB), and Softmax. Image adapted

from [18].

experiments. Manual scoring was done by sleep experts according to R&K standard [3]

and each 30-second PSG epoch was labeled as one of eight categories W, N1, N2, N3,

N4, REM, MOVEMENT, UNKNOWN. We merged N3 and N4 into a single stage N3

and excluded MOVEMENT and UNKNOWN categories as in previous experiments in

earlier versions of the database [21, 22, 23, 8, 24]. We used the Fpz-Cz EEG channel

sampled at 100 Hz in this study. As different portions of this database have been used

in the literature, it should be stressed that we only made use of the in-bed parts (from

lights off time to lights on time) recommended in [25, 21] and adopted in many existing

works [22, 23, 24, 7, 26, 27, 17, 28].

3. Methods

3.1. Sequence-to-Sequence Sleep Staging with SeqSleepNet

SeqSleepNet, recently proposed in [18], has demonstrated state-of-the-art performance

on several sleep databases [18, 12] and its suitability for transfer learning tasks [12, 7].

We employ it in this work to study sleep-staging personalization. As a sequence-

to-sequence sleep-staging model [18], SeqSleepNet learns to maximize the conditional

probability p(y1,y2, . . . ,yL |S1,S2, . . . ,SL) [18]. In other words, it receives a sequence

of L consecutive epochs (S1,S2, . . . ,SL) and classifies them at once into a sequence of

corresponding sleep stages (y1,y2, . . . ,yL), where y is a one-hot encoding vector.

To be fed into the network, the EEG signal of a 30-second epoch is transformed into

a time-frequency image S ∈ RF×T obtained via short-time Fourier transform (STFT),

where F is the number of frequency bins and T is the number of time instances (cf.
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Section 4). The network is composed of three main components: epoch processing

block (EPB), sequence processing block (SPB), and Softmax, as illustrated in Figure 2.

EPB. EPB is essentially an attention-based RNN (ARNN) [27] that is shared by

all epochs in the input sequence for short-term (i.e. intra-epoch) sequential modelling.

The ARNN subnetwork consists of a filterbank layer [26], a bidirectional RNN realized

by long short-term memory (LSTM) cells [29] with recurrent batch normalization [30],

and a self-attention layer [31]. The trainable filterbank layer with M filters is designed

to smooth and reduce the frequency dimension of each epoch S from F to M , where

M < F [26]. The resulting image is then treated as a sequence of T local feature

vectors (x1,x2, . . . ,xT ) (corresponding to T spectral columns) which is encoded by the

bidirectional RNN into a sequence of output vectors (a1, a2, . . . , aT ). The self-attention

layer [31] is trained to produce attention weights (w1, w2, . . . , wT ) and combines the

output vectors into a single feature vector ā =
∑T

t=1 wtat to represent the epoch S.

SPB. SPB is a bidirectional RNN for long-term (i.e. inter-epoch) sequential

modelling. Similar to the RNN in EPB, this RNN is also realized by LSTM cells [29]

with recurrent batch normalization [30]. After EPB, the input sequence (S1,S2, . . . ,SL)

has been converted into a sequence of feature vectors (ā1, ā2, . . . , āT ). In turn, the

bidirectional RNN iterates over the sequence of induced feature vectors and encode it

into the sequence of output vectors (o1,o2, . . . ,oL).

Softmax. Given the sequence of output vectors (o1,o2, . . . ,oL), classification

eventually takes place at the Softmax component to produce the sequence posterior

probabilities (ŷ1, ŷ2, . . . , ŷL), where ŷl coresponds to the epoch at index l, 1 ≤ l ≤ L,

in the input sequence. Similar to the SeqSleepNet+ variant in [7], the softmax layer is

shared between all epochs.

The network is trained end-to-end to minimize the sequence classification loss over

all N training sequences in the training data:

E(Θ) = − 1

L

N∑
n=1

L∑
l=1

ynl log (ŷnl (Θ)) +
λ

2
‖Θ‖2

2

= − 1

L

N∑
n=1

L∑
l=1

∑
c∈C

I(ynl = c) logPΘ(ŷnl = c) +
λ

2
‖Θ‖2

2, (1)

where C = {W,N1,N2,N3,REM} is the set of all possible sleep stages. In (1), I(·) is

the indicator function, ynl and ŷnl denotes the ground-truth and output discrete labels

of the lth epoch in the nth sequence, respectively. Θ denotes the trainable parameters

of the network and λ is the coefficient of the `2-norm regularization term.

3.2. KL-Divergence Regularization for Personalization

Given the small amount of data (one night) it is not feasible to train a deep learning

model like SeqSleepNet from scratch. As mentioned before, we, therefore, pursue a

transfer learning approach similar to [7, 12] for personalization. We use the pretrained



Personalized Automatic Sleep Staging with Single-Night Data 6

SI

model

Source database
Single-night data

(subject-specific)

Θ

Pretrain

Personalized 

model Θp

Finetune

Personalize Figure 3: Illustration of sleep personal-

ization with single-night data. The sub-

ject independent (SI) model Θ, which

is pretrained with a source-domain

database (assumedly unknown), is fine-

tuned on the single-night data of a target

subject to derive the personalized model

Θp.

SeqSleepNet model from [7], which was pretrained using the C4-A1 EEG data from 200

subjects (686,610 epochs in total) of the Montreal Archive of Sleep Studies (MASS)

database [5] (i.e. the source database), as the subject independent (SI) model denoted

by Θ. We would like to remind the reader that the MASS cohort is assumedly unknown

here. The SI model Θ then serves as the starting point and is finetuned using the

single-night data of a target subject to derive the personalized model, denoted by Θp,

as illustrated in Figure 3. Note that channel mismatch is expected between the source-

domain MASS database and the target subject’s personalization data, and finetuning is

supposed to address both channel mismatch and personalization. We investigate four

finetuning strategies {All, EPB+Softmax, SPB+Softmax, Softmax} similar to those

in [7, 12]. When components of the pretrained network (i.e. the entire network,

EPB+Softmax, SPB+Softmax, or Softmax depending on the finetuning strategies) are

finetuned, their weights are adapted with the personalization data while the rest remains

fixed.

The study in [7] showed that sleep transfer learning requires roughly at least ten

subjects’ data, leaving personalization with the single-night data of a target subject

exposed to the substantial risk of overfitting. In fact, we experimentally see that the

personalized model tends to overfit the personalization data very easily. Moreover,

there exists no viable way to select the right model during finetuning before overfitting

starts. One may leave out a portion of the one-night data for validation. However, since

the validation data is distributed very similarly to the finetuning data, this leave-out

validation data is also overfitted easily and cannot be used to identify overfitting. To

remedy overfitting, we propose to regularize the sequential classification loss function in

(1) with the KL divergence between the posterior probability outputs of the SI model

Θ and the ones from the personalized model Θp, which constrains the personalized

model not to stray too far away from the SI model [32]. Given an input sequence

(S1,S2, . . . ,SL), KL divergence between the outputs of the two models reads:

DKL =
1

L

L∑
l=1

∑
c∈C

PΘ(ŷl = c) log

(
PΘ(ŷl = c)

PΘp(ŷl = c)

)
. (2)

The KL-divergence regularization is added into the sequential classification loss
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function in (1) to form the loss function for personalization:

E(Θp) =− (1− α)
1

L

N∑
n=1

L∑
l=1

∑
c∈C

I(ynl = c) logPΘp(ŷnl = c) +
λ

2
‖Θp‖2

2

+ α
1

L

N∑
n=1

L∑
l=1

∑
c∈C

PΘ(ŷnl = c) log

(
PΘ(ŷnl = c)

PΘp(ŷnl = c)

)
, (3)

where α ∈ [0, 1] is the KL-divergence regularization coefficient, regulating how far the

personalized model Θp deviates from the SI model Θ. When α = 0, the KL-divergence

regularization is cancelled out and the personalization turns out to be the same as

regular finetuning in [7, 12]. In this case, the pretrained SI model is adapted solely on

the personalization data. In contrast, when α = 1, we trust the pretrained SI model

completely and ignore all the new information of the personalization data. Since the

term α 1
L

N∑
n=1

L∑
l=1

∑
c∈C

PΘ(ŷnl = c) logPΘ(ŷnl = c) in the KL-divergence regularization term

in (3) does not depend on the personalized network Θp, the KL-divergence regularized

loss function can be simplified as:

E ′(Θp) =− (1− α)
1

L

N∑
n=1

L∑
l=1

∑
c∈C

I(ynl = c) logPΘp(ŷnl = c) +
λ

2
‖Θp‖2

2

− α 1

L

N∑
n=1

L∑
l=1

∑
c∈C

PΘ(ŷnl = c) logPΘp(ŷnl = c). (4)

It turns out that the loss function for personalization in (4) consists of two terms:

(1) the cross-entropy between the output of the personalized model Θp and the ground-

truth, and (2) the cross-entropy between the output of the personalized model Θp and the

output of the pretrained SI model Θ. As a result, model personalization is equivalent

to changing the target distribution from the unknown source-domain database (the

MASS database used for pretraining) to a linear interpolation of the source-domain data

distribution and the personalized data distribution [32]. This interpolation prevents the

network from overfitting the personalization data.

4. Experimental Setup

For each of the 75 subjects with two day-night recordings of the Sleep-EDF Expanded

database, we conducted finetuning of the pretrained SeqSleepNet [7] using the data from

the first night and evaluating the personalized model on the data from the second night.

We experimented with different values for the KL-divergence regularization coefficient

α in the set {0, 0.2, 0.4, 0.6, 0.8} to investigate its influence. Note that, when α = 0,

we excluded the KL-divergence regularization completely. This case is considered the

baseline for comparison with the proposed approach.

The EEG signal was divided into 30-second epochs. Each epoch was transformed

into a log-magnitude time-frequency image by the following procedure: the signal
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Table 1: Performance on regular (scratch) training setup via 10-fold cross validation.

System Data portion
Overall metrics

Acc. κ MF1 Sens. Spec.

SeqSleepNet in-bed only 79.1 0.708 74.6 74.2 94.2

DeepSleepNet [8] in-bed only 78.5 0.702 75.3 75.0 94.1

SeqSleepNet in-bed ± 30 min 82.6 0.760 76.4 76.3 95.4

SleepEEGNet [33] in-bed ± 30 min 80.0 0.730 73.6 − −
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Figure 4: Confusion matrices obtained by SeqSleepNet. (a) in-bed data only, (b) in-bed

data ± 30 min.

was divided into two seconds windows with 50% overlap, multiplied with a Hamming

window, transformed to the frequency domain by means of a 256-point Fast Fourier

Transform (FFT), and the amplitude spectrum was log-transformed. This resulted in

an image of size F × T where F = 129 (the number of frequency bins) and T = 29 (the

number of spectral columns).

5. Results

5.1. SeqSleepNet’s performance on regular training setting.

SeqSleepNet [18, 7] requires the data to be normalized to zero mean and unit standard

deviation [18, 7]. Unfortunately, in our case neither the source-domain cohort (i.e. the

MASS cohort) nor the target subject’s cohort (i.e. the Sleep-EDF cohort) are known.

We, therefore, cannot normalize the personalization data using the cohort’s statistics. In

addition, we experimentally found that model personalization is sensitive to differences

in magnitude of data between two nights, and per-subject data normalization resulted

in poor performance in some subjects with such substaintial magnitude difference. To

rule out this difference, we alternatively performed per-night normalization in which

data of one night recording was normalized by its mean and standard deviation.

The implementation was based on the Tensorflow framework [34]. The pretrained
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SeqSleepNet was parametrized similarly to the one in [7] and used a sequence length of

L = 20. For personalization, the pretrained SeqSleepNet was finetuned on the single-

night finetuning data for 50 finetuning epochs and the performance was recorded every

5 finetuning epochs. Finetuning was performed using the Adam optimizer [35] with a

learning rate of 10−4.

SeqSleepNet has been reported to achieve state-of-the-art performance on the

MASS database [5] (i.e. the source domain used for pretraining) and the earlier version

of the Sleep-EDF Expanded database with 20 subjects [19, 20]. It is worth assessing

its performance on the experimental database on a regular (scratch) training setup. To

this end, we conducted 10-fold cross validation on all 78 subjects. At each iteration, 7

subjects were left out for validation (i.e. model selection). During training, the network

achieving the best overall accuracy on the validation subjects was retained for evaluation

on the test subjects. The results of 10 cross-validation folds were pooled to calculate

the overall metrics, including accuracy, macro F1-score (MF1) [36], Cohen’s kappa (κ)

[37], sensitivity, and specificity. Beside SeqSleepNet we also implemented the end-to-

end variant of the popular DeepSleepNet [8, 18] for comparison. In addition, we include

results for another common usage of the database in which 30 minutes of data before

and after in-bed parts are additionally included. The performance is shown in Table

1 in which SeqSleepNet not only obtains better performance than the DeepSleepNet

counterpart but also outperforms the most recent results in [33] on this latest version

of the Sleep-EDF Expanded database. The accuracy of the sleep stages is also shown

in the confusion matrices in Figure 4.

5.2. Influence of KL-divergence regularization.

It should be emphasized again that, different from the regular-setting experiment in

Secion 5.1, only 75 subjects with two recordings were used for the personalization

experiment and three subjects with one recording were excluded. The effect of KL-

divergence regularization in avoiding overfitting for model personalization is exhibited

in Figure 5(a) when α takes different values in {0, 0.2, 0.4, 0.6, 0.8}. Without KL-

divergence regularization (i.e. α = 0), the average accuracy of the personalized models

on 75 target subjects starts declining after 5 finetuning epochs when the models most

likely start overfitting the personalization data. The overfitting appears to get worse and

worse with ongoing finetuning process as the average accuracy keeps decreasing. When

being regularized with KL-divergence (i.e. α > 0), the pattern of the average accuracy

curve is gradually reversed when α increases, exhibiting a negligible downward tendency

when α = 0.2, plateauing after 25 finetuning epochs with α = 0.4, and trending upward

with larger values for α.

The results in Figure 5(a) also indicate that α plays the role of a trade-off parameter

between the pretrained SI model and the purely personal one. When α is set small, we

allow the personalized model to aggressively fit to the personalization data at the risk of

severe overfitting. In contrast, when α is large, the personalized model is conservatively
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Figure 6: Individual accuracy improvements of 75 target subjects after 50 finetuning

epochs when α takes different values in {0, 0.2, 0.4, 0.6, 0.8} (All finetuning strategy

was employed).

tied to the SI model and has less freedom to adapt to the personalization data, and

so, effectively avoids overfitting at the cost of jeopardizing the personalization. This

argument is strengthened with the results in Figure 6. In this figure, the individual

accuracy improvements of 75 target subjects varies widely around the baseline zero line

when α = 0 and becomes more and more concentrated towards the zero baseline with

increasing value of α. Apparently, a value around 0.4 is a reasonable choice for α.

Table 2 further provides a comparison of average performance obtained by

personalization with different values of α with that before personalization. After

personalization, the best performance is obtained with α = 0.4, reaching an accuracy of

79.6% and improving over that of personalization without KL-divergence regularizaion

and that of no-personalization by 2.2 and 4.5 percentage points absolute, respectively.

Significant improvement on accuracy can also be seen from the confusion matrices in

Figure 7 for most of the sleep stages. Furthermore, this accuracy level is on par with

that of the model trained on the entire (known) cohort in Table 1 even though only

one-night data of the subjects was used and the cohort was unknown.
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Table 2: Average sleep staging performance before and after personalization.

Personalization without KL-divergence regularization corresponds to α = 0 and

personalization with KL-divergence regularization corresponds to α > 0. All finetuning

was employed and personalization was run for 50 finetuning epochs.

Overall metrics

Acc. κ MF1 Sens. Spec.

Before

personalization
75.1± 11.2 0.648± 0.140 67.2± 11.4 69.7± 11.4 93.1± 2.8

After

personalization

α = 0 77.4± 10.0 0.677± 0.131 71.4± 9.7 69.6± 10.8 93.6± 2.6

α = 0.2 79.0± 8.4 0.697± 0.114 72.5± 8.9 71.2± 10.2 94.0± 2.3

α = 0.4 79.6± 8.4 0.706± 0.113 73.0± 8.8 71.8± 10.1 94.2± 2.2

α = 0.6 78.8± 10.0 0.697± 0.128 72.0± 10.0 71.6± 10.9 94.0± 2.5

α = 0.8 77.0± 10.9 0.672± 0.138 69.2± 12.0 70.2± 11.8 93.5± 2.7
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Figure 7: Confusion matrices obtained by SeqSleepNet before and after personalization.

(a) Before personalization, (b) After personalization.

5.3. Influence of finetuning strategies.

It was shown in [7, 12] that, in sleep transfer learning, it is important to finetune feature-

learning parts of a pretrained network to overcome the channel mismatch between a

source domain and a target domain. This rule of thumb also applies to personalization

as shown in Figure 5(b). Although finetuning the Softmax component alone brings

up the performance, the improvement is significantly lower than the ones obtained by

other finetuning strategies in which the feature-learning components of the pretrained

SeqSleepNet (i.e. EPB or SBP or both) and the Softmax component are collectively

adapted. For instance, the All finetuning strategy produces an accuracy improvement

of 4.6 percentage points which is more than twice as much as the 1.9 percentage points

obtained with the Softmax finetuning strategy after 50 finetuning epochs.
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5.4. To personalize or not personalize?

In sleep transfer learning in general, when there is mismatch between the source domain

(the MASS databased used for pretraining in our case) and the target domain (the

personalization data in our case), it is vital to perform some form of finetuning. In case

of personalization, besides possible discrepancies between the source-domain data and

the personalization data [7], this data mismatch is further topped up with the target

subject’s peculiarities. On the contrary, when there is no data mismatch, finetuning

could be averted as no significant improvement is expected while one increases the risk

of overfitting. If there is a way to determine whether data distributions mismatch, one

can decide to personalize the sleep staging model or not. Fortunately, we have access

to the ground truth of a target subject’s one-night data which can be utilized to assess

the performance of the pretrained SI model. If the pretrained SI model performs well

on this one-night data, the personalization data distribution is very likely matched to

the source-domain data distribution. Reversely, poor performance of the pretrained SI

model on this personalization data is an indicator of data mismatch.

In light of this observation, we applied a threshold β to the individual accuracy

obtained on the first-night data to group 75 target subjects into two groups: Group A

consisting of subjects with the accuracy before personalization below β and Group B

consisting of subjects with accuracy before personalization equal or above β. Figure 8

shows the individual accuracies before personalization, the individual accuracies after

personalization, and the individual accuracy improvements of the subjects in both

groups with β = 0.77. As can be seen, most significant accuracy improvements

correspond to the subjects in Group A while those improvements of the subjects in

Group B are much more subtle. On average, personalization for Group A’s subjects

results in an improvement of 9.0 percentage points, ten times larger than that for Group

B’s subjects which is 0.9 percentage points.

6. Discussion

The personalization results in Figure 8 reveal uneven distribution of accuracy

improvement across subjects. Those subjects on which the pretrained SI model performs

poorly (i.e. severe data mismatch) benefit the most from personalization. However, only

very modest improvements were seen for those subjects on which the pretrained SI model

performs well, despite the fact that there is a similar channel mismatch: the C4-A1 EEG

channel was used for pretraining the SI model and the Fpz-Cz EEG channel was used

for personalization data. We speculate that personalization will be crucial for all target

subjects when a completely different channel layout is used, for example in-ear EEG [9]

or around-the-ear EEG [10, 11].

Setting a right value for the coefficient α was shown to play an important role in

personalization’s success. Although we have studied a common α for all target subjects

and fixed its value during the personalization process, it makes more sense for α to be
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Figure 8: Individual accuracies before personalization, individual accuracies after

personalization, and individual accuracy improvements of 75 target subjects (sorted by

increasing accuracy before personalization). Group A (i.e. subjects with accuracy before

personalization below β) is marked in orange and Group B (i.e. subjects with accuracy

before personalization equal or greater than β) are marked in green. All finetuning was

employed, α was fixed to 0.4, and personalization was run for 50 finetuning epochs.

adaptive. For example, for subjects with significant peculiarities (e.g. those subjects in

Group A in Section 5.4), one should start with a large α to impose strong personalization

inititally and attenuate it along the ongoing personalization process to gradually reduce

this risk. The amount of personalization data should also be taken into account when

setting a value for the KL-divergence regularization coefficient α. As a matter of fact,

using single-night data for personalization is convenient. However, when more data is

available, improvement on personalization performance can be expected. In intuition,

α should be proportional to the amount of personalization data, i.e. we should use a

small α for small personalization data (we trust the SI model more) and a large α for

large personalization data (we trust the personalization data more).

7. Conclusions

We introduced the problem of sleep-staging personalization with single-night data and

discussed its benefits and challenges in the context of personal sleep monitoring. We

then attempted to tackle this problem using a transfer learning approach. The subject

independent (SI) model (i.e. the pretrained SeqSleepNet) was used as the starting point

and finetuned on the single-night data of a target subject to accomplish personalization.

KL-divergence between the personalized model’s output and the SI model’s output is



Personalized Automatic Sleep Staging with Single-Night Data 14

proposed to regularize the network’s loss function during personalization. The KL-

divergence regularization anchors the personalized model, effectively preventing it from

overfitting to the personalization data. Experimenting with 75 subjects of the Sleep-

EDF Expanded database, we demonstrated that sleep personalization with a single-

night data is possible. We showed that personalization implemented with KL-divergence

regularization is robust against overfitting and achieves more favorable results compared

to non-personalization and personalization without KL-divergence regularization.

In this pilot study, we demonstrated that automatic sleep staging with single-

night data is possible and the obtained results are encouraging. However, while the

number of subjects, at 75, is decently high, the population could still be considered

quite homogeneous, which could impact the results shown. In addition, the fact that

the database used in this study was labeled according to the old R&K guidelines [3]

rather than the new and more robust AASM ones [2] may introduce some biases to the

results. A larger database with diverging and richer characteristics (e.g. demographics,

sleep diseases, and electrode placements etc.) is desirable for furture work. Such a

database should be labeled (or re-relabeld by an independent sleep technician) following

the AASM guidelines [2].

Acknowledgment

We gratefully acknowledge the support of NVIDIA Corporation with the donation of

the Titan V GPU used for this research.

References

[1] J. M. Siegel, “Clues to the functions of mammalian sleep,” Nature, vol. 437, no. 27, pp. 1264–1271,

2005.

[2] C. Iber, S. Ancoli-Israel, A. L. Chesson, and S. F. Quan, “The AASM manual for the scoring

of sleep and associated events: Rules, terminology and technical specifications,” American

Academy of Sleep Medicine, 2007.

[3] J. A. Hobson, “A manual of standardized terminology, techniques and scoring system for sleep

stages of human subjects,” Electroencephalography and Clinical Neurophysiology, vol. 26, no. 6,

pp. 644, 1969.

[4] “National sleep research resource: free research data and tools,” http://sleepdata.org/, assessed

in 1 Jan 2020.

[5] C. O’Reilly, N. Gosselin, J. Carrier, and T. Nielsen, “Montreal archive of sleep studies: An

open-access resource for instrument benchmarking & exploratory research,” Journal of Sleep

Research, pp. 628–635, 2014.

[6] J. B. Stephansen et al., “Neural network analysis of sleep stages enables efficient diagnosis of

narcolepsy,” Nature Communications, vol. 9, no. 1, pp. 5229, 2018.

[7] H. Phan, O. Y. Chén, P. Koch, Z. Lu, I. McLoughlin, A. Mertins, and M. De Vos, “Towards more

accurate automatic sleep staging via deep transfer learning,” arXiv preprint arXiv:1907.13177,

2019.

[8] A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: A model for automatic sleep stage

scoring based on raw single-channel EEG,” IEEE Trans. on Neural Systems and Rehabilitation

Engineering, vol. 25, no. 11, pp. 1998–2008, 2017.



Personalized Automatic Sleep Staging with Single-Night Data 15

[9] K. B. Mikkelsen, Y. R. Tabar, S. L. Kappel, C. B. Christensen, H. O. Toft, M. C. Hemmsen, M. L.

Rank, M. Otto, and P. Kidmose, “Accurate whole-night sleep monitoring with dry-contact

ear-EEG,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[10] K. B. Mikkelsen, J. K. Ebajemito, M. A. Bonmati-Carrion, N. Santhi, V. L. Revell, G. Atzori,

C. della Monica, S. Debener, D.-J. Dijk, A. Sterr, and M. de Vos, “Machine-learning-derived

sleep–wake staging from around-the-ear electroencephalogram outperforms manual scoring and

actigraphy,” Journal of Sleep Research, vol. 28, no. 2, pp. e12786, 2019.

[11] A. Sterr, J. K. Ebajemito, K. B. Mikkelsen, M. A. Bonmati-Carrion, N. Santhi, C. della Monica,

L. Grainger, G. Atzori, V. Revell, S. Debener, D.-J. Dijk, and M. De Vos, “Sleep eeg derived

from behind-the-ear electrodes (ceegrid) compared to standard polysomnography: A proof of

concept study,” Frontiers in Human Neuroscience, vol. 12, no. 452, 2018.

[12] H. Phan, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos, “Deep transfer learning for

single-channel automatic sleep staging with channel mismatch,” in Proc. 27th European Signal

Processing Conference (EUSIPCO), 2019, pp. 1–5.

[13] A. Agarwal, R. Dowsley, N. D. McKinney, D. Wu, C.-T. Lin, M. De Cock, and A. CA Nascimento,

“Protecting privacy of users in brain-computer interface applications,” IEEE Trans. on Neural

Systems and Rahabilitation Engineering, vol. 27, no. 8, pp. 1546–1555, 2019.

[14] I. Martinovic, D. Davies, M. Frank, D. Perito, and T. Ros D. Song, “On the feasibility of side-

channel attacks with brain-computer interfaces,” in Proc. 21st USENIX Security Symposium,

2012.

[15] T. Bonaci, R. Calo, and H. J. Chizeck, “App stores for the brain: Privacy & security in brain-

computer interfaces,” IEEE Technology and Society Magazine, vol. 34, no. 2, pp. 32–39, 2015.

[16] K. B. Mikkelsen, D. B. Villadsen, M. Otto, and P. Kidmose, “Automatic sleep staging using

ear-EEG,” BioMedical Engineering OnLine, vol. 16, no. 111, 2017.

[17] K. Mikkelsen and M. De Vos, “Personalizing deep learning models for automatic sleep staging,”

arXiv Preprint arXiv:1801.02645, 2018.

[18] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “SeqSleepNet: end-to-end

hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering (TNSRE), vol. 27, no. 3, pp.

400–410, 2019.

[19] B. Kemp, A. H. Zwinderman, B. Tuk, H. A. C. Kamphuisen, and J. J. L. Oberye, “Analysis of

a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG,” IEEE

Trans. on Biomedical Engineering, vol. 47, no. 9, pp. 1185–1194, 2000.

[20] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E.

Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet:

Components of a new research resource for complex physiologic signals,” Circulation, vol. 101,

pp. e215–e220, 2000.

[21] S. A. Imtiaz and E. Rodriguez-Villegas, “An open-source toolbox for standardized use of PhysioNet

Sleep EDF Expanded Database,” in Proc. EMBC, 2015, pp. 6014–6017.

[22] O. Tsinalis, P. M. Matthews, Y. Guo, and S. Zafeiriou, “Automatic sleep stage scoring with

single-channel EEG using convolutional neural networks,” arXiv:1610.01683, 2016.

[23] O. Tsinalis, P. M. Matthews, and Y. Guo, “Automatic sleep stage scoring using time-frequency

analysis and stacked sparse autoencoders,” Annals of Biomedical Engineering, vol. 44, no. 5,

pp. 1587–1597, 2016.

[24] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Joint classification and prediction

CNN framework for automatic sleep stage classification,” IEEE Trans. Biomedical Engineering

(TBME), vol. 66, no. 5, pp. 1285–1296, 2019.

[25] S. A. Imtiaz and E. Rodriguez-Villegas, “Recommendations for performance assessment of

automatic sleep staging algorithms,” in Proc. EMBC, 2014, pp. 5044–5047.

[26] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “DNN filter bank improves 1-max

pooling CNN for single-channel EEG automatic sleep stage classification,” in Proc. EMBC,



Personalized Automatic Sleep Staging with Single-Night Data 16

2018, pp. 453–456.

[27] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Automatic sleep stage

classification using single-channel EEG: learning sequential features with attention-based

recurrent neural networks,” in Proc. EMBC, 2018, pp. 1452–1455.

[28] F. Andreotti, H. Phan, N. Cooray, C. Lo, M. T. M. Hu, and M. De Vos, “Multichannel sleep

stage classification and transfer learning using convolutional neural networks,” in Proc. EMBC,

2018, pp. 171–174.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computing, vol. 9, no. 8,

pp. 1735–1780, 1997.
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