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SleepTransformer: Automatic Sleep Staging with
Interpretability and Uncertainty Quantification
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Abstract—Background: Black-box skepticism is one of the main
hindrances impeding deep-learning-based automatic sleep scor-
ing from being used in clinical environments. Methods: Towards
interpretability, this work proposes a sequence-to-sequence sleep-
staging model, namely SleepTransformer. It is based on the
transformer backbone and offers interpretability of the model’s
decisions at both the epoch and sequence level. We further
propose a simple yet efficient method to quantify uncertainty
in the model’s decisions. The method, which is based on entropy,
can serve as a metric for deferring low-confidence epochs to a
human expert for further inspection. Results: Making sense of
the transformer’s self-attention scores for interpretability, at the
epoch level, the attention scores are encoded as a heat map to
highlight sleep-relevant features captured from the input EEG
signal. At the sequence level, the attention scores are visualized as
the influence of different neighboring epochs in an input sequence
(i.e. the context) to recognition of a target epoch, mimicking
the way manual scoring is done by human experts. Conclusion:
Additionally, we demonstrate that SleepTransformer performs
on par with existing methods on two databases of different sizes.
Significance: Equipped with interpretability and the ability of
uncertainty quantification, SleepTransformer holds promise for
being integrated into clinical settings.

Index Terms—Automatic sleep staging, transformer, in-
terpretability, uncertainty estimation, deep neural network,
sequence-to-sequence.

I. INTRODUCTION

Sleep deprivation is prevalent and sleep disorders affect
millions of people worldwide [1], posing an huge burden on
public health. Current practice of sleep diagnosis and assess-
ment is still heavily dependent on human expertise. Machine
intelligence, which is disrupting various application fields,
holds huge potential for automating current sleep annotation.
Although it is not the goal that machine intelligence will
entirely replace human sleep experts [2]–[4], we envision it
could work alongside and assist human experts to facilitate
their jobs and scale up sleep assessment and diagnosis.

Sleep staging, the first and fundamental step in sleep diag-
nosis and assessment, is a typical application where machine
intelligence can excel. In practice, this task of assigning a
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sleep stage to a 30-second sleep epoch is still being done
manually, following a predefined set of rules, such as the
American Academy of Sleep Medicine (AASM) guideline
[5]. On average, a sleep expert needs to spend two hours
to complete scoring an overnight polysomnography (PSG)
recording [6], making manually handling millions of sleep
recordings infeasible. Automating this labor-intensive and rou-
tine process will free up a huge amount of time and efforts
from sleep experts as a machine can complete the same task
in a few seconds. Furthermore, automatic sleep scoring is
indispensable when it comes to longitudinal sleep monitoring
in home environments with novel mobile-EEG devices [7], [8].

Significant progress has been made towards automatic sleep
staging in the last few years. The availability of large-scale
public sleep databases with hundreds [9] to thousands of
subjects [10], [11] has stimulated and enabled the exploration
of deep learning paradigms in solving this problem [12]–[17].
Early attempts tried to use vanilla deep network architectures,
such as deep neural networks (DNNs) [18], convolutional
neural networks (CNNs) [17], [19]–[22], and recurrent neural
networks (RNNs) [23]. Replacing more conventional machine
learning methods with these vanilla networks in simple one-
to-one or many-to-one frameworks resulted in limited success,
owing to the limitation of the short input context. Since the
seminal work in [15], the sequence-to-sequence sleep staging
approach has grown in popularity for the task. Using this
framework, handling a long context of 20-30 consecutive
PSG epochs simultaneously, various advanced architectures
have been proposed, for example CNN+RNN [24], [25],
hierarchical RNN [15], [26], and CNN+Transformer [27]. It
further allows extensions from different angles, such as trans-
fer learning [28]–[30], model personalization [31], [32], and
multi-view learning [16]. These advances have significantly
pushed the performance of machine sleep scoring to be on
par with human scoring [12], [15], [16], [26].

Despite all this progress, we have not yet seen automatic
sleep staging widely adopted clinically. Unofficial commu-
nications with leading sleep experts point to the scepticism
of deep learning models being a black box, which is a
common criticism when it comes to the application of artificial
intelligence in healthcare and medicine [33]. We argue that
two overarching obstacles need to be addressed for a machine
scoring system to work alongside practitioners in an interactive
and collaborative manner: (1) interpretability [34], [35] and (2)
uncertainty quantification [36]. Interpretability is the ability of
a model to explain how its decision is made given a certain
input, to be understood by a human. Inspired by the way a
sleep expert performs manual scoring [5], interpretability in
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automatic sleep scoring is reasonably about (but not limited
to) what features the model learns from the input signal,
whether these features are relevant to and underpin the sleep
stages, and how the decision on a target epoch is made under
the influence of its neighboring epochs. Interpretability is
particularly important due to the fact that sleep stages are
ambiguous and even different human experts tend to disagree
at a certain extend [37], [38]. Also, due to this ambiguity,
quantifying uncertainty in the model’s decisions is equally
important. Simply put, we are in need of a simple and concrete
metric, ideally a single number, for quantifying the model’s
uncertainty. Using this metric, epochs that are scored with low
confidence by the model can be deferred to sleep experts for
further inspection [39].

In this work, we propose a sleep staging model, namely
SleepTransformer, as a stepping stone towards addressing the
two above-mentioned obstacles. SleepTransformer adheres to
the sequence-to-sequence sleep staging framework [15], [28].
However, different from most (if not indeed all) existing
works, SleepTransformer is convolution- and recurrent-free.
Instead, it relies on the transformer concept [40] as the
backbone for both epoch- and sequence-level modelling. The
transformer construction is solely based on a self-attention
mechanism whose attention scores will be leveraged for the
model’s interpretability at both the epoch and sequence level.
On the one hand, the attention scores at the epoch level will
be used as a heat map applied to the EEG signal input to
highlight the features the model attends to. On the other hand,
the attention scores at the sequence level is interpreted as the
influence of different neighboring epochs to the recognition of
a target epoch in an input sequence. We also propose to use
entropy of the multi-class probability distribution outputted by
the model to neatly quantify uncertainty in its decisions. We
show that the estimated uncertainty allows us to identify most
of the model’s mistakes. Experimental results on two public
databases, Sleep Heart Health Study (SHHS) and Sleep-EDF
Expanded, of varying size also show that SleepTransformer
performs comparably to existing state-of-the-art models on the
two databases.

Our major contributions are summarized as follows.

• The proposed SleepTransformer is a transformer-based
sequence-to-sequence model which achieves state-of-the-
art performance on automatic sleep scoring. To the best
of our knowledge, this is the first sequence-to-sequence
model solely relying on the transformer architecture pro-
posed for the task.

• We address interpretability of a sleep-staging model in
a natural way at both the epoch and sequence level by
leveraging the attention scores of the transformer’s self-
attention module.

• We propose an entropy-based method to elegantly quan-
tify uncertainty in the model’s decisions as a concrete
number.

The rest of the article is organized as follows. We outline the
used databases in Section II. We then describe the architecture
of the transformer backbone in Section III, followed by the
proposed SleepTransformer in Section IV. We elaborate the

interpretability and uncertainty quantification of the model in
Section V. Details about the experiments will be presented in
Section VI. We conclude the article in Section VII.

II. MATERIALS

The following two databases will be used for experiments
in this work:

Sleep Heart Health Study (SHHS): This is a large-
scale database collected from multiple centers to study the
effect of sleep-disordered breathing on cardiovascular diseases
[10], [11]. The data was collected as part of the clinical
trial “Sleep Heart Health Study (SHHS)”, ClinicalTrials.gov
number, NCT00005275. It has two rounds of PSG records,
namely Visit 1 (SHHS-1) and Visit 2 (SHHS-2). The former,
consisting of 5,791 subjects aged 39-90, was employed in
this work. Manual scoring was completed using the R&K
guideline [41]. Similar to other databases annotated with the
R&K rule, N3 and N4 stages were merged into N3 stage and
MOVEMENT and UNKNOWN epochs were discarded. We
adopted C4-A1 EEG in the experiments.

SleepEDF-78: This database is the 2018 version of the
Sleep-EDF Expanded dataset [42], [43], consisting of 78
healthy Caucasian subjects aged 25-101. Two consecutive day-
night PSG recordings were collected for each subject, except
subjects 13, 36, and 52 whose one recording was lost due
to device failure. Manual scoring was done by sleep experts
according to the R&K standard [41] and each 30-second PSG
epoch was labeled as one of eight categories {W, N1, N2, N3,
N4, REM, MOVEMENT, UNKNOWN}. N3 and N4 stages
were merged into N3 stage. MOVEMENT and UNKNOWN
epochs were excluded. We used the Fpz-Cz EEG in this study.
Of note, we adhere to the common setting where a recording
was trimmed starting from 30 minutes before to 30 minutes
after its in-bed part [16].

III. TRANSFORMER

Transformer [40], a sequence model solely based on self-
attention, has shown compelling results on various sequential
modelling tasks. The transformer is composed of an encoder
and a decoder sharing the same model architecture. However,
the decoder is a left-context-only version which is tasked
for generation purpose. To avoid confusion, the transformer
used in this work is the encoder part. It comprises two core
modules: multi-head attention and position-wise feed-forward
network.

The attention mechanism used in the multi-head attention
module is scaled dot-product attention, as illustrated in Fig-
ure 1 (a). It associates elements at different positions of an in-
put sequence to derive the output sequence which is computed
as a weighted sum of the input values, where the weight for
each value is computed by an attention function of the query
with the corresponding keys. Multi-head attention is composed
of H scaled dot-product attention modules, as illustrated in
Figure 1 (b). Firstly, H different learnable linear projections
are applied to the input and map it to parallel queries, keys, and
values. Then, the scaled dot-product attention is performed on
these mapped queries, keys, and values simultaneously. The
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H attention heads are then concatenated, followed by a linear
projection to produce the attentive output. All these steps can
be formulated as follows:

Qi = ZWQ
i , Ki = ZWK

i , Vi = ZWV
i , 1 ≤ i ≤ H, (1)

Hi = Attention(Qi,Ki,Vi)

= softmax(
QiK

T
i√
d

)Vi, (2)

Z̃ = Concat(H1, . . . ,HH)WZ . (3)

Here, Z ∈ Rl×d is the input with length l and dimension d.
Qi,Ki,Vi ∈ Rl× d

H are the mapped queries, keys, and values.
Hi ∈ Rl× d

H is the i-th attention head. WQ
i ,W

K
i ,W

V
i ∈

Rd× d
H and WZ ∈ Rd×d are the learnable weight matrices.

Z̃ ∈ Rl×d is the attentive output.
The position-wise feed-forward network is a fully connected

feed-forward network. It is comprised of two linear transfor-
mations with a ReLU activation in between. Besides the two
main modules, the transformer also includes several residual
and normalization layers as illustrated in Figure 1 (c). As a
whole, it can be formulated as follows:

Z̃ = MultiHeadAttention(Z), (4)

Zmid = LayerNorm(Z + Z̃), (5)
ZFF = ReLU(ZmidW1 + b1)W2 + b2, (6)

O = LayerNorm(Zmid + ZFF ). (7)

Here, ZFF denotes the output of the position-wise feed-
forward network, in which W1 ∈ Rd×dFF , W2 ∈ RdFF×d,
b1 ∈ RdFF , and b2 ∈ Rd are learnable weight matrices and
biases, respectively.

IV. SLEEPTRANSFORMER

Given a training set {Sn}Nn=1 of size N where Sn =

({S(n)
1 ,y

(n)
1 }, . . . , {S

(n)
L ,y

(n)
L }) is the n-th sequence of L

sleep epochs. S
(n)
i ∈ RT×F , 1 ≤ i ≤ L represents a time-

frequency image of T =29 time frames and F =128 frequency
bins extracted from the i-th 30-second EEG epoch in the n-th
sequence (see Section VI-A). y(n)

i ∈ {0, 1}C denotes the one-
hot encoding label of the i-th EEG epoch in the n-th sequence,
where C = 5 as we are dealing with 5-stage sleep staging.
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Figure 1: Architecture of (a) scaled dot-product attention, (b)
multi-head attention, and (c) transformer encoder.
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ŷLŷiŷ1
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Figure 2: Illustration of SleepTransformer.

The proposed SleepTransformer, illustrated in Figure 2,
adheres to the sequence-to-sequence sleep staging framework
proposed in [15]. It uses the transformer described in Section
III as the backbone network for both intra-epoch (i.e. epoch
level) and inter-epoch (i.e. sequence level) processing. It is,
therefore, free of convolutional and recurrent components
which are the main ingredients in existing deep-learning
models for sleep staging, such as [12], [13], [15]–[17], [44]–
[46].

A. Epoch transformer
The epoch transformer plays the role of a feature map that

transforms a 30-second EEG epoch into a feature vector for
representation. This feature map has been commonly realized
either by a CNN [13], [16] or an RNN [15]. Orthogonally,
SleepTransformer realizes this map using NE transformers.

A time-frequency image S is treated as a sequence of
T spectral columns. Without confusion, we omit the super-
script and subscript for simplicity. We aim to encode this
sequence by a heap of NE transformers which are denoted
as EpochTransformer. As the transformer itself cannot encode
the order information which is vital for both intra-epoch
and inter-epoch processing in a sequence-to-sequence sleep-
scoring network [15], we firstly add positional encodings to
the input to introduce order information:

S̃ = S + Pep. (8)

In (8), Pep ∈ RT×F denotes the positional encoding matrix.
We use sine and cosine functions as in the seminal work [40]
for positional encoding purpose where the i-th row and the
(2j)-th or the (2j + 1)-th column is given as

pi,2j = sin

(
i

100002j/F

)
, (9)

pi,2j+1 = cos

(
i

100002j/F

)
. (10)

The sequence of spectral columns of S̃ is then modelled by

X(i) = EpochTransformer
(
X(i−1)

)
, (11)
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where X(i) ∈RT×F , 1≤ i≤NE , and X(0) ≡ S̃. In order to
reduce X(NE), the output of the last transformer in the heap,
to a compact feature vector for epoch-wise representation,
we combine its columns (x

(NE)
1 , . . . ,x

(NE)
T ) via a weighted

combination:

x =
∑T

t=1
αtx

(NE)
t . (12)

In (12), x ∈ RF denotes the derived feature vector that rep-
resents the input epoch. α1, . . . , αT are the attention weights
learned by a softmax attention layer as in [15], [23]:

αt =
exp(aTt ae)∑T
t=1 exp(aTt ae)

, (13)

at = tanh(Waxt + ba), (14)

where Wa ∈ RA×F and ba ∈ RA are a learnable weight
matrix and bias, respectively. ae ∈ RA is the trainable epoch-
level context vector. A is the so-called attention size.

B. Sequence transformer

Via the epoch transformer in Section (IV-A), an input
sequence (S1, . . . ,SL) has now been transformed into a
sequence of epoch-wise feature vectors (x1, . . . ,xL), where
xi, 1 ≤ i ≤ L, is given in (12). In existing work complying
to the sequence-to-sequence sleep staging framework, the re-
sulting epoch-wise feature vectors (x1, . . . ,xL) were typically
processed by a bidirectional RNN for inter-epoch modelling
[15]. Here, we employ a heap of NS transformers, denoted as
SequenceTransformer, for this purpose.

Similar to the epoch transformer, positional encoding is
firstly carried out via sine-and-cosine functions:

X̃ = X + Pseq, (15)

where X = (x1, . . . ,xL) ∈ RL×F . Pseq ∈ RL×F denotes
the positional encoding matrix whose elements are computed
using (9) and (10). X̃ is then processed by the heap of NS

SequenceTransformer:

O(i) = SequenceTransformer
(
O(i−1)

)
, (16)

where O(i) ∈ RL×F , 1 ≤ i ≤ NS , and O(0) ≡ X̃.
Given the output of the last SequenceTransformer, O(NS) =

(o
(NS)
1 , . . . ,o

(NS)
L ), the vectors o

(NS)
i , 1 ≤ i ≤ L, are eventu-

ally presented to two fully-connected (FC) layers with ReLU
activation, followed by a softmax layer to obtain the output
sequence (ŷ1, . . . , ŷL). As in [15], [16], SleepTransformer is
trained to minimize the cross-entropy loss over the sequence:

L = − 1

L

∑L

i=1
yi log(ŷi). (17)

V. INTERPRETABILITY AND CONFIDENCE
QUANTIFICATION

A. Interpretability via self-attention

Self-attention (cf. Figure 1 (a)) learns a representation by
relating the input elements at different positions in the input
sequence. From the given query Q, the machine learns the
relation between the query and keys K to compute attention

scores, and multiply the attention scores to the values V.
Finally, the sum of attended values composes the semantics
of the given query. The attention scores can be leveraged to
interpret the model. We propose two different visualizations
for interpretation: (1) EEG attention heat map that shows
where in the input EEG signal the model pays more attention
to, and (2) epoch influence as a bar chart which qualifies
the contribution of neighboring epochs to predicting the sleep
stage of a target epoch in the input sequence.

EEG attention heat map. To understand the behavior of the
model, it is important to know what parts of the EEG input
the model pays more attention to. To this end, we sum the
attention scores from each attention head of EpochTransformer
for visualization. Attention score A of a single attention head
is given as:

A = softmax

(
QKT

√
d

)
, (18)

where A∈Rl×l. The element ai,j at i-th row and j-th column
indicates how much the input at index j attributes to the
representation at index i. The matrix A is, therefore, summed
in the first dimension, followed by normalization to the range
[0, 1] to obtain a score vector whose i-th element indicates
how much the input at index i attributes to the representations
at all other indices.

A potential pitfall of the above-mentioned heat map is
that summing the attention scores across the attention heads
may dismiss attention structures of the attention heads. As
an alternative, to further gain insight into the representation
learned by the network, we use the attention score matrices to
transform a time-frequency input and obtain a time-frequency
output right after the last EpochTransformer, omitting all other
non-linear operations. Inverse short-time Fourier Transform
(ISTFT) is then applied the time-frequency output to construct
the raw EEG signal which can be visualized to exhibit the
features learned by the network. Of note, we use the original
phase of the time-frequency input for this construction.

Epoch influence bar chart. To further shed light on the
behavior of the model, it is equally important to know which
neighboring epochs the model pays more attention to while
scoring the target epoch in the input sequence. Given the at-
tention score matrix A of a SequenceTransformer, the element
ai,j at i-th row and j-th column indicates how much the epoch
j in the input sequence is attributing to the representation of
the target epoch i. We argue that it closely resembles the way
a clinician performs manual scoring. Specifically, when the
target epoch does not show much evidence of sleep-relevant
features, the neighboring epochs in the context will be attended
to, providing evidence in support of the scoring [5].

B. Entropy-based confidence quantification

In a general multi-class classification problem, a deep neural
network outputs a vector whose elements are probabilities,
one for each target class of interest. For the 5-stage sleep
staging we are dealing with, an output ŷ from SleepTrans-
former consists of C probability values (C = 5 in this case)
corresponding to C sleep stages. Typically, the sleep stage
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with respect to the maximum probability is considered the
network’s prediction. However, the predicted discrete label
does not tells us how much the network is confident about
its decision whereas the multi-class probability distribution ŷ
is too complex.

In fact, the multi-class probability distribution over the sleep
stages encoded in ŷ can provide a more refined measure of
confidence in the network prediction. In one extreme, when
ŷ assigns probability 1 to one class and probability 0 to the
remaining classes, we expect the network to be very confident
in its decision. In the other extreme, when the distribution
is flat, i.e. all elements in ŷ are equal, the network has
no confidence in its decision. All other distributions indicate
varying levels of confidence between these two extremes. The
entropy of the discrete probability distribution, an information-
theoretic measure of uncertainty [49], appears to be a natural
way to measure the network’s intrinsic uncertainty. In turn, the
network’s confidence can be quantified as a concrete number.
To this end, we propose to use normalized entropy:

H(ŷ) = −
∑C

c=1
ŷc

log(ŷc)

logC
, (19)

to normalize the range of the uncertainty to [0, 1], assuming
0×log 0 = 0. In turn, the network confidence is quantified as

Conf(ŷ) = 1−H(ŷ). (20)

For 5-stage classification, H(ŷ) = 1 and Conf(ŷ) = 0
when ŷ = ( 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ). H(ŷ) = 0 and Conf(ŷ) = 1

when ŷ contains exactly one probability 1, for example
ŷ = (0, 1, 0, 0, 0). All other possible values of ŷ will result in
0 < Conf(ŷ) < 1.

Given the estimated confidence, we envision that a low-
confidence epoch can be deferred for further manual verifi-
cation and correction by human experts. The filtering can be
accomplished via either thresholding the confidences with a
predefined threshold or simply selecting a certain percentage
of epochs with lowest confidences.

VI. EXPERIMENTS

A. Extraction of time-frequency image

As described, SleepTransformer ingests time-frequency im-
ages as input. To extract a time-frequency image, a 30-second
EEG epoch sampled at 100 Hz was decomposed into two-
second frames with 50% overlap, multiplied with a Hamming
window, and transformed to the frequency domain using a 256-
point short-time Fourier Transform (STFT). This procedure
resulted in an image S ∈ RT×F with T = 29 time frames
and F = 128 frequency bins. Of note, we excluded the 0-th
frequency bin to keep F = 128 which is a multiple of the
number of attention heads in the epoch transformer in Section
IV-A. The amplitude spectrum was then log-transformed.
The time-frequency images extracted from a database were
normalized to zero mean and unit variance along the frequency
dimension given the normalization parameters computed using
the training data.

B. Parameters

We experimented with different values {11, 21, 31, 41, 51}
for the input sequence length L and 21 was found to be best.
This result confirms the finding reported in other works like
[13], [15]. Thus, we fixed L=21 for further experiments here.
The network was designed to have NE =4 EpochTransformers
for intra-epoch processing and NS =4 SequenceTransformers
for inter-epoch processing. In a transformer, the number of
attention heads was fixed to H=8 and the number of hidden
units of a feed forward layer was fixed to dFF = 1024. The
FC layers of the network was also of size 1024. A common
dropout rate of 0.1 was applied to the transformer, including
the self-attention layers and the feed forward layers, as well
as the FC layers.

The experiments were conducted on the two databases
SHHS and SleepEDF-78 individually. We carried out 10-
fold cross-validation on the SleepEDF-78 database as in prior
works [16], [25], [31]. In each iteration, seven subjects were
left out from the training subjects as the validation set. For
the large-scale database, SHHS, we randomly split the subject
into 70% for training and 30% for testing as in [16], [22]. 100
subjects were left out from the training set as the validation
set. Of note, following [22], those recordings without all five
sleep stages were excluded. The network was trained using
Adam optimizer [50] with a learning rate of 10−4, β1 = 0.9,
β2 =0.999, and ε=10−7. A minibatch size of 32 was used for
training. The model was validated on the validation set every
100 training steps. Early stopping was applied and the training
was stopped after 200 validation steps without improvement
on the validation data. Particularly, for SHHS, the model was
trained for at least 5000 validation steps before early stopping
was activated.

C. Experimental results

1) Sleep staging performance: Table I shows the perfor-
mance on the experimental databases obtained by SleepTrans-
former in comparison to those reported in previous works.
Accuracy, Cohen’s kappa (κ) [51], macro F1-score (MF1)
[52], average sensitivity, and average specificity are used as
overall performance metrics while class-specific performance
is assessed using class-wise MF1.

On the large-scale database, SHHS, SleepTransformer
achieves an overall accuracy of 87.7% and κ of 0.828. On
the one hand, compared to the seminal sequence-to-sequence
counterpart, SeqSleepNet [15], SleepTransformer results in
an improvement of 1.2% absolute in terms of accuracy and
0.017 in terms of κ. This result suggests that the transformer
backbone is more advantageous than the recurrent backbone
used in SeqSleepNet. On the other hand, SleepTransformer’s
performance is on par with those of the existing state-of-
the-art XSleepNets [16] (i.e. XSleepNet1 and XSleepNet2 in
Table I). Although the differences in their accuracy and κ are
small, it is considerable given the fact that SleepTransformer
only uses the time-frequency input (i.e. single view), has a
smaller model footprint, and is computationally cheaper (see
Table III). The class-wise MF1s further unravel their opposite
patterns. SleepTransformer seems to favor the major sleep
stages, i.e. Wake and REM, over the under-present stage N1.
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Table I: Performance comparison between SleepTransformer and previous works on the experimental databases. The superscript
∗ indicates the model was initialized by the model pretrained on the SHHS database. † The results are not directly comparable
either due to the differences in the data split and the channels used (Olesen et al. [44] and U-Sleep [46]) or due to the use of
a small subset of healthy subjects (Eldele et al. [47]).

Database System Overall metrics Class-wise MF1
Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM

SHHS

SleepTransformer 87.7 0.828 80.1 78.7 96.5 92.2 46.1 88.3 85.2 88.6
XSleepNet2 87.6 0.826 80.7 79.7 96.5 92.0 49.9 88.3 85.0 88.2
XSleepNet1 87.5 0.826 81.0 80.4 96.5 91.6 51.4 88.5 85.0 88.4
U-Sleep† [46] − − 80.0 − − 93.0 51.0 87.0 76.0 92.0

Olesen et al.† [44] 87.1 0.816 78.8 77.7 96.3 94.1 47.8 87.9 74.3 89.9
SeqSleepNet [15] 86.5 0.811 78.5 76.9 96.1 91.4 43.3 87.4 82.9 87.3
FCNN+RNN 86.7 0.813 79.5 78.1 96.2 91.1 48.7 88.0 82.6 87.1
CNN [22] 86.8 0.810 78.5 − 95.0 − − − − −
IITNet [24] 86.7 0.810 79.8 − − − − − − −
AttnSleep† [47] 84.2 0.78 75.3 − − 86.7 33.2 87.1 87.1 82.1

SleepEDF-78

SleepTransformer* 84.9 0.789 78.8 78.2 95.9 93.5 48.5 86.5 80.9 84.6
SleepTransformer 81.4 0.743 74.3 74.5 95.0 91.7 40.4 84.3 77.9 77.2
XSleepNet2 84.0 0.778 77.9 77.5 95.7 93.3 49.9 86.0 78.7 81.8
XSleepNet1 83.6 0.773 77.8 77.7 95.7 92.6 50.2 85.9 79.2 81.3
SeqSleepNet [15] 82.6 0.760 76.4 76.3 95.4 92.2 47.8 84.9 77.2 79.9
FCNN+RNN 82.8 0.761 76.6 75.9 95.4 92.5 47.3 85.0 79.2 78.9
Zhu et al. [48] 82.8 − 77.8 − − 90.3 47.1 86.0 82.1 83.2
U-Time [45] − − 76.0 − − − − − − −
U-Sleep† [46] − − 79.0 − − 93.0 57.0 86.0 71.0 88.0
CNN-LSTM [45] − − 73.0 − − − − − − −
AttnSleep [47] 81.3 0.74 75.1 − − 92.0 42.0 85.0 82.1 74.1
SleepEEGNet [25] 80.0 0.730 73.6 − − − − − − −

On the contrary, the class-wise MF1s are less skewed in
case of XSleepNets, resulting in a better overall MF1 than
SleepTransformer.

On the smaller database (SleepEDF-78) SleepTransformer’s
performance seems to be inferior to other competitors. How-
ever, this result does not correctly reflect its modelling capac-
ity. In fact, we observed that SleepTransformer overfitted this
database quite easily and thus requires a larger amount of data
for training. Motivated by the sleep transfer learning approach
in [28], we utilized the model trained on SHHS to initialize
the network instead of random initialization. This simple trick
significantly boosted the performance, improving the overall
absolute accuracy, κ, and MF1 by 3.5%, 0.046, and 4.5%.
With the achieved overall accuracy of 84.9%, κ of 0.789, and
MF1 of 78.8, SleepTransformer outperforms all the previous
works evaluated on SleepEDF-78, except for U-Sleep [46]
which utilized an ensemble of models separately trained on
EEG and EOG. Regarding the class-wise performance, similar
conclusions as for SHHS can be drawn.

2) Confidence estimation: Let Ā denote the set of low-
confidence epochs (that need further manual verification and/or
correction) whose confidences are below a predefined thresh-
old. Alternatively, Ā can also be selected as the set of epochs
with lowest confidences, e.g. the set containing 20% of epochs
with lowest confidences. In addition, let A denote the set of
the remaining epochs, which is the complement of Ā.

Reasonably, the confidence metric is only useful and mean-
ingful if it could help filter out misclassified epochs for further
manual verification/correction. As shown in Figure 3 (a), the
classification accuracy of Ā remains much lower than A
regardless of the size of Ā. For example, when Ā constitutes
20% of all the epochs, it has an accuracy around 60%, meaning
40% of its epochs are misclassified ones. And these misclas-
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Figure 3: SleepEDF-78: (a) Accuracies of A and Ā; (b)
percentages of misclassified epochs in A and Ā out of all
misclassified epochs; (c) percentages of transitioning epochs
out of A and Ā.

sified epochs constitute about 65% of all misclassified epochs
as shown in Figure 3 (b). The percentage of misclassified
epochs in Ā increases sharply when it grows larger. When
Ā constitutes of 50% of all the epochs, we can segregate
more than 90% of all misclassified epochs. All of this implies
that the misclassified epochs are often associated with low
confidences. For sleep particularly, the transitioning epochs
(whose sleep stages are different from those of its preceding
and/or succeeding neighbors [53]) are usually difficult ones
as human scorers also tend to disagree and machine scoring
systems often make mistakes. Interestingly, the percentage of
transitioning epochs in Ā is always considerably larger than in
A, as shown in Figure 3 (c). Moreover, the confusion matrices
in Figure 4 further reveal that the majority of the epochs in Ā
are N1, leaving just a small portion of N1 epochs in A. This
is not a surprise since N1 is, in general, hard to be correctly
recognized due to its under-presence and strong resemblance
to Wake and N2.
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Figure 4: Confusion matrices of SleepEDF-78. A confidence threshold of 0.5 was used to separate the epochs into A and Ā.
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threshold = 0.5

Figure 5: Visualization the estimated confidence for Subject 2 of SleepEDF-78. (a) The quantified confidence; (b) the probability
output; (c) the output hypnogram where × indicates the misclassified epochs; and (d) the ground-truth hypnogram. The shaded
regions correspond to the epochs with their confidence below the threshold.

We further showcase the above findings in Figure 5 where
we portray the quantified confidence alongside the ground-
truth hypnogram, the output hypnogram, and the multi-class
probability output for a subject in SleepEDF-78 (i.e. Subject
2). In the figure, the confidence is thresholded by 0.5. It can be
seen that, often, the low-confidence and transitioning epochs
are misclassified. With the threshold value 0.5, roughly 90%
(in case of SleepEDF-78) or more (in case of SHHS) of epochs
per night have their confidences above the threshold, as further
shown in Figure 6, and would not need to undergo manual
verification.

3) Attention score visualization for interpretation: In light
of the proposed approach for explainability in Section V-A,
in Figures 7 and 8, we attempted to visualize the attention
scores for two different input sequences at both the epoch and
sequence level. For simplicity and clarity, we used the model
with sequence length L = 11 and the attention scores of the
last EpochTransformer and SequenceTransformer for the EEG
heat map and the sequence-level attention, respectively. We
also included the predicted labels, the ground-truth labels, and
the estimated confidences of the epochs in the sequences to
aid interpretability. We additionally show enlarged versions of
the raw EEG signals in Appendix for further details.

At the epoch-level, the heat map on the EEG signals in
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Figure 6: Percentages of epochs per night with confidence
above a confidence threshold of 0.4, 0.5, and 0.6.

the figures suggests that the model indeed attended more to
sleep related features. For instance, the K-complexes present
in epochs 2 and 4 in Figure 7(b). This type of micro-event is
notable in the sleep stage N2. The attention is more scattering
for N3 stage in epochs 1, 2, and 3 in Figure 7(b) given the
omnipresence of Delta waves. Furthermore, the constructed
EEGs resemble Alpha waves in N1 stage (epochs 9, 10, and 11
in Figure 7(c)), high-amplitude neural activities in Wake stage
(epochs 5, 7, and 8 in Figure 7(c)), or Delta waves in N3 stage
(epochs 1-6 in Figure 8(c)). These constructed EEGs exhibit
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Figure 7: Self-attention visualization for interpretation of an input sequence with L = 11 stemming from SleepEDF-78 (Subject
2). The sequence involves two cross-stage transitions: (i) N2→Wake around epochs 4 and 5, and (ii) Wake→N1 around epochs
8 and 9. (a) The distribution of sequence-level attention scores where an arrow indicates the position of the current epoch
in the distribution of the attention score. (b) The EEG features learned for epoch representation (constructed via ISTFT as
described in Section V-A). For pair of labels, the output label is on the left and the ground-truth label is inside the brackets on
the right. (c) The epoch-level attention scores represented by heat map on the raw EEG signals. (d) The spectrogram inputs
and their epoch attention scores (i.e. the red curves) distributed over spectral columns. (e) The estimated confidences.
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Table II: Variation of SleepTransformer’s performance on SHHS with different values of NE , the number of transformer
encoder block in the epoch encoder, and NS , the number of transformer encoder block in the sequence encoder.

NE NS
Overall metrics Class-wise MF1

Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM
1 4 87.5 0.824 79.3 77.8 96.4 91.9 42.8 88.2 85.1 88.2
2 4 87.7 0.827 79.5 77.9 96.5 92.3 42.9 88.3 85.2 88.6
3 4 87.7 0.828 79.8 78.4 96.5 92.4 44.2 88.3 85.1 88.9
4 4 87.7 0.828 80.1 78.7 96.5 92.2 46.1 88.3 85.2 88.6
4 3 87.4 0.823 79.1 77.7 96.4 92.1 42.3 87.9 85.1 88.1
4 2 87.6 0.826 79.6 78.5 96.5 92.4 44.0 88.2 85.2 88.3
4 1 87.5 0.825 79.1 77.9 96.5 92.1 41.9 88.3 85.5 87.7

distinguishable frequency distributions as shown in Figures
A.1 and A.2.

At the sequence level, the attention scores act as the weights
used to collectively combine features in different epochs in
the sequence to classify a target epoch, featuring the benefit
of sequence-to-sequence sleep scoring with self-attention. In
the first example in Figure 7, apparently, those epochs on the
left of the sequence containing useful features for recognizing
the stage N2 are associated with strong weights whereas other
epochs containing less relevant features are associated with
smaller weights. Similarly, for Wake epochs, the attention
scores concentrate more around the epochs in the middle. On
the contrary, the attention scores of the N1 epochs on the right
disperse due to the fact that the stage N1 shares similar features
to both Wake and N2. In other words, even though the EEG
signal of a target epoch does not show much useful features
for recognizing the sleep stage N1, the model is still able to
recognize it by leveraging the relevant features appearing in
the context via the sequence-level attention.

In the second example in Figure 8, we note that, for
both N2 and N3, considerably greater attention weights are
placed on the epochs far away from the transitioning boundary
which most likely convey more reliable features. Thus, the
network is taking advantage of long-term structure in sleep to
recognize those epochs close to the transitioning boundary.
This particular example, on the other hand, demonstrates
an interesting case at the 8-th epoch where the network
misclassified, predicting N3 against the ground-truth N1. We
argue that the ground-truth N1 in this case highlights the
well-known subjectivity of human scoring since the transient
transition N3→N1→N2 seems to be counter-intuitive. This
epoch seems to contain mixed information of both N3 (delta
activity as shown in the time-frequency image for the 8-th
epoch in Figure A.2) and N2 (the big K-complex in the raw
EEG of the 8-th epoch in Figure 8 (c)). Thus, it is more likely
to be a N3→N2 transitioning epoch.

We argue that this visualization resembles the way human
scoring is done, and therefore, would facilitate manual verifi-
cation and correction of low-confidence epochs and provide a
gateway for practitioners to interact with the model.

D. Discussion
For models using the transformer backbone like Sleep-

Transformer, choosing an appropriate number of transformers
can be crucial. To investigate the influence of the number
of EpochTransformer NE and the number of SequenceTrans-
former NS , we repeated the experiments with NE fixed to

4 and NS varied in {1, 2, 3, 4}. After that, we repeated the
experiments with NS fixed to 4 and NE varied in {1, 2, 3, 4}.
Using SHHS for this investigation, the overall performance
obtained with different values of NE and NS are shown in
Table II. These results suggest the modest impact of both NE

and NS on the overall accuracy. However, the class-wise MF1s
suggest a large number of transformers is important to improve
the performance (mostly the sensitivity, i.e. the true positive
rate) on the under-present stage N1 which, in turn, improves
the average MF1.

Concerning the model size and computational cost, even
with NE = 4 and NS = 4, SleepTransformer has moderate
model size and modest computational overhead as contrasted
with some existing models (whose relevant information was
previously reported) in Table III. In particular, compared to our
recent developed model, XSleepNet [16], SleepTransformer’s
model size is just two third of it of XSleepNet [16] while it
is 2.7 times faster to train. It is even faster than SeqSleepNet,
the compact model proposed in our previous work [15], most
likely because SleepTransformer is recurrent-free. Of note, we
measured the training time of the models in the table using a
common DGX-2 machine with NVIDIA Tesla V100 graphic
card and Intel Xeon Platinum 8186 CPU, 2.7 GHz.

Future work can further address the following limitations of
this work. First, the entropy-based uncertainty quantification
proposed here is not only applicable for SleepTransformer but
also any sleep-scoring model with probability output, such as
SeqSleepNet [15] or XSleepNet [16]. Furthermore, alternative
to entropy, the likelihood of the most likely class (i.e. the
maximum probability in an output probability distribution)
could also be used to obtain a measure of uncertainty [54].
Different from entropy, which depends on the entire distri-
bution over classes to measure an overall uncertainty in the
predictions, this measure of uncertainty is not affected by
probabilities of other classes and may yield a more precise
estimation. Lastly, we are only dealing with knowledge uncer-
tainty (i.e. uncertainty in the model’s predictions), leaving data
uncertainty [36] (i.e. uncertainty arises due to the complexity,
multi-modality and noise in the data) open for future works.
Ideally, a method that could take into account both data
uncertainty and model uncertainty, could be agnostic to the
network architectures, and could be applied to already trained
models would be much more useful. Second, our visualization
attempt in Figure V-A is not necessarily the best and the
only way to interpret the model’s decisions. Further creativity
and interaction with experts will be needed to leverage the
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Table III: Model size and training time per 1000 training steps.

Model #parameters training time (s)
per 1000 steps

SleepTransformer 3.70× 106 308
SeqSleepNet [15] 1.64× 105 379
U-Time [45] 1.10× 106 −
U-Sleep [46] 3.10× 106 −
XSleepNet [16] 5.74× 106 828
DeepSleepNet [13] 2.30× 107 −

information encoded in the attention scores before it can be
embedded in daily sleep practise. Third, we employed the
original transformer proposed in the seminal work of [40] as
the backbone of SleepTransformer, more advanced variants of
transformer can be further explored.

VII. CONCLUSIONS

We proposed SleepTransformer, a sequence-to-sequence
sleep staging model relying solely on the transformer network.
We showed that SleepTransformer performed comparably to
state-of-the-art models on both SHHS, a large-scale database,
and SleepEDF-78, a relative small database. We leveraged the
attention scores of the transformer’s self-attention module for
interpretability. At the epoch level, the attention scores was
applied to the EEG input as a heat map to highlight sleep-
relevant features the model attended to. At the sequence level,
the attention scores were interpreted as the contribution of
different neighboring epochs to the recognition of a target
epoch in the input sequence. We also used entropy of the multi-
class probability distribution output to quantify uncertainty of
the model’s decisions as a concrete number which was shown
to align well with the model’s mistakes and successes.

ACKNOWLEDGMENT

This research received funding from the Flemish Govern-
ment (AI Research Program). Maarten De Vos is affiliated
to Leuven.AI - KU Leuven institute for AI, B-3000, Leuven,
Belgium. H. Phan is supported by a Turing Fellowship under
the EPSRC grant EP/N510129/1. The study was approved by
Clinical Trials and Research Governance, Churchill Hospital -
Oxford University Hospitals, Oxford, UK. Data were provided
by the Center for Sleep and Wake Disorders at MCH West-
einde Hospital, Den Haag, the Netherlands; and the Division
of Sleep and Circadian Disorders, Brigham and Women’s
Hospital, MA, USA.

REFERENCES

[1] Institute of Medicine, Sleep Disorders and Sleep Deprivation: An Unmet
Public Health Problem, Washington DC: The National Academies Press,
2006.

[2] O. Asan et al., “Artificial intelligence and human trust in healthcare:
Focus on clinicians,” Journal of Medical Internet Research, vol. 22, no.
6, pp. e15154, 2020.

[3] M. Nagendran et al., “Artificial intelligence versus clinicians: systematic
review of design, reporting standards, and claims of deep learning
studies,” BMJ, vol. 368, pp. m689, 2020.

[4] G. Eysenbach and Q. Zeng, “Artificial intelligence and human trust in
healthcare: Focus on clinicians,” Journal of Medical Internet Research,
vol. 22, no. 6, pp. e15154, 2020.

[5] C. Iber et al., “The AASM manual for the scoring of sleep and associated
events: Rules, terminology and technical specifications,” American
Academy of Sleep Medicine, 2007.

[6] A. Malhotra et al., “Performance of an automated polysomnography
scoring system versus computer-assisted manual scoring,” SLEEP, vol.
36, no. 4, pp. 573–582, 2013.

[7] K. B. Mikkelsen et al., “Machine-learning-derived sleep–wake staging
from around-the-ear electroencephalogram outperforms manual scoring
and actigraphy,” J. Sleep Res., vol. 28, no. 2, pp. e12786, 2019.

[8] K. B. Mikkelsen et al., “Sleep monitoring using ear-centered setups:
Investigating the influence from electrode configurations,” IEEE Trans-
actions on Biomedical Engineering, pp. 1–1, 2021.

[9] C. O’Reilly et al., “Montreal archive of sleep studies: An open-access
resource for instrument benchmarking & exploratory research,” J. Sleep
Res., pp. 628–635, 2014.

[10] G. Q. Zhang et al., “The national sleep research resource: towards a
sleep data commons,” J Am Med Inform Assoc., vol. 25, no. 10, pp.
1351–1358, 2018.

[11] S. F. Quan et al., “The sleep heart health study: design, rationale, and
methods,” Sleep, vol. 20, no. 12, pp. 1077–1085, 1997.

[12] J. B. Stephansen et al., “Neural network analysis of sleep stages enables
efficient diagnosis of narcolepsy,” Nature Communications, vol. 9, no.
1, pp. 5229, 2018.

[13] A. Supratak et al., “DeepSleepNet: A model for automatic sleep stage
scoring based on raw single-channel EEG,” IEEE Trans. Neural Syst.
Rehabilitation Eng., vol. 25, no. 11, pp. 1998–2008, 2017.

[14] S. Biswal et al., “Expert-level sleep scoring with deep neural networks,”
J Am Med Inform Assoc., vol. 25, no. 12, pp. 1643–1650, 2018.

[15] H. Phan et al., “SeqSleepNet: end-to-end hierarchical recurrent neural
network for sequence-to-sequence automatic sleep staging,” IEEE Trans.
Neural Syst. Rehabilitation Eng., vol. 27, no. 3, pp. 400–410, 2019.

[16] H. Phan et al., “XSleepNet: Multi-view sequential model for automatic
sleep staging,” IEEE Trans. Pattern Analysis and Machine Intelligence
(TPAMI), 2021.

[17] S. Chambon et al., “A deep learning architecture for temporal sleep
stage classification using multivariate and multimodal time series,” IEEE
Trans. Neural Syst. Rehabilitation Eng., vol. 26, no. 4, pp. 758–769,
2018.

[18] H. Dong et al., “Mixed neural network approach for temporal sleep
stage classification,” IEEE Trans. Neural Syst. Rehabilitation Eng., vol.
26, no. 2, pp. 324–333, 2018.

[19] O. Tsinalis et al., “Automatic sleep stage scoring with single-
channel EEG using convolutional neural networks,” arXiv preprint
arXiv:1610.01683, 2016.

[20] H. Sun et al., “Large-scale automated sleep staging,” SLEEP, vol. 40,
no. 10, pp. zsx139, 2017.

[21] H. Phan et al., “DNN filter bank improves 1-max pooling CNN for
single-channel EEG automatic sleep stage classification,” in Proc.
EMBC, 2018, pp. 453–456.

[22] A. Sors et al., “A convolutional neural network for sleep stage scoring
from raw single-channel eeg,” Biomed Signal Process Control, vol. 42,
pp. 107–114, 2018.

[23] H. Phan et al., “Automatic sleep stage classification using single-channel
eeg: Learning sequential features with attention-based recurrent neural
networks,” in Proc. EMBC, 2018, pp. 1452–1455.

[24] H. Seo et al., “Intra- and inter-epoch temporal context network (iitnet)
using sub-epoch features for automatic sleep scoring on raw single-
channel eeg,” Biomed Signal Process Control, 2020.

[25] S. Mousavi et al., “SleepEEGNet: Automated sleep stage scoring with
sequence to sequence deep learning approach,” PLoS One, vol. 14, no.
5, pp. e0216456, 2019.

[26] A. Guillot and V. Thorey, “Robustsleepnet: Transfer learning for
automated sleep staging at scale,” arXiv preprint arXiv:2101.02452,
2021.

[27] J. Fan et al., “EOGNET: a novel deep learning model for sleep stage
classification based on single-channel eog signal,” Front. Neurosci., vol.
15, pp. 573194, 2021.

[28] H. Phan et al., “Towards more accurate automatic sleep staging via
deep transfer learning,” IEEE Trans. Biomed. Eng., vol. 68, no. 6, pp.
1787–1798, 2021.

[29] H. Phan et al., “Deep transfer learning for single-channel automatic
sleep staging with channel mismatch,” in Proc. EUSIPCO, 2019.

[30] N. Banluesombatkul et al., “MetaSleepLearner: A pilot study on fast
adaptation of bio-signals-based sleep stage classifier to new individual
subject using meta-learning,” IEEE Journal of Biomedical and Health
Informatics (JBHI), vol. 25, no. 6, pp. 1949–1963, 2021.

[31] H. Phan et al., “Personalized automatic sleep staging with single-night
data: a pilot study with KL-divergence regularization,” Physiological
Measurement, vol. 41, no. 6, pp. 064004, 2020.



11

[32] K. Mikkelsen and M. De Vos, “Personalizing deep learning models for
automatic sleep staging,” arXiv Preprint arXiv:1801.02645, 2018.

[33] J. Amann et al., “Explainability for artificial intelligence in healthcare: a
multidisciplinary perspective,” BMC Medical Informatics and Decision
Making, vol. 20, pp. 310, 2020.

[34] A. Vilamala et al., “Deep convolutional neural networks for interpretable
analysis of EEG sleep stage scoring,” in Proc. MLSP, 2017.

[35] T. Lee et al., “Trier: Template-guided neural networks for robust and
interpretable sleep stage identification from eeg recordings,” arXiv
Preprint arXiv:2009.05407, 2020.

[36] K. B. Mikkelsen et al., “Predicting sleep classification performance
without labels,” in Proc. EMBC, 2020, pp. 645–648.

[37] A. Guillot et al., “Dreem open datasets: Multi-scored sleep datasets
to compare human and automated sleep staging,” IEEE Trans. Neural
Systems and Rehabilitation Engineering (TNSRE), vol. 28, no. 9, pp.
1955–1965, 2020.

[38] H. Danker-Hopfe et al., “Interrater reliability for sleep scoring according
to the Rechtschaffen & Kales and the new AASM standard,” J. Sleep
Res., vol. 18, pp. 74–84, 2009.

[39] T. Becker et al., “Classification with a deferral option and low-trust
filtering for automated seizure detection,” Sensors, vol. 21, no. 4, pp.
1046, 2021.

[40] A. Vaswani et al., “Attention is all you need,” in Proc. NIPS, 2017, p.
5998–6008.

[41] J. A. Hobson, “A manual of standardized terminology, techniques and
scoring system for sleep stages of human subjects,” Electroencephalog-
raphy and Clinical Neurophysiology, vol. 26, no. 6, pp. 644, 1969.

[42] B. Kemp et al., “Analysis of a sleep-dependent neuronal feedback loop:
the slow-wave microcontinuity of the EEG,” IEEE. Trans. Biomed. Eng.,
vol. 47, no. 9, pp. 1185–1194, 2000.

[43] A. L. Goldberger et al., “Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic sig-
nals,” Circulation, vol. 101, pp. e215–e220, 2000.

[44] A. N. Olesen et al., “Automatic sleep stage classification with deep
residual networks in a mixed-cohort setting,” SLEEP, vol. 44, no. 1, pp.
zsaa161, 2021.

[45] M. Perslev et al., “U-time: A fully convolutional network for time
series segmentation applied to sleep staging,” in Proc. NeurIPS, 2019,
pp. 4417–4428.

[46] M. Perslev et al., “U-Sleep: resilient high-frequency sleep staging,” npj
Digital Medicine, vol. 4, no. 72, 2021.

[47] E. Eldele et al., “An attention-based deep learning approach for sleep
stage classification with single-channel eeg,” IEEE Trans. on Neural
Systems and Rehabilitation Engineering, vol. 29, pp. 809–818, 2021.

[48] T. Zhu et al., “Convolution- and attention-based neural network for au-
tomated sleep stage classification,” International Journal of Environment
Research and Public Health, vol. 7, pp. 4152, 2020.

[49] T. M. Cover and J. A. Thomas, Elements of information theory, John
Wiley & Sons, 2006.

[50] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in Proc. ICLR, 2015, number 1-13.

[51] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
Medica, 2012.

[52] Y. Yang and X. Liu, “A re-examination of text categorization methods,”
in Proc. SIGIR, 1999, vol. 99, pp. 42–49.

[53] H. Phan et al., “Joint classification and prediction CNN framework for
automatic sleep stage classification,” IEEE. Trans. Biomed. Eng., vol.
66, no. 5, pp. 1285–1296, 2019.

[54] K. B. Mikkelsen et al., “Accurate whole-night sleep monitoring with
dry-contact ear-EEG,” Sci. Rep., vol. 9, no. 1, pp. 1–12, 2019.

APPENDIX A
TIME-FREQUENCY REPRESENTATION CORRESPONDING TO

THE CONSTRUCTED EEGS
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Figure A.1: Time-frequency representation corresponding to the constructed EEG in Figure 7 (b). Of note, we only show
frequency bins 1-40 corresponding to frequency range (0, 15.5] Hz.
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Figure A.2: Time-frequency representation corresponding to the constructed EEG in Figure 8 (b). Of note, we only show
frequency bins 1-40 corresponding to frequency range (0, 15.5] Hz.


