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Pediatric Automatic Sleep Staging: A
comparative study of state-of-the-art deep

learning methods
Huy Phan, Alfred Mertins, and Mathias Baumert

Abstract— Background: Despite the tremendous
progress recently made towards automatic sleep staging in
adults, it is currently unknown if the most advanced
algorithms generalize to the pediatric population,
which displays distinctive characteristics in overnight
polysomnography (PSG). Methods: To answer the question,
in this work, we conduct a large-scale comparative study
on the state-of-the-art deep learning methods for pediatric
automatic sleep staging. Six different deep neural networks
with diverging features are adopted to evaluate a sample
of more than 1,200 children across a wide spectrum of
obstructive sleep apnea (OSA) severity. Results: Our
experimental results show that the individual performance
of automated pediatric sleep stagers when evaluated on
new subjects is equivalent to the expert-level one reported
on adults. Combining the six stagers into ensemble
models further boosts the staging accuracy, reaching
an overall accuracy of 88.8%, a Cohen’s kappa of 0.852,
and a macro F1-score of 85.8%. At the same time, the
ensemble models lead to reduced predictive uncertainty.
The results also show that the studied algorithms and their
ensembles are robust to concept drift when the training
and test data were recorded seven months apart and after
clinical intervention. Conclusion: However, we show that
the improvements in the staging performance are not
necessarily clinically significant although the ensemble
models lead to more favorable clinical measures than the
six standalone models. Significance: Detailed analyses
further demonstrate “almost perfect” agreement between
the automatic stagers to one another and their similar
patterns on the staging errors, suggesting little room for
improvement.

Index Terms— Automatic sleep staging, pediatric, OSA,
deep learning, ensemble, benchmark.

I. INTRODUCTION

Assigning a sleep stage to each 30-second epoch of a
full overnight polysomnogram (PSG) is a critical to assess
the macro-structure of sleep, i.e., to observe sleep cycles,
quantify the time spent in each sleep stage, and determine
rapid eye movement (REM) onset latency and wake after sleep
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onset (WASO). Sleep stages and cycles serve as an impor-
tant proxy for neuro-physiological processes that orchestrate
sleep and provide diagnostic markers for sleep disorders [1].
For instance, differentiation of sleep stages and sleep stage
transitions are used to quantify sleep continuity in patients
with obstructive sleep apnea (OSA) syndrome [2], a common
sleep disorder in both adults [3] and children [4]. Patterns of
sleep-stage transitions [5] and REM sleep onset [6] are im-
portant indicators for narcolepsy, a rare central hypersomnia.
Traditionally, sleep staging has been carried out manually by
sleep technicians following the American Academy of Sleep
Medicine (AASM) guidelines [7]. Since manual scoring is
time-consuming, laborious, and requires expert knowledge,
significant efforts went into teaching a machine to perform
sleep staging to reduce costs and make PSG diagnostics more
widely available.

The advance of deep learning [8] coupled with the estab-
lishment of large-scale public sleep databases [9], [10] has
accelerated automatic sleep staging research. Now, automatic
sleep staging systems [11]–[17] relying on the new sequence-
to-sequence paradigm [11] have surpassed the agreement level
of experts’ scoring [18], reaching an accuracy acceptable for
clinical applications. Importantly, this class of sleep staging
algorithms has been validated almost exclusively on adult
PSGs. How they perform on pediatric PSGs, in particular on
clinical populations with OSA, remains uncharted. Evaluating
these algorithms on the pediatric PSGs is crucial given their
considerable discrepancies to the adult ones. For example,
EEG of children shows higher amplitude and a slower dom-
inant posterior rhythm than the alpha rhythm seen in adults
[19]. Furthermore, the sleep architecture in children exhibits
significant differences among age subgroups. For example,
the amount of REM and slow wave sleep (SWS) changes
dramatically during infancy, childhood and adolescence. Also,
children tend to move more during sleep than adults, affecting
the quality of the recorded data adversely, possibly imposing
greater challenges on automated systems. Thus, it is imperative
to benchmark established algorithms on the pediatric PSG.

In this work, we aim to determine if the expert-level
performance of the state-of-the-art sleep scoring algorithms
is generalizable to the pediatric population. To this end, we
conduct a comparative study to benchmark six different algo-
rithms on a large clinical-validated pediatric cohort of >1, 200
children with > 1, 600 PSG recordings in total. All children
underwent PSG screening for OSA, displaying a wide range of
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OSA severity, including negative, mild, moderate, and severe
cases. The algorithms adopted in this study adhere to the
sequence-to-sequence framework [11] and manifest diverging
characteristics on their input types and network architectures.
They include XSleepNet1 [13], XSleepNet2 [13], SeqSleepNet
[11], DeepSleepNet [20], FCNN-RNN [13], and SleepTrans-
former [16], which were recently reported to achieve state-of-
the-art performance on a variety of public adult PSG databases,
such as Sleep-EDF Expanded [21], [22], Montreal Archive
of Sleep Studies (MASS) [23], Physio2018 [24], and Sleep
Heart Health Study (SHHS) [9], [10]. Furthermore, we propose
and evaluate two ensemble models that combine the six
adopted sleep stagers via a probability averaging strategy and
a convolutional neural network (CNN). Our main contributions
are as follows:

• We establish a comprehensive benchmark on a rich set
of state-of-the-art deep learning methods for automatic
sleep staging on a large-scale pediatric population with a
wide range of OSA severity.

• We empirically demonstrate that the studied algorithms
(i) reach an expert-level accuracy on pediatric sleep
staging, similar to that reported for adult PSGs; (ii) are
robust to concept drift [25]; (iii) agree to one another
“almost perfectly”; and (iv) share similar patterns on their
classification errors.

• We show that the proposed ensemble models lead to im-
proved sleep staging performance and reduced predictive
uncertainty.

• We further show that the improvements on sleep staging
performance are not necessarily clinically significant.

Few prior works using deep neural networks on pediatric
automatic sleep staging such as [26], [27] have been reported,
however, to the best of our knowledge, this is the first work
to comprehensively benchmark state-of-the-art automatic sleep
staging algorithms in children using a large-scale clinically
relevant dataset.

II. CHILDHOOD ADENOTONSILLECTOMY TRIAL (CHAT)
DATABASE

We use overnight PSG from the Childhood Adenotonsil-
lectomy Trial (CHAT) [9], [28], [29], a multi-center, sin-
gleblinded, randomized, controlled trial designed to analyze
the efficacy of early adenotonsillectomy (eAT) on children.
The trial aimed to test whether children randomized to eAT
demonstrate greater improvement in cognitive, behavioral,
quality-of-life, and sleep measures than children who were
randomly assigned to watchful waiting with supportive care
(WWSC) [28], [30], [31]. To that end, 464 children, 5 to 9
years of age, with the OSA syndrome were randomly assigned
to eAT or the strategy of watchful waiting. Polysomnographic,
cognitive, behavioral, and health outcomes were assessed at
baseline and at 7 months. Physiological measures of sleep
were assessed at baseline and at 7 months with standardized
full PSG with central scoring at the Brigham and Women’s
Sleep Reading Center. The children were recruited as part
of the clinical trial “Childhood Adenotonsillectomy Study for
Children With OSAS (CHAT)”, ClinicalTrials.gov number,
NCT00560859.

TABLE I
SUMMARY OF THE DATA SUBSETS FORMED FROM THE STUDIED

DATABASE. AHI - APNEA-HYPOPNEA INDEX.

Subset Baseline Follow-up Non-randomized
#recordings 440 393 776

#S
le

ep
ep

oc
hs

Wake 99,764 (19.9%) 78,528 (17.8%) 166,833 (19.3%)
N1 34,057 (6.8%) 27,056 (6.2%) 55,963 (6.5%)
N2 165,531 (33.0%) 157,830 (35.9%) 294,995 (34.1%)
N3 127,643 (25.4%) 110,554 (25.1%) 218,960 (25.3%)
REM 75,225 (15.0%) 66,291 (15.1%) 128,216 (14.8%)

Age 6.6±1.4 6.6±1.4 7.1±1.4

O
SA

se
ve

ri
ty

None (0≤AHI<1) 57 52 464
Mild (1≤AHI<5) 223 190 214
Moderate (5≤AHI<10) 106 94 35
Severe (AHI≥10) 67 57 66
Unknown 11 0 0

Sl
ee

p
st

at
s Total sleep time (min) 456.2 ± 52.2 459.0± 54.7 449.3 ± 56.7

WASO (min) 46.1±39.3 36.1± 31.0 42.4 ± 37.9
REM latency (min) 226.7±70.0 218.2±65.7 221.3 ± 66.0
Sleep efficiency (%) 81.0±8.6 83.0 ± 8.2 81.8 ± 9.2

In total, 1,447 children underwent screening PSGs con-
ducted at different hospitals with various equipment. Chil-
dren meeting the CHAT inclusion criteria and participating
in the trial also had a follow-up PSG. In our study, only
recordings with at least 5 hours of good data (after excluding
“UNKNOWN” and not zero/near-zero epochs) were used. We
formed the following 3 subsets from the database.

• Baseline: 464 children who were randomized to eAT and
WWSC. After excluding withdrawn children [29] and
recordings with less than 5 hours of data, 440 recordings
were retained.

• Follow-up: the same children as in the Baseline subset
about 7 months after the intervention (i.e., either eAT and
WWSC). 393 recordings were retained after excluding
those with less than 5 hours of data.

• Non-randomized: 779 children who were screened but
were not included in the trial due to, e.g., negative or
severe OSA diagnosis. These children are completely dif-
ferent from those in the Baseline and Follow-up subsets.
776 recordings were retained after excluding those with
less than 5 hours of data.

A summary of the subsets is given in Table I. We adopted
C4-A1 EEG and ROC-LOC EOG to study single-channel
EEG and dual-channel EEG·EOG automatic sleep staging.
The data, originally recorded at different sampling rates were
downsampled to 100 Hz. Segments with zero/near-zero in
the recordings due to poor electrode contact were discarded.
To deal with different measurement units owing to different
equipment, each signal was normalized to the range [-1, 1]
by dividing its maximum magnitude. Prior to normalization,
values outside 6 standard deviations were clipped. Band-
pass filtering with a low cutoff frequency of 0.3 Hz and a
high cutoff frequency of 40 Hz was carried out. Finally, the
per-recording signal was normalized to zero mean and unit
standard deviation.

III. DEEP LEARNING METHODS

We adopted a cohort of six different deep neural networks
in this study. The networks were chosen taking into account
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Fig. 1. Illustration of the sequence-to-sequence sleep staging frame-
work.

discrepancies in their inputs and network architectures. At the
high level, these networks can be fitted neatly into a common
framework, namely end-to-end sequence-to-sequence sleep
staging framework [11], [32], which has been the driving force
behind expert-level performance in automatic sleep staging
reported recently.

Formally, let us denote an input sequence of L epochs as
(S1, . . . ,SL) where S` is the `-th epoch, 1 ≤ ` ≤ L. In
general, the epochs can be in any form, such as raw signals
or time-frequency images and single- or multi-channel. A
network adhering to the framework typically consists of two
main components: the epoch encoder FE and the sequence
encoder FS as illustrated in Figure 1. The epoch encoder
acts as an epoch-wise feature extractor which transforms an
epoch S in the input sequence into a feature vector x for
representation:

FE : S 7→ x. (1)

As a result, the input sequence is transformed into a sequence
of feature vectors (x1, . . . ,xL). Of note, FS can be a hard-
coded hand-crafted feature extractor, however, in deep learning
context, it is oftentimes a neural network (e.g., a convolutional
neural network (CNN) or a recurrent neural network (RNN))
that learns the feature presentation x automatically from low-
level inputs. In turn, at the sequence level, the sequence
encoder transforms the sequence (x1, . . . ,xL) into another
sequence (z1, . . . , zL). Formally,

FS : (x1, . . . ,xL) 7→ (z1, . . . , zL). (2)

In intuition, z` is a richer representation for the `-th epoch
than x` as it not only encompasses information of the epoch
but also interaction with other epochs in the sequence. More
specifically, z` is derived from x`, taking into account the left
context (x1, . . . ,x`−1) and the right context (x`+1, . . . ,xL).
Eventually, the vectors z1, . . . , zL are used for classification
purpose to obtain the sequence of predicted sleep stages, one
for each epoch in the input sequence.

Below, we concretely describe the adopted networks with
respect to their mother framework. A snapshot of the networks
is also given in Table II.

SeqSleepNet [11]: The network receives a time-frequency
representation (i.e., logarithmic magnitude spectrogram) as in-
put. In case of multiple channels, the spectrograms are stacked
to form a multi-channel input. On the one hand, the epoch

TABLE II
SUMMARY OF THE NETWORKS EMPLOYED IN THE STUDY. “TF” STANDS

FOR time-frequency INPUT.

Network Input Epoch
Encoder

Sequence
Encoder

#parameters
(single-channel)

SeqSleepNet TF RNN RNN 1.6× 105

SleepTransformer TF Transformer Transformer 3.7× 106

DeepSleepNet Raw CNN RNN 2.3× 107

FCNN-RNN Raw CNN RNN 5.6× 106

XSleepNet1 TF+Raw RNN+CNN RNN 5.7× 106

XSleepNet2 TF+Raw RNN+CNN RNN 5.7× 106

encoder is realized by the coupling of learnable filterbank
layers [33] (one for each input channel), a bidirectional RNN
layer, and a gated attention layer [34], [35]. On the other
hand, the sequence encoder is realized by another bidirectional
RNN layer. Both the epoch encoder and sequence encoder
have their bidirectional RNN implemented using Long Short-
Term Memory (LSTM) cell [36] coupled with recurrent batch
normalization [37].

SleepTransformer [16]: Similar to SeqSleepNet, Sleep-
Transformer ingests time-frequency input. The network makes
use of Transformer [38] as the backbone for both the epoch
encoder and sequence encoder, making it distinct from other
networks used in this study which are based on either RNN
or CNN or both. Leveraging the attention matrices of the
Transformers, the network is the first of its kind offering the
explainability at both the epoch and sequence level which
closely resembles the manual scoring procedure.

DeepSleepNet [20]: Raw signals are used as input to the
network. The epoch encoder is composed of two parallel 1D
CNN subnetworks. The CNN layers in the subnetworks are
designed to have different kernel sizes and pooling factors in
order to learn features at different resolutions. The features
learned by the two subnetworks are concatenated before
presented to the sequence encoder. The sequence encoder,
on the other hand, is implemented by two LSTM-based
bidirectional RNN layers, one situated on top of the other.
Residual connections [39] are used to combine the epoch-wise
features and the sequence-wise features before classification
takes place. Of note, we used the end-to-end DeepSleepNet
variant presented in [11] in this study.

FCNN-RNN [11]: The network resembles DeepSleepNet in
several aspects: raw-signal input, the epoch encoder’s reliance
on CNN, and the sequence encoder’s reliance on bidirectional
RNN. However, its design features several differences from
DeepSleepNet. First, the epoch encoder is implemented by
a single CNN which makes use of full convolution [40] (i.e.,
without explicit pooling layers). Second, only one bidirectional
RNN layer is employed in the sequence encoder. Third, the
residual connection is omitted. These changes help reduce the
network footprint significantly, more than 4 times smaller than
that of DeepSleepNet.

XSleepNet1 [13]: This is a hybrid network which, in
essence, accommodates SeqSleepNet and FCNN-RNN in its
two network streams, respectively. It is principally designed
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to leverage the complementarity of SeqSleepNet (i.e., a small
network solely relying on RNN) and FCNN-RNN (i.e., a larger
network relying on CNN and RNN) to gain robustness to the
amount of training data. Effectively, the network receives both
raw-signal and time-frequency inputs which are interpreted as
multiple views of the same underlying data. A multi-view
learning algorithm is devised to train the network in such
a way that a good multi-view representation is obtained. To
that end, the learning pace of the network streams is adapted
individually according to their generalization and overfitting
behavior. Specially, learning on the stream that is generalizing
well is encouraged with a large weight while the one that is
overfitting is discouraged with a small weight.

XSleepNet2 [13]: This network essentially shares the same
architecture as XSleepNet1. The key difference between the
two networks is in their multi-view learning algorithms.
XSleepNet2 relies on a second-order approximation (i.e.,
tangents of the loss curves) to compute the adapting weights
for the network streams whereas XSleepNet1 uses a first-order
approximation (i.e., spontaneous values of the losses) for this
purpose. Interested readers are encouraged to refer to [13] for
more details.

IV. ENSEMBLE METHODS

Ensemble [41] is a well-established machine learning ap-
proach to construct a committee model by combining existing
learned ones. In general, an ensemble model often offers better
performance than its individual base models. In fact, ensemble
models were found to work well for automatic sleep staging
with more conventional machine learning algorithms, such as
Support Vector Machines [42], [43]. However, they are rarely
considered as a core building block for the task in the deep
learning era although a few positive results were reported,
for example, in [44] which combined SeqSleepNet [11] and
DeepSleepNet [20] and in [45] which fused model instances
trained with different channels of the same database.

Here, we revisit the ensemble approach and form two
ensemble models leveraging the six base sleep stagers de-
scribed in Section III as the base models. Theoretically, for
an ensemble model to be effective the base models should
be highly accurate and diversified [46]. The six base sleep
stagers meet these criteria given their diverging characteristics
on the input types and/or network architectures, except for
XSleepNet1 and XSleepNet2, and their good performance (see
Section V-C). Two methods are employed to combine the base
sleep stagers as described below.

A. Ensemble via averaging probability outputs
As a deep neural network, each of the base sleep stagers

produces one vector of five probability values for a 30-second
epoch. These probability values indicate the likelihood that the
epoch is classified as one of the five sleep stages W, N1, N2,
N3, and REM. A typical method to combine the base sleep
stagers is to take the average of their probability outputs. Let
Pm = (Pm1 , P

m
2 , . . . , P

m
C ), where

∑
1≤c≤C P

m
c = 1, denote

the vector of probability values outputted by a model m where
m ∈ {XSleepNet1, XSleepNet2, SeqSleepNet, FCNN+RNN,

EOG

EEG

XSleepNet1

XSleepNet2

SeqSleepNet

FCNN-RNN

DeepSleepNet

SleepTransformer

1× 1

convolution

1×MC×
tensor

1C×
vector

Fig. 2. Fusion via the CNN with 1 × 1 convolution.

DeepSleepNet, SleepTransformer} and C = 5 is the number of
sleep stages. The vector of probability values of the ensemble
model is given by P̄ = (P̄1, P̄2, . . . , P̄C), where

P̄c =
1

M

M∑
m=1

P̄mc for 1 ≤ c ≤ C. (3)

Here, M = 6 is the number of the base sleep stagers. The
predicted sleep stage ŷ is then determined as

ŷ = argmax
c

P̄c. (4)

B. Ensemble via a CNN super learner
Ensemble via averaging probability outputs of the base

models attributes the base models equally with equal weights
of 1

M . Alternatively, the individual weights associated with
the base models can be learned from data. Inspired by the
idea of Super Learner presented in [47], we propose a simple
CNN with 1×1 convolution for this purpose, as illustrated in
Figure 2. Given a 30-second epoch, the probability outputs
from the base models are stacked to form an tensor of size
C×1×M which will be fed into the CNN as input. With
this configuration, M acts as the channel dimension of the
input tensor. The CNN architecture is composed of a single
convolutional layer with a single 1× 1 kernel. Convolving
the kernel with the input tensor produces an output vector
of size C×1 which is then passed through softmax activation
to translate it into a vector of probabilities values. The 1×1
kernel has exactly M parameters, one for each of the base
models, and will be learned via network training. The network
is trained to minimize the cross-entropy loss.

In the experiments, it is of paramount importance that the
CNN-based super learner was trained using a validation set
that was set aside for model selection (see Section V-A.1)
rather than the training set. The rational is that the validation
set was not directly used for training the base models, thus,
avoiding overfitting the training data at this stage.

V. EXPERIMENTS

A. Experimental design
1) Training: The Baseline data subset was employed as the

training data. Of note, 10% (44 subjects) of the training data
were left out as the validation set for early stopping purpose.
Each of the sleep staging networks was trained using the
training data for 10 training epochs. During the training course,
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the networks were validated on the validation data every
100 training steps and early stopping was activated after 100
evaluations without accuracy improvement on the validation
data.

In particular, the CNN super learner used for ensemble de-
scribed in Section IV-B was trained using the aforementioned
validation set for 100 epochs with early stopping.

2) Testing: The two subsets, Follow-up and Non-
randomized, were used as two test data subsets separately.
It is worth re-iterating that the former mostly consists of the
same children as in the training data (i.e., the Baseline subset)
while the subjects in the latter are completely new. One may
be concerned about data leakage of the Follow-up test subset;
however, even though the Baseline and Follow-up subsets
are originated from the same subjects, mismatch in their
distributions is expected given that the latter were collected
7 months after the former and after clinical intervention.
Evaluating the trained networks on this test subset will shed
light on the networks’ performance under concept drift [25].
At the same time, assessing the networks’ performance on the
Non-randomized test subset will prove their generalization on
completely new subjects.

3) Network’s initialization: Similar to many other domains,
a large training database (i.e., thousands of subjects [12],
[13], [15], [17]) has been proven to improve generalization
of deep neural networks for automatic sleep staging. Thus,
the training data (440 subjects) in this study is still arguably
small. Inspired by [32], in addition to random initialization,
we also investigated pretraining as an alternative approach for
network initialization. That is, a network was firstly pretrained
with a large external database and the pretrained network was
afterwards utilized as the starting point to be further trained
(i.e., finetuned) on the training data. This approach has been
shown to be effective in mitigating overfitting, and hence,
improving generalization, particularly when the training data is
small. Here, C4-A1 EEG and ROC-LOC EOG extracted from
the SHHS database (5,791 subjects) [9], [10] was employed
for pretraining purpose.

B. Parameters and metrics

The networks employed in this study were configured as
in their original works. We also followed the procedures used
in the original works in to extract the time-frequency input
(i.e., the logarithmic magnitude spectrogram) when needed.
The implementation was based on the Tensorflow framework
[48].

We used the overall metrics, including accuracy, macro
F1-score (MF1), Cohen’s kappa (κ) [49], sensitivity, and
specificity to assess the automatic sleep staging performance.

Quantifying predictive uncertainty of the models is also
important for clinical use [16] as those data epochs predicted
with high uncertainty can be deferred to sleep experts for
further manual inspection [50]. In this regard, a model with
low predictive uncertainty is preferable as it will reliably defer
less data epochs to be manually checked. We used two metrics
to evaluate the predictive uncertainty of a network: the negative
log-likelihood (NLL) [51] and the Brier score (BS) [52]. Given

a data epoch S with the groundtruth sleep stage y, NLL and
BS are defined as in (5) and (6), respectively:

NLL = −
∑C

c=1
yc log ŷc, (5)

BS =
1

C

∑C

c=1
(yc − ŷc)2. (6)

In above equations, yc = 1 if y = c, and 0 otherwise. ŷc =
P (c |S) is the probability of the epoch S being predicted as
class c by the model. The lower NLL and BS are, the lower
predictive uncertainty the model has.

C. Experimental results
1) Sleep staging performance: Table III shows the perfor-

mance obtained by the networks as well as their ensembles
under both random initialization and pretraining initialization
schemes. These results unravel several important points about
pediatric automatic sleep staging.

First, across different individual models, the obtained per-
formance on pediatric sleep staging is comparable to adult
sleep staging. For example, in case of random initialization
and the Non-randomized subset, κ of 0.828 and 0.842 ob-
tained by XSleepNet1 with the single- and dual-channel input,
respectively, are very similar to the state-of-the-art κ reported
on SHHS [13] consisting of 5,791 adults. These κ values are
even noticeably better than those reported on other popular
adult PSG databases with smaller sizes, such as MASS [23]
and Sleep-EDF Expanded [21], [22]. The relative performance
between the networks also conform to that reported on adult
PSG data, for example in [13], where the multi-view XSleep-
Net1 and XSleepNet2 consistently outperformed the single-
view counterparts across the test subsets, the initialization
schemes, and the number of channels used. For instance, with
random initialization and single-channel EEG, XSleepNet1
improved the overall accuracy by 0.8% absolute over the best
single-view networks, SeqSleepNet and FCNN+RNN, on the
Follow-up and Non-randomized subset, respectively. These
accuracy gaps became much narrower with the use of dual-
channel EEG·EOG (i.e., reduced to 0.2% and 0.5% absolute)
or pretraining initialization (i.e., reduced to 0.5% and 0.1%
absolute) or both (i.e., reduced to 0.2% and 0.3% absolute). On
the other hand, SleepTransformer appeared to underperform
other counterparts under the random initialization regime, most
likely due to Transformer’s data-hungry nature and the small
size of the training data, as similarly observed in [16]. This is
also supported by the observation that it performed comparably
to the other single-view competitors after being pretrained
beforehand with the large SHHS database.

Second, both the ensemble models consistently resulted
in better performance than all the individual models. Take
random initialization and the Non-randomized test subset for
example, Average Ensemble improved the overall accuracy
by 1.1% and 1.2% absolute compared to the average overall
accuracy of the six individual models. This was not only
observed on the overall metrics but also over most sleep stages
as evidenced by the class-wise MF1 in Table I.1. However,
negligible difference was seen from the performance of the
two ensemble methods. In other words, the advanced ensemble
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method with CNN is not necessarily better than the simple
averaging strategy in term of performance whilst it requires
additional training.

Third, pretraining has positive effects on performance,
similar to adult sleep staging [15], [32]. Between random
and pretraining initialization, the latter resulted in accuracy
improvement in most of the standalone models as well as
the two ensemble models. However, the gains were mostly
marginal since overfitting was expected to be minor given that
the training data consists of hundreds of subjects. SleepTrans-
former was the largest beneficiary, gaining 1.3-1.4% absolute
and 0.8-0.9% absolute on the overall accuracy with EEG
and EEG·EOG input, respectively. FCNN-RNN was the only
exception which experienced accuracy drop by 0.8% absolute
on both the Follow-up and Non-randomized subsets when
dual-channel EEG·EOG was used.

Fourth, the obtained performances on the Follow-up subset
were consistently better than those on the Non-randomized
subset. For example, in case of random normalization, XSleep-
Net1 resulted in overall accuracies of 88.6% and 89.2% on
the former when EEG and EEG·EOG were used, respectively.
These results were 1.6% and 1.2% higher than those obtained
on the latter. The respective gaps were similar, 1.7% and 1.2%,
in case of pretraining initialization. Similar patterns were also
seen with the ensemble models. These results simply reflect
the fact that the Follow-up subset stems from the same subjects
as the Baseline subset used for training whereas the Non-
randomized subjects were completely new to the models. All
in all, the results on the Non-randomized subset confirm that
the automatic sleep stagers generalize to new subjects while
the results on the Follow-up subset suggest that the automatic
sleep stagers are robust to the concept drift given that the test
data were recorded 7 months apart from the training data and
after clinical intervention.

We further carried out the McNemar’s test [53] between
the pairs of stagers. The statistical significance at a level of
0.05 is seen across most of the pairs, except for a few cases, as
shown in Figure 3. Moreover, the statistical significance of the
ensemble models’ improvement over other classifiers remained
consistent over all cases while there is no significant difference
between the performance of the two ensemble methods.

2) Predictive uncertainty: To quantify the predictive uncer-
tainty of a model, we computed the average NLL and BS over
all epochs of the test data subsets individually. The results are
summarized in Table IV. Overall, among the six standalone
models, XSleepNets resulted in lowest predictive uncertainty,
outperforming all others counterparts on both NLL and BS.
Network pretraining also consistently resulted in reduced NLL
and BS which were seen with both the standalone models
and the ensemble ones. Interestingly, diverging patterns were
seen between the two ensemble models and the simpler was
better. On the one hand, Average Ensemble led to reduced
predictive uncertainty, both NLL and BS, compared to the
six base models. On the other hand, CNN-based Ensemble
caused NLL to increase while no clear improvement was
observed on BS. This observation suggests that, between the
two studied ensemble methods, averaging the base models’
probability outputs is more advantageous, leading to improved

performance and reduced predictive uncertainty while being
simple and avoiding the need for additional training. Thus,
we retained the Average Ensemble model for further analysis
and discussion hereafter.

3) Performance across age and clinical groups: Using the
Non-randomized subset and pretraining initialization, we fur-
ther investigated how the performance varies across different
age and clinical groups. The results are shown in terms of
κ in Figure 4. On the one hand, among the models, Average
Ensemble consistently stands out as the best performer regard-
less of ages and OSA severity while no clear winners are seen
among the standalone models, particularly in case of single-
channel EEG input. On the other hand, all the models exhibit
increasing κ with older groups of children. This pattern could
be explained by the gradual change in sleep structure (e.g.
the gradual increase of Stage 2 sleep at the expense of REM
and SWS) and sleep patterns during childhood [54]. On the
contrary, κ tends to decrease with the increase of OSA severity.
This downward tendency is expected due to the increase of
sleep fragmentation caused by repeated occurrence of apneic
arousal in OSA patients.

4) Relative errors in clinical sleep measures: In order to
examine if Average Ensemble’s performance improvement is
clinically significant, we computed the relative errors in typical
clinically used measures of sleep architecture, including total
sleep time (TST), WASO, REM latency (LatREM), and sleep
efficiency (SE), resulted by different classifiers. Again, we
used the Non-randomized subset and pretraining initilization
for this investigation. The results are summarized in Table V.
A t-test was also carried to see if the difference in the relative
errors between Average Ensemble and the standalone models
are statistically significant. Those results which are not statis-
tically significant at a level of 0.05 are highlighted in color
in the table. It can be seen that the Average Ensemble often
led to smaller relative errors and lower variance, particularly
in case of EEG·EOG input, but the differences to the relative
errors resulted by the standalone classifiers are not necessarily
statistically significant in all cases. However, the fact that none
of the standalone stagers is a clear winner, using the ensemble
model is still favorable at the cost of increased computational
overhead.

D. Further analysis and discussion

In this section, using the Non-randomized subset and the
pretraining initialization scheme, we further carried out detail
analyses on the agreement and the staging errors of the
automatic sleep stagers to showcase that they share similar
patterns on their classification errors. This observation, in
turn, suggests little room for improvement in terms of staging
performance, at least within the same sequence-to-sequence
framework. Moreover, as indicated earlier in Section V-C.4,
these improvement would not be necessarily clinically mean-
ingful.

1) Agreement between the automatic sleep stagers and the
human scorer: In order to elucidate the agreements among
the automatic sleep stagers (i.e., the standalone models and
the Average Ensemble model) and compare to the agreements
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TABLE III
OVERALL PERFORMANCE OBTAINED BY THE INDIVIDUAL NETWORKS AND THEIR ENSEMBLE MODELS.

Subset System
Random initialization Pretraining initialization

EEG EEG·EOG EEG EEG·EOG

Acc. κ MF1 Sens. Spec. Acc. κ MF1 Sens. Spec. Acc. κ MF1 Sens. Spec. Acc. κ MF1 Sens. Spec.

Follow-up

Average Ens. 88.9 0.852 85.3 85.2 97.1 89.8 0.864 86.7 86.6 97.3 89.2 0.857 85.7 85.5 97.1 90.0 0.867 87.0 86.9 97.3
CNN-based Ens. 88.9 0.852 85.3 85.2 97.1 89.8 0.864 86.7 86.5 97.3 89.2 0.856 85.6 85.5 97.1 90.0 0.867 86.9 86.8 97.3
XSleepNet1 88.6 0.849 85.2 85.3 97.0 89.2 0.857 86.1 86.5 97.1 88.7 0.849 84.9 84.9 97.0 89.3 0.858 86.4 86.9 97.2
XSleepNet2 88.3 0.844 84.8 84.8 96.9 89.3 0.857 86.0 85.8 97.1 88.6 0.849 85.0 85.2 97.0 89.4 0.859 86.4 86.6 97.2
SeqSleepNet 87.8 0.838 83.9 83.8 96.8 89.0 0.854 86.0 86.0 97.1 88.4 0.846 84.9 85.2 96.9 89.0 0.853 86.0 86.5 97.1
DeepSleepNet 87.6 0.835 84.0 84.8 96.8 88.6 0.848 85.3 85.7 97.0 88.3 0.844 84.6 84.6 96.9 88.5 0.847 85.5 86.0 97.0
FCNN+RNN 87.8 0.837 83.7 83.6 96.8 88.5 0.847 85.2 85.2 96.9 88.0 0.840 84.1 84.2 96.8 87.7 0.847 83.6 82.8 96.7
SleepTransformer 86.9 0.825 81.5 81.2 96.5 88.2 0.842 83.8 83.2 96.8 88.3 0.843 83.9 82.8 96.8 89.1 0.854 85.2 84.4 97.0

Non-
randomized

Average Ens. 87.4 0.833 83.8 83.5 96.7 88.6 0.849 85.5 85.1 96.9 87.7 0.837 84.2 83.7 96.7 88.8 0.852 85.8 85.4 97.0
CNN-based Ens. 87.4 0.833 83.8 83.4 96.7 88.6 0.849 85.5 85.0 96.9 87.6 0.836 84.1 83.7 96.7 88.8 0.852 85.8 85.4 97.0
XSleepNet1 87.0 0.828 83.6 83.4 96.6 88.0 0.842 85.0 85.1 96.8 87.0 0.828 83.3 83.0 96.6 88.1 0.843 85.2 85.4 96.9
XSleepNet2 86.9 0.826 83.4 83.1 96.5 88.0 0.841 84.7 84.2 96.8 87.0 0.829 83.5 83.5 96.6 88.2 0.844 85.1 85.1 96.9
SeqSleepNet 86.2 0.818 82.3 82.0 96.4 87.5 0.835 84.5 84.2 96.7 86.9 0.826 83.4 83.3 96.5 87.7 0.838 84.9 85.1 96.7
DeepSleepNet 86.0 0.815 82.4 82.7 96.3 87.1 0.829 83.8 83.8 96.6 86.8 0.825 83.2 82.9 96.5 87.5 0.835 84.5 84.7 96.7
FCNN+RNN 86.3 0.818 82.4 82.1 96.4 87.0 0.827 83.6 83.3 96.5 86.2 0.818 82.5 82.4 96.4 86.2 0.816 82.0 81.1 96.3
SleepTransformer 85.4 0.806 80.0 79.7 96.1 87.0 0.828 82.7 82.0 96.5 86.7 0.822 82.3 81.1 96.4 87.8 0.838 84.0 83.0 96.7
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Fig. 3. p-values obtained by the McNemar’s test on the performance improvement between different pairs of classifiers. The results in the upper
and lower triangle correspond to the EEG and EEG·EOG input, respectively. (a) Random initialization - Follow-up; (b) Random initialization -
Non-randomized; (c) Pretraining initialization - Follow-up; (d) Pretraining initialization - Non-randomized.

TABLE IV
PREDICTIVE UNCERTAINTY MEASURES OBTAINED BY THE NETWORKS

AND THE ENSEMBLE MODELS. AE - AVERAGE ENSEMBLE, CE -
CNN-BASED ENSEMBLE, X1 - XSLEEPNET1, X2 - XSLEEPNET2, SS

- SEQSLEEPNET, DS - DEEPSLEEPNET, FR - FCNN-RNN, ST -
SLEEPTRANSFORMER.

Subset System
Random initialization Pretraining initialization

EEG EEG·EOG EEG EEG·EOG

NLL BS NLL BS NLL BS NLL BS

Follow-up

AE 0.292 0.161 0.264 0.147 0.283 0.156 0.263 0.146
CE 0.343 0.166 0.310 0.154 0.336 0.162 0.304 0.151
X1 0.296 0.164 0.277 0.155 0.296 0.163 0.273 0.153
X2 0.307 0.169 0.274 0.153 0.300 0.165 0.272 0.152
SS 0.320 0.176 0.282 0.158 0.304 0.168 0.285 0.158
DS 0.324 0.179 0.294 0.164 0.305 0.169 0.297 0.166
FR 0.323 0.177 0.298 0.166 0.317 0.174 0.320 0.176
ST 0.347 0.189 0.308 0.169 0.305 0.168 0.282 0.157

Non-
randomized

AE 0.331 0.182 0.294 0.165 0.321 0.178 0.290 0.162
CE 0.392 0.190 0.354 0.174 0.387 0.187 0.346 0.170
X1 0.344 0.188 0.310 0.173 0.341 0.188 0.306 0.171
X2 0.347 0.190 0.310 0.173 0.341 0.187 0.305 0.170
SS 0.365 0.200 0.321 0.179 0.343 0.189 0.317 0.177
DS 0.376 0.203 0.338 0.186 0.349 0.192 0.328 0.181
FR 0.374 0.200 0.343 0.188 0.371 0.200 0.363 0.198
ST 0.393 0.211 0.344 0.187 0.357 0.193 0.318 0.175

between them and the human scorer, we computed κ for all
possible pairs of the stagers and show the results in Figure 5.
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Fig. 4. k obtained by the models across different age and clinical
(i.e. OSA severity) groups of the Non-randomized subset. (a) EEG; (b)
EEG·EOG; (c) EEG; (d) EEG·EOG.

Of note, the pretraining initialization scheme was employed
for this investigation. Overall, the agreement between every
pair of the automatic stagers were considerably higher than
those between them and the human scorer. The automatic
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TABLE V
RELATIVE ERRORS IN TYPICAL CLINICALLY USED MEASURES OF SLEEP ARCHITECTURE. THE RESULTS ARE OBTAINED FROM THE

NON-RANDOMIZED SUBSET USING THE PRETRAINING INITIALIZATION SCHEME. THE LOWEST RELATIVE ERRORS ARE PRINTED IN BOLD FOR

CONVENIENCE. A TABLE CELL IS HIGHLIGHTED WITH COLOR IF THE PERFORMANCE DIFFERENCE BETWEEN THE CORRESPONDING CLASSIFIER AND

AVERAGE ENSEMBLE IS NOT STATISTICALLY SIGNIFICANT AT A LEVEL OF 0.05.

System EEG EEG·EOG

TST WASO LatREM SE TST WASO LatREM SE
Average Ensemble 8.2± 17.8 7.5±14.6 35.2±60.0 1.5± 3.1 5.5± 7.8 5.3± 7.7 25.6±51.1 1.0± 1.4
XSleepNet1 8.5± 17.4 10.1± 21.3 43.0± 69.2 1.5± 3.2 6.2± 12.0 6.0± 9.8 34.0± 60.7 1.1± 2.1
XSleepNet2 8.1± 14.1 9.8± 19.2 42.7± 65.8 1.5± 2.6 6.0± 9.1 5.6± 8.3 31.8± 58.1 1.1± 1.6
SeqSleepNet 7.8±13.3 8.7± 16.7 36.3± 59.8 1.4± 2.4 5.8± 9.0 6.3± 11.7 32.7± 60.3 1.1± 1.6
FCNN+RNN 10.6± 20.7 12.2± 22.8 48.4± 71.5 1.9± 3.7 9.0± 17.4 8.9± 14.5 34.4± 60.5 1.6± 3.0
DeepSleepNet 9.6± 20.6 9.0± 16.1 49.8± 80.2 1.8± 3.5 6.9± 14.7 6.2± 9.5 34.9± 60.0 1.2± 2.5
SleepTransformer 8.9± 18.9 8.6± 18.1 36.2± 62.4 1.6± 3.3 6.8± 10.7 7.1± 12.9 26.4± 51.0 1.2± 1.9
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stagers using the same input types (i.e., raw signal, time-
frequency image, and both) tended to agree to one another
more than between the stagers using different input types.
However, given the range of κ between 0.865 and 0.961,
the agreement level was “almost perfect” (according to the
interpretation of Cohen’s kappa [55]) and considerably higher
than the “substantial” level between human scorers (for ex-
ample, k = 0.76 as reported in other studies [56], [57]).
Interestingly, the attribution of the base models in the ensemble
model was manifested via their agreements to the Average
Ensemble model. This suggests that even though the Average
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Ensemble model allocates equal weights to the base models,
their attributions to the ensemble are inherently proportionate
to their performance.

It is also worth mentioning the study on adult PSG scoring
by Mikkelsen et al. [18] which showed the higher agreement
between an automatic sleep stager and a human scorer than
the agreement between two human scorers themselves. Con-
necting this finding and our above analysis on the agreement
between the automatic scorers suggests that it is probably un-
necessary to create more deep learning networks for improving
accuracy per se and probably that the current automatic sleep
staging algorithms are already ready for clinical use.

2) Errors made by the automatic stagers: In this section, we
aim to shed some light on the errors made by the automatic
stagers. To this end, we distinguish two types of errors: (1)
the errors which were commonly made by all the stagers and
(2) other errors. The former can be interpreted as unrecog-
nizable whereas the latter, in contrast, can be interpreted as
recognizable as they were correctly classified by at least one
stager.

The percentages of the two types of errors are shown
in Figure 6. The figure reveals a significant amount of
sleep epochs systematically misclassified by all the stagers,
constituting more than 50% of all the errors each of them
made in case of single-channel EEG. It reduced to below
50% when EOG was additionally included but still remained
a large portion. Furthermore, most of the common errors
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Fig. 9. The stage transitions from the predecessors of the common-error epochs to themselves, and then to their successors. The results were
obtained from the Non-randomized subset and the pretraining initialization scheme. (a) EEG; (b) EEG·EOG.

corresponded to non-rapid eye movement (NREM) stages (i.e.,
N1, N2, and N3) which constituted up to about 86%. This
can be explained by the fact that N2 and N3 are the major
classes in the database (cf. Table I) while N1, as similar
to adult sleep, is much less well-defined than other stages.
Figure 8 further shows that more than 60% (in case of single-
channel EEG) and 55% (in case of dual-channel EEG·EOG)
of the common errors were close to cross-stage transitions,
at most 4 epochs away from their nearest cross-stage tran-
sitions. Moreover, around 20% of them were rapid-transition
epochs which are, in general, challenging to be recognized
correctly as they tend to convey features of multiple sleep
stages and, typically, manual labelling these epochs is highly
subjective. Interestingly, the figure also reveals that, with
the same nearest-to-transition distance, the networks tended
to misclassify those before transitions more than those after
transitions. No such a difference was seen in case of adult
PSG staging when a similar analysis was conducted using
SeqSleepNet in [18]. We further visualize in Figure 9 the
stage transitions from the predecessors of the common-error
epochs to themselves, and then to their successors. Apparently,
the compelling similarity of the transitioning patterns in the
figure suggests the convergence of the common errors across
different scenarios. Put simpler, there exists a set of epochs
associated with some specific stage transitions that could not
be recognized by the automatic sleep stagers regardless the
addition of the EOG channel and the ensemble of stagers.

Regarding other errors, as shown in Figure 7, all the stagers

shared a similar pattern where N2 was the most misclas-
sified stage (40 − 53% by Average Ensemble, XSleepNet1,
XSleepNet2, SeqSleepNet, DeepSleepNet; and 28 − 36% by
FCNN-RNN and SleepTransformer), followed by N1, and then
N3. However, compared to other stagers, FCNN-RNN and
SleepTransformer appeared to have these errors distributed
more evenly between N1 and N2. Regarding distances to the
nearest cross-stage transitions, similar findings can be drawn
from Figure 7 as in case of the common errors, except that
the percentages of errors in the vicinity of maximally 4 epochs
to the nearest transitions were lower and that the percentages
of the rapid-transition epochs were also much lower. These
patterns were unanimous across all the stagers.

All in all, the above analysis confirms that the majority
of the automatic sleep stagers manifested a similar pattern
on their classification errors. In other words, they behaved
analogously on the automatic sleep staging task. This finding
is indeed complementary to the “almost perfect” agreement
among the stagers in Section V-D.1.

VI. CONCLUSIONS

We conducted a comparative study on six different deep
neural networks for automatic sleep staging on a large-scale
pediatric population with a wide range of OSA severity. The
benchmarking results demonstrate that the studied networks,
which are the state-of-the-art algorithms in adult sleep staging,
generalized well to young children, achieving an expert-level
accuracy similar to that reported on adult PSGs when evaluated
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on new subjects. Combining the six networks into ensemble
models further boosted accuracy and led to reduced predictive
uncertainty. The automatic sleep stagers, the ensemble models
included, were also robust to the concept drift when the
test data were recorded 7 months later and after clinical
intervention. However, the performance improvement did not
necessarily translate into clinical significance. Equally im-
portant, the stagers exhibited “almost perfect” agreement to
one another and similar patterns on their classification errors.
These results suggest that there is probably little room for
accuracy improvement within the same sequence-to-sequence
framework, if any, the improvement would be not necessarily
clinically meaningful. Rather, future works should focus on
entirely different concepts for automatic sleep staging and
other overarching, clinician-centric challenges, such as ex-
plainability and uncertainty estimation, to accelerate clinical
adoption of automatic sleep staging algorithms. Automated
scoring of sleep micro-architecture such as cortical arousal,
sleep spindles, and the cyclic alternating pattern is another
important frontier [58]–[60].
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TABLE I.1
CLASS-WISE MF1 OBTAINED BY THE INDIVIDUAL NETWORKS AND THEIR ENSEMBLE MODEL.

Subset System
Random initialization Pretraining initialization

EEG EEG·EOG EEG EEG·EOG

Wake N1 N2 N3 REM Wake N1 N2 N3 REM Wake N1 N2 N3 REM Wake N1 N2 N3 REM

Follow-up

Average Ens. 94.3 63.0 88.5 91.2 89.5 95.5 66.1 89.1 91.2 91.9 94.6 63.4 88.8 91.3 90.2 95.6 66.5 89.1 91.4 92.2
CNN-based Ens. 94.3 62.9 88.5 91.2 89.6 95.6 65.7 89.1 91.2 91.9 94.5 63.3 88.8 91.3 90.2 95.6 66.4 89.1 91.4 92.3
XSleepNet1 94.1 63.2 88.1 90.9 89.6 95.0 65.0 88.4 91.0 91.2 94.2 61.7 88.2 91.1 89.4 95.4 65.9 88.2 91.0 91.6
XSleepNet2 93.6 62.8 88.0 90.6 88.9 95.0 64.3 88.6 91.0 91.1 94.1 62.2 88.1 91.2 89.4 95.2 65.6 88.5 91.1 91.4
SeqSleepNet 93.6 60.2 87.1 90.3 88.5 95.4 64.9 88.0 90.6 91.0 94.0 60.1 86.3 90.0 87.7 95.0 65.2 88.0 90.7 91.2
DeepSleepNet 92.9 60.7 87.4 90.5 88.5 94.4 63.3 88.2 90.2 90.5 93.5 61.8 87.8 90.7 89.1 94.7 64.7 87.4 90.0 90.7
FCNN+RNN 92.6 59.5 87.6 90.7 88.1 93.8 63.1 88.0 90.4 90.7 92.9 60.6 87.8 91.0 88.2 93.2 57.4 87.2 90.4 89.8
SleepTransformer 92.9 49.8 86.7 90.2 87.6 94.9 56.0 87.4 90.4 90.4 93.9 57.3 88.1 90.4 89.7 94.7 60.3 88.3 90.8 91.9

Non-
randomized

Average Ens. 93.5 61.4 86.4 89.6 88.2 95.2 64.4 87.3 89.9 90.6 93.6 62.1 86.6 89.7 88.8 95.5 65.2 87.3 90.1 91.0
CNN-based Ens. 93.5 61.3 86.4 89.6 88.2 95.3 64.2 87.3 89.9 90.7 93.6 62.0 86.6 89.7 88.8 95.5 65.0 87.3 90.1 91.1
XSleepNet1 93.3 61.8 85.8 89.2 87.9 94.8 63.8 86.6 89.9 89.9 93.1 60.2 86.0 89.3 88.0 95.2 64.7 86.4 89.7 90.1
XSleepNet2 93.2 61.2 86.0 88.9 87.7 94.7 62.5 86.7 89.6 89.8 93.4 60.5 85.9 89.5 88.1 95.1 64.1 86.6 89.7 90.2
SeqSleepNet 93.1 58.2 84.8 88.7 86.7 95.0 63.2 85.7 89.1 89.4 93.5 60.8 85.5 89.1 88.2 95.1 64.3 85.9 89.0 90.2
DeepSleepNet 91.8 59.4 85.3 88.8 86.7 93.3 61.8 86.3 89.0 88.4 92.8 60.7 85.7 89.2 87.4 94.5 63.7 85.9 89.1 89.6
FCNN+RNN 91.9 58.7 85.4 89.2 86.6 92.8 61.4 86.1 89.1 88.7 91.6 59.4 85.4 89.2 86.6 92.3 55.8 85.1 88.9 87.9
SleepTransformer 92.4 48.2 84.5 88.7 86.5 94.9 54.8 85.5 89.2 89.1 93.1 55.4 85.9 89.0 87.9 94.7 58.7 86.2 89.5 90.7


