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Towards More Accurate Automatic Sleep
Staging via Deep Transfer Learning

Huy Phan∗, Oliver Y. Chén, Philipp Koch, Zongqing Lu, Ian McLoughlin, Alfred Mertins,
and Maarten De Vos

Abstract— Background: Despite recent significant
progress in the development of automatic sleep staging
methods, building a good model still remains a big
challenge for sleep studies with a small cohort due to the
data-variability and data-inefficiency issues. This work
presents a deep transfer learning approach to overcome
these issues and enable transferring knowledge from a
large dataset to a small cohort for automatic sleep staging.
Methods: We start from a generic end-to-end deep learning
framework for sequence-to-sequence sleep staging and
derive two networks as the means for transfer learning.
The networks are first trained in the source domain (i.e.
the large database). The pretrained networks are then
finetuned in the target domain (i.e. the small cohort) to
complete knowledge transfer. We employ the Montreal
Archive of Sleep Studies (MASS) database consisting
of 200 subjects as the source domain and study deep
transfer learning on three different target domains: the
Sleep Cassette subset and the Sleep Telemetry subset
of the Sleep-EDF Expanded database, and the Surrey-
cEEGrid database. The target domains are purposely
adopted to cover different degrees of data mismatch to the
source domains. Results: Our experimental results show
significant performance improvement on automatic sleep
staging on the target domains achieved with the proposed
deep transfer learning approach. Conclusions: These
results suggest the efficacy of the proposed approach
in addressing the above-mentioned data-variability and
data-inefficiency issues. Significance: As a consequence,
it would enable one to improve the quality of automatic
sleep staging models when the amount of data is relatively
small. 1

Index Terms— Automatic sleep staging, sequence-to-
sequence, deep learning, transfer learning.

I. INTRODUCTION

Sleep scoring [1], [2] aims to determine sleep stages from
polysommography (PSG) recordings. In clinical environments,
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this task has been mainly performed manually by clinicians
following developed guidelines [1], [2]. Since the manual
scoring is time-consuming, costly, and prone to human errors,
automating the scoring process has been a long-lasting focus
in the sleep research community [3]–[10]. Automatic sleep
scoring is particularly important in home-based sleep mon-
itoring [11]–[14]. Recent years have seen a new generation
of mobile electroencephalography (EEG) devices that provide
a cost-effective solution to screen a wide population for
epidemiological studies and to monitor specific populations
at risk of sleep disorders.

Deep learning has been successfully applied to numerous
domains and has received much attention from the sleep
research community. Past work has looked at various deep
network architectures, such as deep neural networks (DNNs)
[15], convolutional neural networks (CNNs) [7], [8], [10],
[16]–[24], and recurrent neural networks (RNNs) [25]–[28],
and novel ways to carry out sleep staging like sequence-
to-sequence classification scheme [4], [6]. Reviews of the
most recent progress on deep learning for automatic sleep
staging can be found in [29]–[31]. However, considerably less
attention has been paid to make sleep staging models more
robust to the challenges of sleep data variability and to make
them data-efficient (i.e. using less data). Despite the fact that
the performance of machine’s sleep staging has been on par
with manual scoring by sleep experts [4], [6], [8], [20]–[23],
we have not seen it widely adopted clinically. This is arguably
due to two major technical drawbacks of the sleep staging
models: data variability and data inefficiency.
Data variability: PSG signals recorded in a particular record-
ing setup are characterized by a number of parameters such
as sensors’ frequency response and output level, and signal
processing applied to the raw signal. These factors contribute
to the transfer function of the recording device and affect
how the physiological signals are converted into digital PSG

TABLE I: Out-domain performance of the single-channel Se-
qSleepNet+ trained on MASS database in comparison to its
in-domain performance.

Database MASS Sleep-EDF-SC Sleep-EDF-ST Surrey-cEEGrid
Input C4-A1 Fpz-Cz Fpz-Cz cEEGrid
Accuracy 84.5

(in-domain)
81.2

(out-of-domain)
80.5

(out-of-domain)
10.6

(out-of-domain)
Mismatch - slight slight severe
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output. As a result, sleep data recorded in different setups
may have different transfer functions due to the variations in
their underlying hardware and software processing pipelines.
Furthermore, discrepancies in channel layouts [8] and cohort
characteristics [32] are also likely in different sleep studies.
From the viewpoint of machine learning models, these vari-
ations and discrepancies lead to domain shift or mismatch
between sleep data sources. Data mismatch across different
acquisition conditions are computationally significant, degrad-
ing the accuracy of sleep staging models on unseen data with a
novel recording condition. Therefore, if a sleep staging model
is deployed on an unseen sleep data whose properties differ
from the data used for training the model, the data mismatch
can result in poor inference performance. As evidenced in our
experiments (cf. Section V-C) and shown in Table I, the single-
channel SeqSleepNet [4] model trained on the MASS database
suffers from an accuracy drop when it is evaluated out of
domain (i.e. being tested on other three databases Sleep-EDF-
SC, Sleep-EDF-ST, and Surrey-cEEGrid) relative to the one
obtained with in-domain evaluation (i.e. via cross-validation
on the MASS database itself). The performance loss depends
on the level of data mismatch.
Data inefficiency: Existing deep-learning based sleep staging
models cannot escape from the curse of data inefficiency of
the deep learning paradigm. That is, training a deep neural
network generally requires a large amount of data. In fact,
expert-level performance on automatic sleep staging is only
obtainable with these models when the training cohort is
large, i.e. hundreds or thousands of subjects [4], [8]. The
networks’ performances decline significantly when they are
trained with a small cohort (e.g. ten or twenty subjects [6],
[33]). Unfortunately, in practice, many sleep studies only have
access to a small cohort, in the order of a few dozens of
subjects [11], [32], [34]–[37]. Thus, the small data in these
studies hinder deep learning models to perform well.

An easy and obvious solution for the above-mentioned
obstacles is to collect training data from all types of recording
setups (e.g. recording devices, channel layouts, and prepro-
cessing softwares) that will be foreseeably encountered in
the deployment phase. However, this is an expensive, time-
consuming, and even infeasible solution. First, most of large
sleep databases are proprietary, making those inaccessible for
research purposes. Second, even if they are available, a huge
effort would be required to score these data manually. Third,
novel setups will likely emerge when one studies a particular
sleep disorder [32], [37] or when one explores the feasibility
of a new monitoring device [11].

In this work, we present a practical solution based on
transfer learning to tackle these obstacles, to build more
accurate sleep staging models when the available data is small,
and to recover the performance of the models otherwise lost
due to data variability. We leverage a reasonably large sleep
database, which is publicly available, and use a sleep-staging
deep neural network as a device to transfer knowledge from
this database to improve sleep staging performance on another
small cohort with a different recording setup. More specif-
ically, the network is firstly trained with the large database
(the source domain) and subsequently finetuned with the small

cohort (the target domain) to complete transfer learning. In this
context, finetuning means a part or the entire of the pretrained
network is further trained with the target domain data. The
main contributions of this work include:
• A new perspective of looking at data variability and data

inefficiency in the automatic sleep staging problem, and
developing a deep transfer learning approach to overcome
sleep data mismatch and enable knowledge transfer to
improve sleep-staging performance on small cohorts. In-
depth investigation into the influence of the number of
subjects on the transfer learning performance was also
conducted.

• The generalization of a sequence-to-sequence sleep stag-
ing framework from which two state-of-the-art models
SeqSleepNet+ and DeepSleepNet+ are developed and
used in the study.

• A systematic study highlighting different target domains
with varying data-mismatch degrees to the source do-
main, different transfer learning scenarios (i.e. single-
channel and multi-channel input), different finetuning
strategies, and different state-of-the-art sleep staging
models. Our transfer learning approach outperforms all
the tested baselines and existing works in solving the
automatic sleep staging on the target sleep databases.

This work extends our preliminary work in [33] in several
aspects. First, we study transfer learning with a wider spec-
trum of channel combinations for the networks’ input rather
than a single channel. Second, the studies in [33] employed
SeqSleepNet [4] as the transfer learning device, here the
studies are carried out on two different networks inherited
from SeqSleepNet [4] and DeepSleepNet [6]. These two state-
of-the-art networks are diverging in their architectures [38];
therefore, it is important to examine if these dissimilarities
give rise to any difference in their performance and to explain
their behaviors in transfer learning. Third, the work in [33]
only studied deep transfer learning on the Sleep-EDF-SC as
the target domain. Here, we cover multiple target domains
with varying degrees of channel mismatch. Fourth, we study
in-depth the influence of the number of target subjects on the
transfer learning’s performance.

II. MATERIALS
A. Source Domain

We adopted the public Montreal Archive of Sleep Studies
(MASS) database [39] as the source domain in this study as
it is sufficiently large.

MASS: This database was pooled from different hospital-
based sleep laboratories, consisting of whole-night recordings
from 200 subjects (97 males and 103 females) aged between
18 and 76 years. Manual annotation was accomplished by
sleep experts according to the AASM standard [1] (SS1 and
SS3 subsets) or the R&K standard [2] (SS2, SS4, and SS5
subsets). As in [4], [5], we converted different annotations into
five sleep stages {W, N1, N2, N3, and REM} and expanded
20-second epochs into 30-second ones by including 5-second
segments before and after each epoch. We used the C4-
A1 EEG, ROC-LOC EOG, and CHIN1-CHIN2 EMG in our
experiments.
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Fig. 1: Illustration of (a) the cEEGrid electrode array which
was used to record the Surrey-cEEGrid database [11], [40] and
(b) the FB(R) (“front versus back” for the right ear) derivation
[11] used in our experiments.

B. Target Domains

Three different sleep databases are used as the target do-
mains. These adopted cohorts have diverging health condi-
tions, i.e. healthy (Sleep-EDF-SC) vs. mild sleep difficulty
(Sleep-EDF-ST) [34], [35], and channel characteristics (i.e.
traditional PSG recording (Sleep-EDF-SC and Sleep-EDF-ST)
vs. wearable around-the-ear EEG recordings (Surrey-cEEGrid)
[11], [40]).

Sleep-EDF-SC: This is the Sleep Cassette (SC) subset
of the Sleep-EDF Expanded dataset [34], [35], consisting
of 20 subjects aged 25-34. Two subsequent day-night PSG
recordings were collected for each subject, except for subject
13 who has only one-night data. Each 30-second PSG epoch
was manually labelled into one of eight categories {W, N1, N2,
N3, N4, REM, MOVEMENT, UNKNOWN} by sleep experts
according to the R&K standard [2]. Similar to previous works
[5]–[7], [17], [25], [41], N3 and N4 stages were merged into a
single stage N3 and MOVEMENT and UNKNOWN categories
were excluded. Since full EMG recordings are not available,
we only adopted the Fpz-Cz EEG and ROC-LOC EOG (i.e.
the EOG horizontal) channels in this study. As this database
has been used differently in literature, it should be stressed
that only the in-bed parts (from lights off time to lights on
time) of the recordings were used as recommended in [5], [7],
[17], [25], [41]–[43].

Sleep-EDF-ST: This is the Sleep Telemetry (ST) subset
of the Sleep-EDF Expanded dataset [34], [35] which was
collected for studying the temazepam effects on sleep. The
subset consists of 22 Caucasian subjects (7 males and 15
females) aged 18-79 with mild difficulty falling asleep. Al-
though the PSG signals were recorded for two nights, one
after temazepam intake and one after placebo intake, only
the placebo nights are available. Manual annotation was done
similar to the Sleep-EDF-SC subset. Beside Fpz-Cz EEG and
ROC-LOC EOG, the submental EMG channel is available and
additionally adopted. Similar to the the Sleep-EDF-SC subset,
only the in-bed parts of the recordings were used.

Surrey-cEEGrid: This database [11], [40] was recorded
at the University of Surrey using the cEEGrid array [44],
[45], a novel lightweight flex-printed electrode strip that fits
neatly behind the ear, as illustrated in Figure 1 (a). Twenty
participants, aged 34.9 ± 13.8 years, had their overnight

TABLE II: Summary of the employed sleep databases.
Num. of
subjects EEG EOG EMG Data

mismatch
MASS 200 C4-A1 ROC-LOC CHIN1-CHIN2 -
Sleep-EDF-SC 20 Fpz-Cz ROC-LOC - slight
Sleep-EDF-ST 22 Fpz-Cz ROC-LOC Submental slight
Surrey-cEEGrid 12 cEEGrid ROC-A2 CHIN1-CHIN3 severe

(about 12 hours) cEEGrid data collected. The PSGs were also
recorded in parallel and manual annotation based on the PSG
was used as reference for the cEEGrid data [11]. Besides
two recordings lost due to human error, six recordings were
discarded because of excessive artifacts and missing data. A
cohort of 12 participants was retained. From the cEEGrid
data, the FB(R) (“front versus back” for the right ear, see
Figure 1 (b)) EEG derivation, which was the best derivation
[11], was obtained and used. We also simulated the two-
and three-channel settings by adding the ROC-A2 EOG and
CHIN1-CHIN3 channels from the PSG data to the cEEGrid
data. Although there exist other EOG and EMG channels, the
ROC-A2 EOG and CHIN1-CHIN3 channels were deliberately
selected to be different from those of the source domain to
maintain the severity of data mismatch.

The employed databases and the adopted signals are sum-
marized in Table II. All the signals were downsampled to 100
Hz. The databases were chosen to have the data mismatch
between the target domains and the source domain varying
from slight level due to the difference in PSG signals used
(i.e. Sleep-EDF-SC and Sleep-EDF-ST) to severe level due to
completely new electrode placement (i.e. Surrey-cEEGrid).

III. THE GENERIC DEEP LEARNING FRAMEWORK FOR
SEQUENCE-TO-SEQUENCE SLEEP STAGING

The advent of deep learning has made astonishing progress
in automatic sleep staging. First, deep networks are powerful
in learning features which outperform and displace traditional
handcrafted features. Second, they enable us to achieve au-
tomatic sleep stage classification in ways that are impossible
for conventional machine-learning algorithms. The sequence-
to-sequence sleep staging scheme [4] was recently proposed to
offer the ability of modelling long-term temporal dependency
of sleep data epochs in a deep learning model. Intuitively, a
sequence-to-sequence model processes a sequence of multiple
consecutive epochs simultaneously and classifies them at once
into a sequence of corresponding sleep stages. Here, we
frame this scheme into a generic deep learning framework for
sequence-to-sequence sleep staging. This framework also sets
a potential benchmark to design new models in future work.
It is worth noting beforehand that a detail explanation of the
network layers and machine learning concepts encountered in
the following sections, such as an RNN or a CNN, can be
found in [46].

A. The framework

Formally, given the input sequence of L consecutive epochs
denoted as (S1,S2, . . . ,SL), the sequence-to-sequence sleep
staging problem [4] is formulated to maximize the con-
ditional probability p(y1,y2, . . . ,yL |S1,S2, . . . ,SL) where
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Fig. 2: The proposed generic deep learning framework for
sequence-to-sequence sleep staging which consists of the tied
epoch processing block (EPB), the sequence processing block
(SPB), and the tied softmax layer.

(y1,y2, . . . ,yL) represents the sequence of corresponding L
one-hot encoding vectors of the ground-truth output labels.

The proposed framework are divided into three components,
an epoch processing block (EPB), a sequence processing block
(SPB), and a softmax layer, as illustrated in Fig. 2.

EPB: Each epoch in the input sequence is presented to the
network in some forms of representation (e.g. raw signals [6]
or time-frequency features [4]) and can be single-channel (e.g.
EEG or EOG) or multi-channel (e.g. a combination of EEG,
EOG, and EMG). The EPB plays the role of an epoch-wise
feature learner and extractor. The EPB is common for the PSG
epochs in the input sequence and is a sub-network that is
trained jointly with other components in an end-to-end manner
[4]. Via the EPB, an input epoch Sl, 1 ≤ l ≤ L, is transformed
into an epoch-wise feature vector xl.

SPB: The SPB consists of a bidirectional recurrent layer
(biRNN) that encodes the sequence of the induced epoch-wise
feature vectors (x1,x2, . . . ,xL) into the sequence of output
vectors (o1,o2, . . . ,oL). An RNN is a type of deep neural
networks that processes an input sequence one element at a
time and retain information of all the past elements of the
sequence in its hidden state vector [47]. A biRNN, on the
other hand, consists of two RNN layers of opposite directions
to the same input sequence [48]. More specifically, the forward
and backward recurrent layers of the biRNN iterate over the
sequence (x1,x2, . . . ,xL) in opposite directions and compute
their forward and backward sequences of hidden state vectors
Hf = (hf

1,h
f
2, . . . ,h

f
L) and Hb = (hb

1,h
b
2, . . . ,h

b
L),

respectively, where

hf
l = H(xl ,hf

l−1), (1)

hb
l = H(xl ,hb

l+1), 1 ≤ l ≤ L. (2)

In (1) and (2), H denotes the hidden layer function of the
biRNN and can be realized by either Long Short-Term Mem-
ory (LSTM) [49] or Gated Recurrent Unit (GRU) [50], two
most popular RNN variants. The sequence of output vectors
(o1,o2, . . . ,oL) is then computed:

ol = Who[h
b
l ⊕ hf

l] + bo, 1 ≤ l ≤ L, (3)
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Fig. 3: Illustration of the EPBs of (a) SeqSleepNet+ and (b)
DeepSleepNet+. The former relies on an attentional biRNN
coupled with filterbank layers. The latter is a two-branch deep
CNN.

where ⊕ represents vector concatenation. In (3), Who denotes
a learnable weight matrix and bo denotes a learnable bias. The
(long-term) dependency of the input epochs are expected to
be modelled by the biRNN layer and the output vectors ol,
1 ≤ l ≤ L are expected to encode sequence-level information.
A residual connection can be optionally used to integrate
epoch-wise features xl and sequence-wise features ol and,
hence, enables the network to explore their combination in
the classification stage. The fully-connected layer (FC) of the
residual connection is to convert xl into another vector having
its size compatible to ol for a proper residual combination. All
the residual connections also share their parameters.

Softmax: The classification is carried out by the shared
softmax layer to yield the output sequence of sleep stage
probabilities (ŷ1, ŷ2, . . . , ŷL) from the sequence of output
vectors (o1,o2, . . . ,oL). Different from SeqSleepNet in [4]
and DeepSleepNet in [6], we use a common softmax layer for
classification at all indices 1, 2, . . . , L to reduce the number of
network parameters rather than one separate softmax layer at
each of the indices. A network that adheres to this framework
can be trained to minimize the sequence classification loss
over N training sequences in the training data:

E(θ) = − 1

L

N∑
n=1

L∑
l=1

yl log (ŷl (θ)) +
λ

2
‖θ‖22. (4)

Here, θ represents the network parameters and λ denotes the
hyper-parameter that trades off the error terms and the `2-norm
regularization term.

B. The derived networks
From the framework presented in Section III-A, we develop

two networks as the base models for transfer learning:
SeqSleepNet+: This network is similar to SeqSleepNet

presented in [4], except that a common softmax layer is used
at all indices of the input sequence. Hence, SeqSleepNet+ is
more compact than SeqSleepNet [4]. The network receives the
log-scale time-frequency representation [4] as input. The time-
frequency image is normalized to zero-mean and unit standard
deviation. In case of multi-channel, the channel-wise image
features are stacked as a multi-channel image. The network’s
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EPB is realized by filterbank layers [4], [17], one for each
input image channel for preprocessing purpose, followed by an
attentional biRNN as illustrated in Figure 3(a). Note that this
EBP’s biRNN should not be confused with the SBP’s biRNN
in Fig. 2. Both the EPB’s biRNN and the SPB’s biRNN of the
network are implemented by a GRU cell [50] with recurrent
batch normalization [51]. There is no residual connection (cf.
Figure 2) in the SPB of this network.

DeepSleepNet+: This network is inherited from DeepSleep-
Net [6] and its end-to-end variant [4], except for the common
softmax used at all indices of the input sequence. The network
receives raw signals as input. When the input are composed
of multiple signals, the raw signal are stacked to form a multi-
channel input. The network’s EPB is composed of two deep
CNNs organized in two branches with 4 convolutional layers
each as illustrated in Figure 3(b). A CNN is a type of deep
neural networks designed to efficiently process data that come
in the form of multiple arrays [47], such as one-dimensional
signals in this case. A CNN features local connections, shared
weights, and pooling to learn translation-invariant features
from the input. The convolutional kernels in the two branches
are purposely designed to have different sizes so that they can
learn features at both fine and coarse temporal resolutions.
Each convolutional layer is associated with batch normal-
ization [52] and Rectified Linear Units (ReLU) activation
[53]. The SPB’s biRNN relies on the LSTM cell [49] and is
designed to have two bidirectional LSTM layers, one stacked
on top of the other. In addition, the SPB makes use of the
residual connection.

As the two networks inherits SeqSleepNet’s and DeepSleep-
Net’s architecture’s, respectively, they are divergent in their
inputs, EPB, and SPB components [38]. Therefore, these dif-
ferences suggest discrepant behaviors during transfer learning.

IV. TRANSFER LEARNING SCENARIOS FOR AUTOMATIC
SLEEP STAGING ON SMALL COHORTS

Formally, let DS = {XS ,YS} denote the source domain
with the feature space XS and the label space YS . In addition,
let TS denote the task in the source domain with the source
conditional probability distributions P (yS |xS), where xS ∈
XS and yS ∈ YS . Similarly, DT = {XT ,YT } denotes
the target domain with the feature space XT and the label
space YT . TS denotes the task in the target domain with
the conditional probability distributions P (yT |xT ), where
xT ∈ XT and yT ∈ YT , respectively. The objective of transfer
learning is to improve learning P (yT |xT ) with information
gained from DS and TS where DS 6= DT or TS 6= TT [54].
In our case, TS ≡ TT , as we aim at performing sleep staging
with the same set of sleep stages in both the source and target
domains. Transfer learning [54] relaxes the hypothesis that
the training data must be identically distributed as the test
data. Therefore, it is useful to deal with data mismatch and
holds promise to leverage the large amount of available data
to overcome the problem of having insufficient training data
in small cohort studies.

In the present context, a model (e.g. SeqSleepNet+ or
DeepSleepNet+) is firstly trained in the source domain and
then finetuned in the target domain to complete knowledge

Base Model

Source Target

Tr
ai

n

Finetune

Fig. 4: Transfer learning from a source domain to a target
domain. The base model is trained using the source-domain
data, and then finetuned on the target-domain data to complete
knowledge transfer.

transfer as illustrated in Figure 4. Without loss of generality,
the pretraining process is to minimize the loss LS over the
source-domain data, resulting in the model parameter θ:

argmin
θ

=
∑

(x,y)∈DS

LS (x, P (y |x), Pθ (y |x)) . (5)

The pretrained model is considered as a starting point in the
target domain. To accomplish transfer learning, a subset of
the pretrained network’s parameter θ′ ⊆ θ is finetuned (i.e.
further trained) with the target-domain data while the rest θ\θ′

remains unchanged (i.e. being reused):

argmin
θ′⊆θ

=
∑

(x,y)∈DT

LT (x, P (y |x), Pθ (y |x)) . (6)

When θ′ = θ, the entire pretrained network is finetuned in
the target domain. In contrast, when θ′ = ∅, no finetuning
happens and the pretrained network is directly used in the
target domain.

In order to study the influence of finetuning different
components of a pretrained SeqSleepNet+ and DeepSleepNet+
to the sleep staging performance on the target domains, we
examine four finetuning strategies corresponding to different
component combinations: all, EPB+softmax, SPB+softmax,
and softmax. The parameter subsets corresponding to these
combinations will be adapted with the target-domain data
while the rest remains fixed. The case in which the pretrained
network is directly used in the target domain without finetun-
ing is considered as a baseline. The finetuning strategies are
carried out to study the following transfer learning scenarios:

EEG·EOG·EMG 7→EEG·EOG·EMG: Apart from brain
activities, sleep also involves eye movements and muscular
activities at different levels. For instance, Rapid Eye Move-
ment (REM) stage usually associates with rapid eye move-
ments and high muscular activities are usually seen during
the Awake stage. Therefore, EOG and EMG are valuable
additional sources, complementing EEG in the automatic sleep
staging task [5], [8]–[10], [37]. We study this three-channel
EEG·EOG·EMG transfer learning scenario when all EEG,
EOG, and EMG are available in a target domain (i.e. in case
of Sleep-EDF-ST and Surrey-cEEGrid).

EEG·EOG 7→EEG·EOG: This scenario assumes the un-
availability of EMG and examines two-channel EEG·EOG
transfer learning. Different from the three-channel case, we
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are able to study this scenario across all the adopted target
domains as they all have full EEG and EOG recordings
available.

EEG7→EEG: This scenario explores single-channel EEG
transfer learning. Automatic sleep staging with single-channel
EEG is prevalent in literature [17], [25], [41], [55]–[57]. With-
out the augmentation from EOG and EMG, this single-channel
setting usually results in a lower performance compared to
those of the multi-channel ones; however, it is desirable due
to the simple configuration. It is particularly useful for sleep
monitoring applications with mobile EEG devices [11], [40].

EOG 7→EOG: In general, EOG signals contain rich in-
formation from multiple sources, including ocular activity,
frontal EEG activity, and EMG from cranial and eye muscles
[36]. They are, therefore, promising alternatives for EEG in
single-channel sleep staging. In addition, due to the ease
of electrode placements, it would be ideal for home-based
sleep monitoring applications with wearable devices [11], [40].
Despite their potential, EOG signals have been mainly used
as secondary modality in multi-channel sleep staging studies
[36], [58]. With this scenario, we aim to exploit standalone
EOG and deep transfer learning on this secondary modality to
examine whether its performance is comparable to that using
the primary EEG in single-channel sleep staging.

EEG7→EOG: As an extension of the EOG7→EOG scenario,
this cross-modality transfer learning scenario investigates
whether a base model trained on EEG in the source domain
can be transferred to EOG in the target domain and if its
performance is comparable to the same-domain EOG 7→EOG
transfer learning scenario. If the answers to these questions are
true, instead of modality-specific pretrained models, a single
model pretrained solely on EEG can serve as a generic model
for single-channel transfer learning regardless the modality of
the target domain.

Apart from the data mismatch caused by the
differences in recording devices and/or electrode
placements in case of the same-modality scenarios (i.e.
EEG·EOG·EMG 7→EEG·EOG·EMG, EEG·EOG7→EEG·EOG,
EEG 7→EEG, and EOG 7→EOG), heavy data mismatch is
expected in case of the cross-modality EEG7→EOG scenario
when the base models are trained with EEG data in the source
domain is transferred to EOG data in the target domains.
On the one hand, with the same-modality scenarios, we aim
to show that even when the source domain and the target
domains are of the same modalities, transfer learning is still
necessary. On the other hand, the cross-modality scenario
is to emphasize that transfer learning is efficient in tackling
heavy data mismatch to transfer knowledge from the source
domain to the target domains.

V. EXPERIMENTS

A. Experimental Setup

SeqSleepNet+ and DeepSleepNet+ were pretrained using
the data from the entire 200 subjects of the MASS database
(i.e. the source domain) and then finetuned in the target do-
mains. To evaluate the efficiency of transfer learning on sleep
staging in the target domains, cross-validation was conducted.

Leave-one-out cross-validation was conducted for Sleep-EDF-
SC (20 subjects), and Surrey-cEEGrid (12 subjects) while 11-
fold cross-validation was performed for Sleep-EDF-ST (22
subjects) to have an equal number of test subjects (i.e. 2
subjects) in each cross-validation fold. At each iteration of
cross-validation, a number of subjects were randomly selected
and left out for validation purpose, i.e. for early stopping the
finetuning process, (4 for Sleep-EDF-SC and Sleep-EDF-ST
and 2 for Surrey-cEEGrid). The performance over all cross-
validation folds was then calculated.

B. Network Parameters
Both SeqSleepNet+ and DeepSleepNet+ were implemented

using Tensorflow [59]. The networks were parametrized similar
to SeqSleepNet and DeepSleepNet in our previous work [4].
We experimented with the input sequence length L = 20
epochs as this value is a reasonable choice for these sequence-
to-sequence models [4]. The sequences were sampled from the
training recordings with a hop size of one epoch for network
training and finetuning. During testing, the test sequences were
also shifted by one epoch, resulting in an ensemble of L
classification decisions at each epoch of a test recordings. A
probabilistic aggregation step similar to [4] was carried out to
fuse the decision ensemble into the final decision.

In the source domain, the networks were pretrained with the
MASS database for 10 training epochs with a minibatch size
of 32 sequences. For transfer learning, the pretrained networks
were further finetuned on each target-domain databases for 10
finetuning epochs. The finetuning process was stopped early
when no accuracy improvement was seen on the validation
subjects for 50 finetuning steps. Both network training and
finetuning were performed using Adam optimizer, an opti-
mization algorithm proposed in [60] for training deep neural
networks. This optimizer leverages the power of adaptive
learning rates methods to find individual learning rates for
each parameter of the network. The initial learning rate of
Adam optimizer was set to 10−4.

C. Experimental Results
1) Performance on the source domain: It is first worth

assessing SeqSleepNet+ and DeepSleepNet+ on the source
domain to see how well they perform on a large number of
subjects across the input spectrum. To this end, we conducted
10-fold cross-validation on the source domain. At each iter-
ation, 180 subjects were used for training, 10 for validation,
and 10 for testing. The results of the cross-validation folds
were finally pooled to calculate the overall metrics, including
accuracy, macro F1-score, and Cohen’s kappa (κ). The ob-
tained performance with different inputs are shown in Table

TABLE III: Sleep staging performance on the source domain
(i.e. the MASS database).

SeqSleepNet DeepSleepNet

Input Acc. MF1 κ Acc. MF1 κ

EEG·EOG·EMG 87.0 83.3 0.815 86.5 82.4 0.807
EEG·EOG 86.5 82.4 0.808 85.9 81.6 0.799
EEG 84.5 79.8 0.778 84.3 79.7 0.777
EOG 83.9 79.1 0.769 83.7 78.9 0.767
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Fig. 5: Performance patterns obtained by finetuning the
pretrained SeqSleepNet+ with different finetuning strate-
gies in comparison with those of the SeqSleepNet+
scratch model. (a) EEG·EOG·EMG 7→EEG·EOG·EMG, (b)
EEG·EOG7→EEG·EOG, (c) EEG 7→EEG, (d) EOG 7→EOG, and
(e) EEG 7→EOG.

III. Firstly, the results in the table confirm the benefit of using
EOG and EMG to complement EEG in the automatic sleep
staging task as their presence lead to performance improve-
ment. Secondly, with the sequence-to-sequence framework, the
performance obtained by the secondary EOG is just marginally
lower than that of the primary EEG, evidenced by both
SeqSleepNet+ and DeepSleepNet+. This suggests that EOG
can be used as a standalone modality similar to EEG when a
single channel is used.

2) The effect of transfer learning on the target domains:
Figures 5 and 6 give an overall picture on the performance
obtained by SeqSleepNet+ and DeepSleepNet+ on the target
domains with respect to different finetuning strategies and
compared to the model trained from scratch using the target-
domain data only. The two networks show noticeably varying
patterns on the transfer learning results.

On the one hand, SeqSleepNet+’s results in Figure 5 reveal
that, while finetuning the softmax layer alone leads to better
performance than that of the scratch model in some cases, it is
essential to additionally finetune the feature-learning parts of
the network, either the EPB for epoch-level feature learning
or the SPB for sequence-level feature learning, or both. This
pattern exists across all finetuning cases in the figure. This
suggests that the features learned by SeqSleepNet+ in the
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Fig. 6: Performance patterns obtained by finetuning the
pretrained DeepSleepNet+ with different finetuning strate-
gies in comparison with those of the DeepSleepNet+
scratch model. (a) EEG·EOG·EMG 7→EEG·EOG·EMG, (b)
EEG·EOG7→EEG·EOG, (c) EEG 7→EEG, (d) EOG 7→EOG, and
(e) EEG 7→EOG.

source domain are slightly different from those in the target
domain. This is reasonable due to the data mismatch between
the source and target domains.

On the other hand, DeepSleepNet+’s finetuning results
expose diverging patterns as shown in Figure 6. Finetuning
the softmax layer alone results in comparable, or even better,
performance than other finetuning strategies in some cases
(such as the EEG 7→EEG scenarios) whereas its results are
largely belittled in other cases (such as EEG7→EEG scenarios).
This suggests that, when the signals are of the same modality,
the features learned from the source domain’s raw signals
persist in the target domain and only their combinations need
to be adapted in the target domains. In contrast, when the
signals are from different modalities, additional finetuning the
feature learning parts (i.e. the EPB or the SPB or both) is
necessary. It, however, should be emphasized that persistence
of the learned features across the source and target domains
does not necessarily mean good generalization as DeepSleep-
Net+’s finetuning results are inferior to those of its counterpart,
SeqSleepNet+ (see Table IV).

Despite their different behaviors in finetuning, both Se-
qSleepNet+ and DeepSleepNet+ meet the transfer learning’s
expectation. Compared to the network trained from scratch
using the target-domain data only, transfer learning consis-
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Fig. 7: The test accuracy during the finetuning/training. Each
curve was averaged over all the cross-validation folds. (a)
SeqSleepNet+ and (b) DeepSleepNet+.

tently results in improvements across different network types,
the target domains, and the transfer learning scenarios. The
benefits of transfer learning is further evidenced by contrasting
the learning curves of the finetuned models and the scratch
models. Taking the two-channel EEG·EOG7→EEG·EOG sce-
nario as an example (see Figure 7), the learning curves were
recorded on the test data during finetuning and training,
respectively. Each learning curve was averaged over all cross-
validation folds. As the learning curves’ lengths vary across
different folds due to early stopping, those with shorter length
than the maximum one were padded to the maximum length
before averaging. SeqSleepNet+’s learning curves show better
generalization and faster convergence of the finetuned models
(except the softmax-only finetuning strategy) compared to their
scratch opponents. Similar motifs are observed in DeepSleep-
Net+’s learning curves; however, the softmax-only finetuning
strategy shows a comparable generalization to other strategies
(although slower convergence). These findings consolidate the
explanation for the finetuning results in Figures 5 and 6.

3) Performance comparison on the target domains: To jus-
tify the necessity of transfer learning, in Table IV we compare
the finetuning overall performance against those of the scratch
models and direct transfer (i.e. applying the pretrained models
in the target domains without finetuning) across the target
domains and the transfer learning scenarios. In addition,
the obtained results are also contrasted to those reported in
previous works to quantify the efficiency of the proposed
transfer learning approach. As the transfer learning results vary
depending on the finetuning strategies, for simplicity, out of
different finetuning strategies, we retained the SPB+softmax
one as the representative for comparison given its consistent
finetuning results (see Figures 5 and 6). In practice, the
finetuning strategies could be viewed as a hyper-parameter and
determined via cross-validation. We should bring to readers’
attention a large body of works, such as [8], [21], [23], [24],
that yielded an accuracy level on (extremely) large databases
similar to that of our proposed systems. However, comparison
to these results is not the main focus of this work; furthermore,
such a comparison would be incompatible and, hence, does not
offer much meaning.

Between SeqSleepNet+ and DeepSleepNet+, the former
outperforms the latter in most of the cases in Table IV.

With scratch training, SeqSleepNet+ results in an average
accuracy gain of 1.7%, 6.6%, and 17.3% over DeepSleep-
Net+ on Sleep-EDF-SC, Sleep-EDF-ST, and Surrey-cEEGrid,
respectively. This is consistent with the findings from the
source domain (i.e. the MASS database) in Table III and in
[4]. With transfer learning, SeqSleepNet+ also obtains better
performance than DeepSleepNet+ with, improving the overall
accuracy by 0.8%, 1.5%, and 7.7% on Sleep-EDF-SC, Sleep-
EDF-ST, and Surrey-cEEGrid, respectively. These results sug-
gest that DeepSleepNet+ is harder to train and finetune than
SeqSleepNet+, especially when the data is small, partly due
to its large model footprint [6] and partly due to its reliance
on raw signal inputs. However, the results in Table IV show
significant gains obtained by both the finetuned models over
their scratch counterparts. On the one hand, averaging over all
transfer learning scenarios, finetuning SeqSleepNet+ leads to
an absolute accuracy gain of 2.5%, 2.0%, and 1.4% on Sleep-
EDF-SC, Sleep-EDF-ST, and Surrey-cEEGrid, respectively.
Those gains of DeepSleepNet+ are even larger, reaching 3.4%,
7.1%, and 10.9%, respectively, mainly because of the poor
performance of the scratch DeepSleepNet+ on Sleep-EDF-
ST and Surrey-cEEGrid. Interestingly, transfer learning helps
compensate for the lack of training data, evidenced by the
observation that the accuracy on Sleep-EDF-SC achieved by
the finetuned SeqSleepNet+ is on par with that of MASS (cf.
Table III) even though the number of subjects is ten times
smaller. On the other hand, despite the heavy data mismatch in
the cross-domain scenario, transferring the information of EEG
data in the source domain to EOG data in the target domains
still yields significant accuracy gains: 1.0% and 7.4% on
average with SeqSleepNet+ and DeepSleepNet+, respectively.
Interestingly, with the accuracy consistently around 80% ob-
tained from the secondary EOG via DeepSleepNet+’s transfer
learning, it is promising to be used as an alternative for EEG
in single-channel sleep staging.

Directly applying the pretrained models in the target do-
mains without finetuning results in suboptimal performance
in many cases. Averaging over the same-modality transfer
learning scenarios, the pretrained SeqSleepNet+ model with
direct transfer obtains an accuracy with 10.3%, 5.7%, and
62.2% lower than those obtained by the finetuned models
on Sleep-EDF-SC, Sleep-EDF-ST, and Surrey-cEEGrid, re-
spectively. Those gaps in case of DeepSleepNet+ are 16.8%,
9.1%, and 32.6%, respectively. The direct transfer’s results
are particularly poor under heavy data mismatch conditions,
such as the EEG7→EOG scenario and the EEG7→EEG scenario
in Surrey-cEEGrid. It is reasonable as substantial differences
in characteristics of the source domain and the target do-
main cause discrepancy in the feature-learning parts of the
pretrained models in the target domain. As a consequence,
finetuning is essential. Similar findings are also reflected in
the class-wise performance (in terms of MF1) in Table V.

The proposed transfer learning approach also outperforms
all previous works and set state-of-the-art performance on all
three target databases. On Sleep-EDF-SC, with the accuracies
of 84.3% (two-channel EEG·EOG) and 85.2% (single-channel
EEG) obtained by the transfer learning based SeqSleepNet+,
the system yields absolute accuracy gains of 2.0% and 3.2%
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TABLE IV: Performance comparison between the proposed transfer-learning systems, and the baseline systems (i.e. the scratch
models and the direct-transfer models, in italic font), and previous works. FT and DT are abbreviated for “finetuning” and
“direct transfer”, respectively. It should be noted that the comparison may not be completely compatible due to differences in
experimental setup: ∗the transfer learning approach was personalized finetuning; †30 minutes of data (mainly Wake epochs)
before and after in-bed duration were included, therefore, the results are likely biased towards Wake stage; ‡the evaluation was
not subject-independent [5]; �the number of subjects is different from that in our experiments.

System Transfer
learning

EEG·EOG·EMG
7→EEG·EOG·EMG EEG·EOG7→EEG·EOG EEG7→EEG EOG7→EOG EEG7→EOG

Acc. MF1 κ Acc. MF1 κ Acc. MF1 κ Acc. MF1 κ Acc. MF1 κ

Sl
ee

p-
E

D
F-

SC

FT SeqSleepNet+ Yes 84.3 77.7 0.776 85.2 79.6 0.789 81.7 75.1 0.737 80.0 72.3 0.709
FT DeepSleepNet+ Yes − − − 84.6 79.0 0.782 84.4 78.8 0.781 79.8 73.4 0.713 79.4 72.8 0.707
DT SeqSleepNet+ Yes − − − 72.0 62.1 0.601 81.2 74.6 0.733 67.2 59.1 0.530 51.1 42.5 0.300
DT DeepSleepNet+ Yes − − − 70.2 59.8 0.586 74.2 66.9 0.651 54.1 41.9 0.396 39.7 35.8 0.235
Scratch SeqSleepNet+ No − − − 82.2 74.2 0.744 82.2 74.1 0.746 78.5 68.3 0.688 78.5 68.3 0.688
Scratch DeepSleepNet+ No − − − 81.9 75.2 0.744 80.8 74.2 0.731 75.9 66.9 0.652 75.9 66.9 0.652
Personalized Deep CNN∗ [9] Yes − − − 84.0 − − − − − − − − − − −
VGG-FT [18] Yes − − − − − − 80.3 − − − − − − − −
VGG-FE [18] Yes − − − − − − 76.3 − − − − − − − −
ResNet [37] Yes − − − 76.8 − − − − − − − − − − −
U-time [61]† No − − − − − − − 79.0 − − − − − − −
IITNet [62]† No − − − − − − 84.0 77.7 0.78 − − − − − −
DeepSleepNet† [6] No − − − − − − 82.0 76.9 0.760 − − − − − −
Multitask 1-max CNN [5] No − − − 82.3 74.7 0.750 81.9 73.8 0.740 − − − − − −
1-max CNN [17] No − − − − − − 79.8 72.0 0.720 − − − − − −
Attentional RNN [25] No − − − − − − 79.1 69.8 0.700 − − − − − −
Deep auto-encoder [41] No − − − − − − 78.9 73.3 − − − − − − −
Deep CNN [7] No − − − − − − 74.8 69.8 − − − − − − −
Decision trees [63]‡ No − − − − − − 93.1 − − − − − − − −
k-NN [64]‡ No − − − − − − 80.0 − − − − − − − −
GMM [65]‡ No − − − − − − 73.3 − − − − − − − −

Sl
ee

p-
E

D
F-

ST

FT SeqSleepNet+ Yes 80.6 76.2 0.727 81.0 76.7 0.732 81.0 77.5 0.734 80.4 76.5 0.722 79.6 75.2 0.710
FT DeepSleepNet+ Yes 80.2 76.6 0.722 80.1 76.6 0.721 81.5 77.5 0.738 77.4 74.1 0.682 76.0 71.4 0.661
DT SeqSleepNet+ Yes 79.3 73.0 0.703 73.1 64.2 0.615 80.5 75.6 0.722 67.2 59.4 0.531 56.3 48.4 0.363
DT DeepSleepNet+ Yes 74.6 67.4 0.645 71.6 65.4 0.600 66.7 61.3 0.541 70.0 63.3 0.586 35.1 31.0 0.116
Scratch SeqSleepNet+ No 79.4 74.5 0.709 79.6 74.8 0.711 76.5 70.6 0.667 78.6 71.6 0.693 78.6 71.6 0.693
Scratch DeepSleepNet+ No 73.8 69.6 0.634 73.7 67.6 0.629 72.4 64.6 0.603 70.0 65.9 0.574 70.0 65.9 0.574
SVM + Scattering Trans. [66] No − − − − − − 78.6 73.6 0.695 − − − −
Decision trees. [67] No − − − − − − 75.0 − − − − − −

Su
rr

ey
-c

E
E

G
ri

d FT SeqSleepNet+ Yes 82.9 72.6 0.762 82.3 71.1 0.752 75.3 60.8 0.650 82.6 72.2 0.758 81.9 71.2 0.749
FT DeepSleepNet+ Yes 71.1 59.7 0.588 77.8 66.5 0.687 58.2 42.8 0.391 77.5 66.6 0.682 81.7 70.5 0.745
DT SeqSleepNet+ Yes 20.2 14.7 0.062 19.4 14.6 0.051 10.6 9.1 −0.015 24.3 20.5 0.085 24.1 16.9 0.090
DT DeepSleepNet+ Yes 38.4 11.8 0.025 38.3 11.7 0.020 38.4 11.6 0.012 39.3 25.4 0.214 38.9 25.4 0.195
Scratch SeqSleepNet+ No 82.1 67.6 0.748 81.5 66.4 0.739 71.9 55.2 0.597 81.3 67.8 0.737 81.3 67.8 0.737
Scratch DeepSleepNet+ No 65.6 57.3 0.535 65.4 57.4 0.534 42.5 30.3 0.195 69.1 60.0 0.579 69.1 60.0 0.579
Random Forests� [11] No − − − 72.0 − 0.600 70.0 − 0.580 − − − − − −

TABLE V: Class-wise performance of the proposed transfer-learning systems and the baseline systems in terms of MF1.

System Transfer
learning

EEG·EOG·EMG7→EEG·EOG·EMG EEG·EOG 7→EEG·EOG EEG 7→EEG EOG7→EOG EEG 7→EOG

W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM

Sl
ee

p-
E

D
F-

SC

FT SeqSleepNet+ Yes − − − − − 80.0 45.9 88.0 85.9 88.9 85.4 50.9 88.8 86.4 86.5 75.1 46.4 86.3 80.3 87.3 72.8 40.3 84.9 78.7 84.8
FT DeepSleepNet+ Yes − − − − − 82.6 50.0 87.8 86.2 88.4 81.0 50.5 88.2 86.9 87.2 75.3 42.7 84.5 79.3 85.4 75.7 41.9 83.9 78.1 84.5

DT SeqSleepNet+ Yes − − − − − 63.2 29.8 84.9 72.2 60.2 74.1 46.9 86.9 81.2 83.8 67.7 33.9 79.3 54.4 60.4 51.4 28.9 61.0 19.8 51.6

DT DeepSleepNet+ Yes − − − − − 59.6 30.6 82.7 80.5 45.5 69.0 31.9 80.0 74.6 78.8 38.9 15.1 74.6 78.8 2.0 29.6 11.5 48.9 75.1 13.8

Scratch SeqSleepNet+ No − − − − − 75.0 38.3 86.8 86.0 85.0 78.5 37.1 87.6 86.2 81.2 73.5 25.8 84.4 77.7 80.3 73.5 25.8 84.4 77.7 80.3

Scratch DeepSleepNet+ No − − − − − 67.5 47.9 86.8 86.8 87.0 70.3 48.1 86.4 84.6 81.3 62.8 33.1 81.5 74.8 82.5 62.8 33.1 81.5 74.8 82.5

Sl
ee

p-
E

D
F-

ST

FT SeqSleepNet+ Yes 80.5 54.0 84.2 71.9 91.1 81.0 55.5 84.7 71.8 90.4 81.8 59.5 84.4 72.9 89.2 80.3 57.7 83.9 70.4 90.3 78.9 52.7 83.5 71.8 88.9

FT DeepSleepNet+ Yes 80.8 55.7 82.9 71.3 87.9 81.7 57.3 83.8 70.7 89.5 82.9 56.9 85.2 74.0 88.4 81.8 56.1 81.3 63.8 87.3 77.0 45.7 80.7 68.5 85.3

DT SeqSleepNet+ Yes 76.9 47.5 85.4 68.5 86.7 63.5 39.6 85.2 65.5 67.3 78.8 56.0 85.2 69.2 88.6 62.2 44.0 80.4 61.9 48.3 62.8 41.1 66.5 17.7 53.8

DT DeepSleepNet+ Yes 67.9 33.7 81.9 71.9 81.6 73.2 36.0 78.4 70.2 69.3 66.8 36.1 73.6 63.4 66.6 62.4 32.8 79.6 70.5 71.2 32.4 13.7 40.6 64.1 4.3

Scratch SeqSleepNet+ No 80.9 49.2 83.5 70.0 89.1 82.0 48.2 83.3 70.7 89.6 80.3 38.9 82.0 69.9 81.6 76.5 38.4 83.6 72.2 87.2 76.5 38.4 83.6 72.2 87.2

Scratch DeepSleepNet+ No 72.0 46.1 78.3 67.4 84.4 59.5 47.4 80.9 72.3 77.8 61.0 40.3 81.1 67.1 73.7 67.1 45.7 74.9 64.3 77.2 67.1 45.7 74.9 64.3 77.2

Su
rr

ey
-c

E
E

G
ri

d FT SeqSleepNet+ Yes 91.6 81.3 27.2 81.3 81.3 90.9 79.9 23.1 81.4 80.2 90.6 58.0 10.6 71.5 73.4 91.2 78.8 26.6 81.1 83.3 91.3 76.0 26.4 81.0 81.0

FT DeepSleepNet+ Yes 80.4 63.3 10.3 67.5 77.1 86.7 70.9 15.5 77.1 82.5 74.9 23.2 5.7 47.0 63.4 87.0 66.6 22.0 77.7 79.8 90.2 78.5 20.2 80.9 82.8

DT SeqSleepNet+ Yes 57.0 1.6 11.9 3.1 0.0 54.4 0.4 12.1 6.0 0.0 29.2 0.6 9.9 3.3 2.5 46.7 12.1 13.7 30.1 0.0 67.9 2.8 10.1 3.7 0.1

DT DeepSleepNet+ Yes 57.6 0.0 1.3 0.0 0.0 57.0 0.0 1.7 0.0 0.0 57.1 1.2 0.0 0.0 0.0 67.0 0.4 17.2 42.4 0.0 66.2 3.1 14.6 43.3 0.0

Scratch SeqSleepNet+ No 90.8 81.1 5.7 80.2 80.0 90.4 79.9 3.3 79.9 78.7 88.2 50.5 1.0 67.4 68.8 90.3 79.6 12.3 79.5 77.5 90.3 79.6 12.3 79.5 77.5

Scratch DeepSleepNet+ No 75.0 61.4 23.4 64.4 62.4 72.9 59.4 24.0 68.7 61.8 57.6 12.3 6.9 23.1 51.4 75.2 66.1 19.7 73.0 66.0 75.2 66.1 19.7 73.0 66.0

over the best non-transfer-learning systems, Multitask 1-max
CNN [5] (82.3%) and DeepSleepNet [6] (82.0%), respectively.
Those respective gains achieved by the transfer learning based
DeepSleepNet+ are 2.3% and 2.4%. Large margins, 7.5% and
7.8%, are seen when contrasting the proposed SeqSleepNet+
and DeepSleepNet+ systems with the existing transfer learning
approach based on ResNet [37] and VGGNet [18]. These
results suggest that the quality of the base model plays an
important role in transfer learning for sleep staging. The

results obtained by the proposed systems are also better
than the personalization results in [9] even though cohort
transfer learning here is more challenging than personalized
transfer learning as, with the former, we do not have access
to test subjects’ data during training. Similar to Sleep-EDF-
SC, both proposed systems are superior to previous works
on Sleep-EDF-ST. However, on Surrey-cEEGrid, while the
transfer learning based SeqSleepNet+ uplifts the accuracy by
a margin of 10.3% in two-channel EEG·EOG and 5.3% in
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single-channel EEG compared to the seminal work in [11],
the DeepSleepNet+ experiences an accuracy drop of 11.8% in
single-channel EEG even though 5.8% absolute accuracy gain
is seen in two-channel EEG·EOG.

4) Influence of the number of finetuning subjects: This sec-
tion investigates the influence of the amount of the target-
domain data to the network finetuning. Considering the
EEG·EOG7→EEG·EOG scenario and the entire-network fine-
tuning strategies for this investigation. For a target domain,
we randomly selected 25% of the subjects as the test subjects
while the remaining subjects were used for finetuning. A pre-
trained network was finetuned using data from the finetuning
set of N subjects for 500 finetuning steps and the test accuracy
was recorded during the finetuning process. Starting with the
finetuning set of N = 1 subject, we repeated this procedure
and added two more subjects into it at each iteration.

Figure 8 shows the learning curves recorded with varying
number of finetuning subjects. The learning curves present
a strong impact of the number of finetuning subjects on
SeqSleepNet+ while such influence on DeepSleepNet+ is less
noticeable, except for Surrey-cEEGrid. It is rational if these
results are linked to the networks’ finetuning behaviors. While
a pretrained SeqSleepNet+ requires its feature-learning parts
to be adapted into the target domains, this requirement is
not mandatory for DeepSleepNet+, except for the cEEGrid
data (see Section V-C.2). And when the feature-learning parts
need to be adjusted, less finetuning data make the networks
converge to more subject-specific solutions, i.e. overfitting. On
the contrary, more finetuning data allow the feature learning
parts to converge to more generalizable solutions. This is
supported by the SeqSleepNet+’s learning curves on the Sleep-
EDF-SC and Surrey-cEEGrid domain, and DeepSleepNet+’s
learning curves on the Surrey-cEEGrid domain. From these
curves, we also speculate that when the feature-learning parts
of a network needs to be adapted to a target domain, a general-
izable solution can be obtained with the number of finetuning
subjects being around 11-13. Particularly, the learning curves
on Sleep-EDF-ST appears to be counter-intuitive as more
finetuning subjects occasionally result in lowering learning
curves. These irregularities can be explained by the fact that
the Sleep-EDF-ST population has a very wide range of age,
18-79. As sleep patterns change with age [68], depending the
age range of the test subjects, including a subject whose age is
far from that range would hurt more than help. Further studies
how to determine and select candidates from a population that
are most beneficial for a finetuning task.

D. Discussion
It is worth mentioning that, although we focused on studying

with small cohorts in this work, the presented transfer learning
approach would also be useful for a sleep study with a
larger cohort. On the one hand, it only requires the data of
a handful of subjects to be labelled, avoiding the burden of
manual scoring the entire cohort. On the other hand, finetuning
a pretrained model is generally much faster than training
a model from scratch, as illustrated in Figure 7. This is
because the pretrained model has reached already a reasonable
accuracy. As a result, it is able to converge after a few
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Fig. 8: The learning curves obtained from the test data with
varying the number of finetuning subjects. (a) SeqSleepNet+
and (b) DeepSleepNet+.

additional finetuning epochs. On the downside, it is worth
noting that still data from a number of subjects is needed
for the validation purpose and future works should explore
regularization methods, such as Kullback–Leibler divergence
[69], to eliminate this requirement.

VI. CONCLUSION

We presented a deep transfer learning approach to address
the problem of insufficient data in many sleep studies and
to improve automatic sleep staging performance on small co-
horts. The SeqSleepNet+ and DeepSleepNet+ derived from the
presented generic sequence-to-sequence sleep staging frame-
work were employed to surpass data mismatch and enable
transferring information from the source domain to the target
domain. The networks were trained in the source domain and
then finetuned in the target domains to complete knowledge
transfer. Experiments were conducted with different finetuning
strategies, transfer learning scenarios, and target domains. The
experimental results showed that via transfer learning, the
sleep staging performance was significantly improved across
all learning cases over the scratch models trained solely on
the target domains. The results also revealed the different
behaviors of two SeqSleepNet+ and DeepSleepNet+ models
in transfer learning. The former was found more consistent
and stable and outperformed the latter in most of the transfer
learning experiments. The number of subjects required for
finetuning also varied between the two networks, however,
overall, a small number of finetuning subjects was needed for
the networks to converge to a generalizable solution.
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