279 research outputs found

    Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra

    Get PDF
    Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6–10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days

    Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    Get PDF
    BACKGROUND: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening. RESULTS: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBcl(XL), UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just (15)N-NOESY, while avoiding TOCSY experiments and (13)C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better. CONCLUSIONS: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures

    New methods for automated NMD data analysis and protein structure determination

    Get PDF
    Die Ermittlung von Proteinstukturen mittels NMR-Spektroskopie ist ein komplexer Prozess, wobei die Resonanzfrequenzen und die SignalintensitĂ€ten den Atomen des Proteins zugeordnet werden. Zur Bestimmung der rĂ€umlichen Proteinstruktur sind folgende Schritte erforderlich: die PrĂ€paration der Probe und 15N/13C Isotopenanreicherung, DurchfĂŒhrung der NMR Experimente, Prozessierung der Spektren, Bestimmung der Signalresonanzen ('Peak-picking'), Zuordnung der chemischen Verschiebungen, Zuordnung der NOESY-Spektren und das Sammeln von konformationellen Strukturparametern, Strukturrechnung und Strukturverfeinerung. Aktuelle Methoden zur automatischen Strukturrechnung nutzen eine Reihe von Computeralgorithmen, welche Zuordnungen der NOESY-Spektren und die Strukturrechnung durch einen iterativen Prozess verbinden. Obwohl neue Arten von Strukturparametern wie dipolare Kopplungen, Orientierungsinformationen aus kreuzkorrelierten Relaxationsraten oder Strukturinformationen, die sich in Gegenwart paramagnetischer Zentren in Proteinen ergeben, wichtige Neuerungen fĂŒr die Proteinstrukturrechnung darstellen, sind die Abstandsinformationen aus NOESY-Spektren weiterhin die wichtigste Basis fĂŒr die NMR-Strukturbestimmung. Der hohe zeitliche Aufwand des 'peak-picking' in NOESY-Spektren ist hauptsĂ€chlich bedingt durch spektrale Überlagerung, Rauschsignale und Artefakte in NOESY-Spektren. Daher werden fĂŒr das effizientere automatische 'Peak-picking' zuverlĂ€ssige Filter benötigt, um die relevanten Signale auszuwĂ€hlen. In der vorliegenden Arbeit wird ein neuer Algorithmus fĂŒr die automatische Proteinstrukturrechnung beschrieben, der automatisches 'Peak-picking' von NOESY-Spektren beinhaltet, die mit Hilfe von Wavelets entrauscht wurden. Der kritische Punkt dieses Algorithmus ist die Erzeugung inkrementeller Peaklisten aus NOESY-Spektren, die mit verschiedenen auf Wavelets basierenden Entrauschungsprozeduren prozessiert wurden. Mit Hilfe entrauschter NOESY-Spektren erhĂ€lt man Signallisten mit verschiedenen Konfidenzbereichen, die in unterschiedlichen Schritten der kombinierten NOE-Zuordnung/Strukturrechnung eingesetzt werden. Das erste Strukturmodell beruht auf stark entrauschten Spektren, die die konservativste Signalliste mit als weitgehend sicher anzunehmenden Signalen ergeben. In spĂ€teren Stadien werden Signallisten aus weniger stark entrauschten Spektren mit einer grĂ¶ĂŸeren Anzahl von Signalen verwendet. Die Auswirkung der verschiedenen Entrauschungsprozeduren auf VollstĂ€ndigkeit und Richtigkeit der NOESY Peaklisten wurde im Detail untersucht. Durch die Kombination von Wavelet-Entrauschung mit einem neuen Algorithmus zur Integration der Signale in Verbindung mit zusĂ€tzlichen Filtern, die die Konsistenz der Peakliste prĂŒfen ('Network-anchoring' der Spinsysteme und Symmetrisierung der Peakliste), wird eine schnelle Konvergenz der automatischen Strukturrechnung erreicht. Der neue Algorithmus wurde in ARIA integriert, einem weit verbreiteten Computerprogramm fĂŒr die automatische NOE-Zuordnung und Strukturrechnung. Der Algorithmus wurde an der Monomereinheit der Polysulfid-Schwefel-Transferase (Sud) aus Wolinella succinogenes verifiziert, deren hochaufgelöste Lösungsstruktur vorher auf konventionelle Weise bestimmt wurde. Neben der Möglichkeit zur Bestimmung von Proteinlösungsstrukturen bietet sich die NMR-Spektroskopie auch als wirkungsvolles Werkzeug zur Untersuchung von Protein-Ligand- und Protein-Protein-Wechselwirkungen an. Sowohl NMR Spektren von isotopenmarkierten Proteinen, als auch die Spektren von Liganden können fĂŒr das 'Screening' nach Inhibitoren benutzt werden. Im ersten Fall wird die SensitivitĂ€t der 1H- und 15N-chemischen Verschiebungen des ProteinrĂŒckgrats auf kleine geometrische oder elektrostatische VerĂ€nderungen bei der Ligandbindung als Indikator benutzt. Als 'Screening'-Verfahren, bei denen Ligandensignale beobachtet werden, stehen verschiedene Methoden zur VerfĂŒgung: Transfer-NOEs, SĂ€ttigungstransferdifferenzexperimente (STD, 'saturation transfer difference'), ePHOGSY, diffusionseditierte und NOE-basierende Methoden. Die meisten dieser Techniken können zum rationalen Design von inhibitorischen Verbindungen verwendet werden. FĂŒr die Evaluierung von Untersuchungen mit einer großen Anzahl von Inhibitoren werden effiziente Verfahren zur Mustererkennung wie etwa die PCA ('Principal Component Analysis') verwendet. Sie eignet sich zur Visualisierung von Ähnlichkeiten bzw. Unterschieden von Spektren, die mit verschiedenen Inhibitoren aufgenommen wurden. Die experimentellen Daten werden zuvor mit einer Serie von Filtern bearbeitet, die u.a. Artefakte reduzieren, die auf nur kleinen Änderungen der chemischen Verschiebungen beruhen. Der am weitesten verbreitete Filter ist das sogenannte 'bucketing', bei welchem benachbarte Punkte zu einen 'bucket' aufsummiert werden. Um typische Nachteile der 'bucketing'-Prozedur zu vermeiden, wurde in der vorliegenden Arbeit der Effekt der Wavelet-Entrauschung zur Vorbereitung der NMR-Daten fĂŒr PCA am Beispiel vorhandener Serien von HSQC-Spektren von Proteinen mit verschiedenen Liganden untersucht. Die Kombination von Wavelet-Entrauschung und PCA ist am effizientesten, wenn PCA direkt auf die Wavelet-Koeffizienten angewandt wird. Durch die Abgrenzung ('thresholding') der Wavelet-Koeffizienten in einer Multiskalenanalyse wird eine komprimierte Darstellung der Daten erreicht, welche Rauschartefakte minimiert. Die Kompression ist anders als beim 'bucketing' keine 'blinde' Kompression, sondern an die Eigenschaften der Daten angepasst. Der neue Algorithmus kombiniert die Vorteile einer Datenrepresentation im Wavelet-Raum mit einer Datenvisualisierung durch PCA. In der vorliegenden Arbeit wird gezeigt, dass PCA im Wavelet- Raum ein optimiertes 'clustering' erlaubt und dabei typische Artefakte eliminiert werden. DarĂŒberhinaus beschreibt die vorliegende Arbeit eine de novo Strukturbestimmung der periplasmatischen Polysulfid-Schwefel-Transferase (Sud) aus dem anaeroben gram-negativen Bakterium Wolinella succinogenes. Das Sud-Protein ist ein polysulfidbindendes und transferierendes Enzym, das bei niedriger Polysulfidkonzentration eine schnelle Polysulfid-Schwefel-Reduktion katalysiert. Sud ist ein 30 kDa schweres Homodimer, welches keine prosthetischen Gruppen oder schwere Metallionen enthĂ€lt. Jedes Monomer enhĂ€lt ein Cystein, welches kovalent bis zu zehn Polysulfid-Schwefel (Sn 2-) Ionen bindet. Es wird vermutet, dass Sud die Polysulfidkette auf ein katalytischen MolybdĂ€n-Ion transferiert, welches sich im aktiven Zentrum des membranstĂ€ndigen Enzyms Polysulfid-Reduktase (Psr) auf dessen dem Periplasma zugewandten Seite befindet. Dabei wird eine reduktive Spaltung der Kette katalysiert. Die Lösungsstruktur des Homodimeres Sud wurde mit Hilfe heteronuklearer, mehrdimensionaler NMR-Techniken bestimmt. Die Struktur beruht auf von NOESY-Spektren abgeleiteten DistanzbeschrĂ€nkungen, RĂŒckgratwasserstoffbindungen und Torsionswinkeln, sowie auf residuellen dipolaren Kopplungen, die fĂŒr die Verfeinerung der Struktur und fĂŒr die relative Orientierung der Monomereinheiten wichtig waren. In den NMR Spektren der Homodimere haben alle symmetrieverwandte Kerne Ă€quivalente magnetische Umgebungen, weshalb ihre chemischen Verschiebungen entartet sind. Die symmetrische Entartung vereinfacht das Problem der Resonanzzuordnung, da nur die HĂ€lfte der Kerne zugeordnet werden mĂŒssen. Die NOESY-Zuordnung und die Strukturrechnung werden dadurch erschwert, dass es nicht möglich ist, zwischen den Intra-Monomer-, Inter-Monomer- und Co-Monomer- (gemischten) NOESY-Signalen zu unterscheiden. Um das Problem der Symmetrie-Entartung der NOESY-Daten zu lösen, stehen zwei Möglichkeiten zur VerfĂŒgung: (I) asymmetrische Markierungs-Experimente, um die intra- von den intermolekularen NOESY-Signalen zu unterscheiden, (II) spezielle Methoden der Strukturrechnung, die mit mehrdeutigen DistanzbeschrĂ€nkungen arbeiten können. Die in dieser Arbeit vorgestellte Struktur wurde mit Hilfe der Symmetrie-ADR- ('Ambigous Distance Restraints') Methode in Kombination mit Daten von asymetrisch isotopenmarkierten Dimeren berechnet. Die Koordinaten des Sud-Dimers zusammen mit den NMR-basierten Strukturdaten wur- den in der RCSB-Proteindatenbank unter der PDB-Nummer 1QXN abgelegt. Das Sud-Protein zeigt nur wenig Homologie zur PrimĂ€rsequenz anderer Proteine mit Ă€hnlicher Funktion und bekannter dreidimensionaler Struktur. Bekannte Proteine sind die Schwefeltransferase oder das Rhodanese-Enzym, welche beide den Transfer von einem Schwefelatom eines passenden Donors auf den nukleophilen Akzeptor (z.B von Thiosulfat auf Cyanid) katalysieren. Die dreidimensionalen Strukturen dieser Proteine zeigen eine typische a=b Topologie und haben eine Ă€hnliche Umgebung im aktiven Zentrum bezĂŒglich der Konformation des ProteinrĂŒckgrades. Die Schleife im aktiven Zentrum umgibt das katalytische Cystein, welches in allen Rhodanese-Enzymen vorhanden ist, und scheint im Sud-Protein flexibel zu sein (fehlende Resonanzzuordnung der AminosĂ€uren 89-94). Das Polysulfidende ragt aus einer positiv geladenen Bindungstasche heraus (Reste: R46, R67, K90, R94), wo Sud wahrscheinlich in Kontakt mit der Polysulfidreduktase tritt. Das strukturelle Ergebnis wurde durch Mutageneseexperimente bestĂ€tigt. In diesen Experimenten konnte gezeigt werden, dass alle AminosĂ€urereste im aktiven Zentrum essentiell fĂŒr die Schwefeltransferase-AktivitĂ€t des Sud-Proteins sind. Die Substratbindung wurde frĂŒher durch den Vergleich von [15N,1H]-TROSY-HSQC-Spektren des Sud-Proteins in An- und Abwesenheit des Polysulfidliganden untersucht. Bei der Substratbindung scheint sich die lokale Geometrie der Polysulfidbindungsstelle und der Dimerschnittstelle zu verĂ€ndern. Die konformationellen Änderungen und die langsame Dynamik, hervorgerufen durch die Ligandbindung können die weitere Polysulfid-Schwefel-AktivitĂ€t auslösen. Ein zweites Polysulfid-Schwefeltransferaseprotein (Str, 40 kDa) mit einer fĂŒnffach höheren nativen Konzentration im Vergleich zu Sud wurde im Bakterienperiplasma von Wolinella succinogenes entdeckt. Es wird angenommen, dass beide Protein einen Polysulfid-Schwefel-Komplex bilden, wobei Str wĂ€ssriges Polysulfid sammelt und an Sud abgibt, welches den Schwefeltransfer zum katalytischen MolybdĂ€n-Ion auf das aktive Zentrum der dem Periplasma zugewandten Seite der Polysulfidreduktase durchfĂŒhrt. Änderungen chemischer Verschiebungen in [15N,1H]-TROSY-HSQC-Spektren zeigen, dass ein Polysulfid-Schwefeltransfer zwischen Str und Sud stattfindet. Eine mögliche Protein-Protein-WechselwirkungsflĂ€che konnte bestimmt werden. In der Abwesenheit des Polysulfidsubstrates wurden keine Wechselwirkungen zwischen Sud und Str beobachtet, was die Vermutung bestĂ€tigt, dass beide Proteine nur dann miteinander wechselwirken und den Polysulfid-Schwefeltransfer ermöglichen, wenn als treibende Kraft Polysulfid prĂ€sent ist

    High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    Get PDF
    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Å and 1.3 Å for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins

    Fast and Robust Mathematical Modeling of NMR Assignment Problems

    Get PDF
    NMR spectroscopy is not only for protein structure determination, but also for drug screening and studies of dynamics and interactions. In both cases, one of the main bottleneck steps is backbone assignment. When a homologous structure is available, it can accelerate assignment. Such structure-based methods are the focus of this thesis. This thesis aims for fast and robust methods for NMR assignment problems; in particular, structure-based backbone assignment and chemical shift mapping. For speed, we identified situations where the number of 15N-labeled experiments for structure-based assignment can be reduced; in particular, when a homologous assignment or chemical shift mapping information is available. For robustness, we modeled and directly addressed the errors. Binary integer linear programming, a well-studied method in operations research, was used to model the problems and provide practically efficient solutions with optimality guarantees. Our approach improved on the most robust method for structure-based backbone assignment on 15N-labeled data by improving the accuracy by 10% on average on 9 proteins, and then by handling typing errors, which had previously been ignored. We show that such errors can have a large impact on the accuracy; decreasing the accuracy from 95% or greater to between 40% and 75%. On automatically picked peaks, which is much noisier than manually picked peaks, we achieved an accuracy of 97% on ubiquitin. In chemical shift mapping, the peak tracking is often done manually because the problem is inherently visual. We developed a computer vision approach for tracking the peak movements with average accuracy of over 95% on three proteins with less than 1.5 residues predicted per peak. One of the proteins tested is larger than any tested by existing automated methods, and it has more titration peak lists. We then combined peak tracking with backbone assignment to take into account contact information, which resulted in an average accuracy of 94% on one-to-one assignments for these three proteins. Finally, we applied peak tracking and backbone assignment to protein-ligand docking to illustrate the potential for fast 3D complex determination

    WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering

    Get PDF
    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination

    Mars - robust automatic backbone assignment of proteins

    Get PDF
    • 

    corecore