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Abbreviations

NMR nuclear magnetic resonace
NOE nuclear Overhauser effect
NOESY nuclear Overhauser enhancement and exchange spectroscopy
TROSY transverse relaxation spectroscopy
HSQC heteronuclear single quantum coherence
ADR ambiguous distance restraints
RDC residual dipolar coupling
Sud polysulfide-sulfur transferase (formerly Sulphide Dehydrogenase) protein
Str sulfur transferase protein
hsp90 heat shock protein 90
RMSD root mean squared deviation
rms root mean squared
1D, 2D, 3D one-, two-, three-dimensional
DWT discrete wavelet transform
MRA multiresolution analysis
PCA principal component analysis
pci principal component i

SVD singular value decomposition
SA-MD simulated annealing with molecular dynamics
SA-TAD simulated annealing with torsion angle dynamics
ARIA ambiguous restraints for iterative assignment
CYANA combined assignment and dynamics algorithm for NMR applications
CNS crystallography and NMR system
CPU central processing unit

Units

Da Dalton
Hz Hertz
K Kelvin
M mol·l-1
l liter
s second
T Tesla
cal gram calorie
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a well established method for the

determination of solution structures of biological macromolecules. NMR plays an im-

portant role in structural genomics which is driven by the need to supplement protein

sequences by structural and functional information (Staunton et al., 2003). The effi-

ciency of protein NMR structure determination has recently improved because many of

the time-consuming interactive steps carried out by a spectroscopist during the process

of spectral analysis can now be accomplished by automated, computational approaches

(Moseley and Montelione, 1999).

Recent advances in automation of protein NMR structure determination were the

product of a series of computational algorithms which link the iterative assignment

of NOESY spectra with structure calculations (Mumenthaler and Braun, 1995; Mu-

menthaler et al., 1997; Nilges et al., 1997; Montelione et al., 2000; Savarin et al.,

2001; Herrmann et al., 2002a). While new types of constraints such as residual dipo-

lar couplings (Tjandra and Bax, 1997), orientational information from heteronuclear

relaxation in anisotropically tumbling molecules (Tjandra et al., 1997a), or restraints

obtained in the presence of paramagnetic centers in a protein (Banci et al., 1997) have

facilitated protein structure determination, distance information from NOESY spectra

remains an important basis for NMR structure elucidation. Peak picking in NOESY

spectra has been a time consuming process, mainly due to spectral overlap and be-

cause NOESY spectra are often obscured by noise and spectral artifacts. Therefore,

automation of the peak picking process requires reliable filters to select the relevant
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1 Introduction

signals.

An initial implementation of a program which combines NOESY peak picking with

automated structure determination by using intermediate protein structures as a guide

for the interpretation of the NOESY spectra has recently been described (Herrmann

et al., 2002b). In this thesis a different approach to automated peak picking, employ-

ing wavelet transforms for spectral de-noising, was evaluated. The core of this new

procedure is the generation of incremental peak lists by applying different wavelet

de-noising schemes with complementary features. In the first stage of iterative NOE

assignment and structure calculations, a peak list containing only the most reliable

peaks is used, while a wavelet de-noising scheme with modest noise suppression and

large number of signals is employed in the later stages, when the previously deter-

mined structural models can be utilized to filter the NOESY peak list. In addition, the

peak list generated by automated peak picking on wavelet de-noised spectra is sub-

ject to a consistency check based on symmetries in, and between heteronuclear-edited

NOESY spectra, and on the fact that the NOE signals are usually part of a network of

connectivities between adjacent spin systems. Automated peak picking is further com-

bined with a robust numerical scheme for peak integration of multi-dimensional NMR

spectra using an object-related growing algorithm which can cope with severe spectral

overlap without any assumptions on peak shapes. These algorithms were implemented

in the context of the ARIA software for automated NOE assignment and structure de-

termination (Linge et al., 2003) and were validated using the high-resolution structure

of the polysulfide-sulfur transferase protein (Sud) from Wolinella succinogenes, which

has been previously elucidated by manual interactive peak picking.

Wavelet transforms became a popular tool in analytical chemistry during the late

eighties and, since then, about 400 papers and several books have been published (Shao

et al., 2003). Wavelet transforms were employed for signal processing in different

fields of analytical chemistry including high-performance liquid chromatography (Col-

lantes et al., 1997), capillary electrophoresis (Perrin et al., 2001), ultraviolet-visible
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1 Introduction

spectroscopy (Xiaoquan et al., 2004), infrared spectroscopy (Chen et al., 2004), Raman

spectroscopy (Ehrentreich and Summchen, 2001), photoacoustic spectroscopy (Shao

et al., 1999), atomic emission spectroscopy (Ma and Zhang, 2003), X-ray diffrac-

tion (Main and Wilson, 2000), and analytical image processing (Sorzano et al., 2004).

They have been utilized to solve certain problems in quantum chemistry and chemical

physics (Fischer and Defranceschi, 1998) as well. Recent applications of wavelet trans-

forms to the high-resolution biomolecular NMR spectroscopy show potential applica-

tions in data processing, in particular for the suppression of the water signal (Günther

et al., 2002), signal de-noising (Cancino-De-Greiff et al., 2002) and data compression

(Cobas et al., 2004).

One of the most important applications of the wavelet transform is noise suppres-

sion. Compared to many other algorithms used to reduce spectral noise, wavelet de-

noising is exceptionally stable and computationally efficient. For optimal de-noising,

noise reduction must be achieved while preserving the fine structure of the signals.

The result depends predominately on three variables: the wavelet base function (e.g.

Symmlet, Daubechies, Coiflet), the wavelet transform (e.g. periodic orthogonal, trans-

lation invariant) and the thresholding procedure (e.g. soft, hard). In this work the most

relevant de-noising variables were optimized for multidimensional NOESY spectra of

isotopically labeled proteins.

Another emerging application of the wavelet transform is the combination of the ex-

ploratory data analysis algorithms (such as principal component analysis, partial least

squares, canonical variables or artificial neuronal networks) with the multiresolution

analysis offered by the wavelet representation of the analytical signals (Bakshi, 1998;

Teppola and Minkkinen, 2000; Laakso et al., 2001). This approach can be particu-

larly useful to analyze NMR screening data where a large number of spectra need to

be compared for changes and similarities. Typical applications are ligand screening

employing two-dimensional NMR spectra and metabolomics using one-dimensional

NMR spectra. An automated comparison tool requires a robust exploratory data anal-
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1 Introduction

ysis algorithm, which is insensitive to insignificant spectral variations caused by small

pH and concentration changes.

NMR spectroscopy has become an important technique in screening for protein in-

hibitors (Shuker et al., 1996). Both NMR spectra of isotopically labeled proteins and

the spectra of the inhibitors can be used for ligand screening (Shuker et al., 1996;

Stockmann and Dalvit, 2002). A great variety of NMR methods, including transferred

NOEs (Meyer et al., 1997; Vogtherr and Peters, 2000), saturation transfer difference

(STD) experiments (Mayer and Meyer, 2001, 1999, 2000), ePHOGSY(Bertini et al.,

1997), diffusion editing (Lin et al., 1997) or NOE pumping (Chen and Shapiro, 2000,

1998), are used. Most of these techniques can be exploited for rational drug design

as well as for screening of large numbers of inhibitors. NMR is now also used as a

screening technique in metabonomics/metabolomics where biological samples such as

bio-fluids or tissue extracts are subject of investigations (Lindon et al., 2000). NMR

screening using predominantly one-dimensional spectra of body fluids has been em-

ployed to study toxicity and gene function (Nicholson et al., 2002). Similarly, NMR

has been used to screen fruit juices (Belton et al., 1998; Vercauteren and Rutledge,

1996) or beer (Duarte et al., 2002) as a measure of quality control.

Principal component analysis (PCA) (Wold et al., 1987) is the most commonly used

pattern recognition method for analyzing the NMR screening data. A series of filters

are applied to the experimental data to obtain suitable descriptors for PCA (to cluster

similar data and obtain good separation between clusters) which minimize the weight

of small chemical shift variations and optimize computational efficiency. The most

common filter is ’bucketing’ where adjacent points are summed to a ’bucket’ (Ross

et al., 2000). Bucketing eliminates artifacts caused by small chemical shift and inten-

sity variations and improves computational efficiency by a significant compression of

the original spectroscopic data. Bucketing also causes artifacts when peaks experience

small chemical shift perturbations at the border between buckets or due to cancellations

within a bucket when different points add and subtract equal or similar intensities. To
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overcome some inherent disadvantages of the bucketing procedure the effect of wavelet

de-noising on multivariate analysis has been explored using an experimental data set

of [15N,1H]-HSQC spectra of proteins with different ligands present. The combination

of wavelet de-noising and PCA proved to be most efficient when PCA is applied di-

rectly in wavelet space. The new algorithm combines the advantages of wavelet data

representation with the data visualization and clustering obtained by PCA.

In addition to the methodological part comprising of new software tools for effi-

cient NMR data analysis and protein structure determination, the thesis presents the de

novo solution structure determination of the periplasmic polysulfide-sulfur transferase

protein (Sud) from Wolinella succinogenes. Sud is induced in the anaerobic gram-

negative bacterium Wolinella succinogenes upon growing with formate and polysul-

fide as catabolic substrates (Klimmek et al., 1991; Kreis-Kleinschmidt et al., 1995) and

serves as a polysulfide binding and transferase protein (Klimmek et al., 1998) allowing

rapid polysulfide-sulfur reduction at low polysulfide concentrations. The Sud protein

comprises of two identical subunits of about 15 kDa and does not contain prosthetic

groups or heavy metal ions. Each monomer contains a single cysteine residue, which

was found to be essential for the protein function. In vitro, it appears that each cysteine

covalently binds up to 10 polysulfide-sulfur (S2−
n ) atoms, when incubated in a polysul-

fide solution (Klimmek et al., 1999). Sud is thought to transfer polysulfide-sulfur to the

catalytic molybdenum ion located at the periplasmic active site of the membrane pro-

tein polysulfide reductase (Prisner et al., 2003). The polysulfide-sulfur transfer from

Sud to polysulfide reductase probably occurs in a complex of the two proteins, when a

sulfur atom is reductively cleaved from the polysulfide chain (Klimmek et al., 1999).

A BLAST search (Altschul et al., 1997) indicated that Sud shows little primary se-

quence homology to other proteins with known three-dimensional structure (Figure

1.1). The homologous partners are sulfurtransferase or rhodanese enzymes that cat-

alyze the transfer of a sulfur atom from suitable donors to nucleophilic acceptors (e.g.

from thiosulfate to cyanide). Their three-dimensional structures display a typical α/β
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1 Introduction

Sud 1 ADMGEKFDATFKA...QVKAAKADMVMLSPKDAYKLLQENPDITLID. 44
GlpE 11 ...............................DAHQKLQEK.EAVLVD. 25
Rhobov 154 ATLNRSLLKTYEQVLENLESKRFQLVDSRAQGRYLGTQPEPDAVGLDS 201
RhdA 133 APAGGPVALSLHD...EPTASR.DYLLGRLGAA........DLAIWD. 167

..............................................*
Sud 45 ..VRDPDE......LKAMGK..PDVKNYKHMS..........RGKLEP 72
GlpE 26 ..IRDPQS......F.AMGH..A.VQAF.HLT..........NDTLGA 50
Rhobov 202 GHIRGSVN......MPFMNF..LTEDGFEK.S..........PEELRA 230
RhdA 168 ..ARSPQEYRGEKVLAAKGGHIPGAVNFEWTAAMDPSRALRIRTDIAG 213

...*
Sud 73 LLAKSGLDPEKPVVVFCKTAARAALAGKTLREYGFKTIYNSEGGMDKW 120
GlpE 51 FMRDNDFD..TPVMVMCYHGNSSKGAAQYLLQQGYDVVYSIDGGFEAW 96
Rhobov 231 MFEAKKVDLTKPLIATCRKGVTA......................... 253
RhdA 214 RLEELGITPDKEIVTHCQTHHRSGLTYLIAKALGYPRVKGYAGSWGEW 261

................*

Figure 1.1. Multiple amino acid sequence alignment of rhodanese-like proteins with known
three-dimensional structure: Sud, Escherichia coli GlpE (Spallarossa et al., 2001), bovine liver
rhodanese (Ploegman et al., 1978) and Azotobacter vinelandii rhodanese (Bordo et al., 2000).
The primary sequence of Sud was taken as reference and the pair alignments were obtained with
BLAST. The active-site loop residues are shown in red and the additional charged residues in
the active site of Sud in blue. Invariant residues are marked with asterisks.

topology and have a similar environment in the active site, primarily with respect to the

main-chain conformation of the Cys-located active-site loop. The highest primary se-

quence similarity (30% identity) is observed between Sud and Escherichia coli GlpE, a

protein that has been proposed to have the prototype structure for the ubiquitous single-

domain rhodanese module (Spallarossa et al., 2001). The amino acid composition and

the location of charged residues in the active-site region best matches the rhodanese of

Azobacter vinelandii (Bordo et al., 2000), despite a lower sequence homology (23%

identical residues).

The solution structure of the homodimeric Sud protein has been determined using

heteronuclear multi-dimensional NMR techniques. The structure is based on NOE-

derived distance restraints, backbone hydrogen bonds and torsion angle restraints as

well as residual dipolar coupling restraints for a refinement of the relative orientation

of the monomer units. Within the NMR spectra of homodimers, all symmetry-related

nuclei have equivalent magnetic environments and therefore are degenerated in chem-
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1 Introduction

ical shift. This simplifies the resonance assignment (only half of the nuclei have to

be assigned), but complicates the NOESY assignment and structure calculations con-

siderably, mainly because it is not possible to distinguish a priori between the intra-

monomer, inter-monomer and co-monomer (mixed) NOE cross peaks. There are two

possibilities to overcome the symmetry degeneracy problem of the NOESY data: the

use of asymmetric labeling experiments in order to separate between intra- and inter-

molecular NOEs and/or special structure calculation methods which can incorporate

the inherent ambiguity of the NOE derived distance restraints. The NMR structure of

the Sud homodimer was calculated using the symmetry-ADR method (O’Donoghue

and Nilges, 1999) in combination with data from asymmetric labeling experiments

(Ferentz et al., 1997; Melacini, 2000).

Recently, a second polysulfide-sulfur transferase protein (Str, 40 kDa) with a five-

fold higher native concentration compared to Sud has been identified in the bacte-

rial periplasm of Wolinella succinogenes. The two proteins are thought to form a

polysulfide-sulfur harvesting complex in the sense that Str collects and delivers the

aqueous polysulfide to Sud, which in turn mediates the sulfur transfer to the catalytic

molybdenum ion located at the periplasmic active site of the membrane protein poly-

sulfide reductase. The primary sequence of the Str protein contains seven cysteine

residues, from which one is likely to be the polysulfide-sulfur binding site. Chemi-

cal shift mapping by NMR spectroscopy (Zuiderweg, 2002; Clarkson and Campbell,

2003) was used to examine the interaction between Sud and Str. The [15N,1H]-TROSY

spectra of the Sud protein were compared in the absence and in the presence of the

polysulfide-sulfur and Str protein. The results provide further insights into the mecha-

nism of the polysulfide-sulfur binding and transfer within the bacterial periplasm.
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2 Theoretical concepts

2.1 NMR spectroscopy

2.1.1 Nuclei in magnetic fields

NMR spectroscopy relies on the quantum effects induced by an external magnetic

field to the magnetic moment of the atomic nuclei. The nuclear magnetic moment µ is

defined by:

µ = γI;
∣

∣µ2∣
∣= µ ·µ = γ~[I(I +1)]; µz = γIz = γ~m, (2.1)

where γ is the gyromagnetic ratio, I is the nuclear spin angular momentum, an intrin-

sically quantum mechanical property without a classical analog, Iz is the z component

of I, m is the nuclear magnetic quantum number and ~ is the Planck’s constant divided

by 2π. The magnetic quantum number m = (−I,−I +1, ..., I−1, I) has 2I +1 discrete

values, where I is the nuclear spin angular quantum number. Atomic nuclei can be

divided in three classes: nuclei with odd mass number have half-integral quantum spin

numbers, nuclei with even mass number and even charge number have quantum spin

numbers equal to zero (inactive for NMR) and nuclei with an even mass number and

an odd charge number have integral quantum spin numbers.

The orientation of the nuclear magnetic moment vector µ is quantified because the

magnitude of the vector is constant and the z component has a set of discrete values

(Egn. 2.1). For an isolated spin in the absence of external fields the spin angular
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2 Theoretical concepts

momentum does not have a preferred orientation and therefore the quantum states cor-

responding to the 2I + 1 values of m have equal energy (degenerate quantum states).

An external magnetic field raises the degeneration (Zeeman effect) and the spin states

of the nucleus have energies given by:

E = −µ ·B, (2.2)

where B is the magnetic field vector. In an NMR spectrometer the static external

magnetic field is along the z-axis of the laboratory coordinate frame and Egn. 2.2

reduces to: E = −γIzB0 = −γ~mB0, where B0 is the static magnetic field strength.

The selection rule governing magnetic dipole transitions between Zeeman states is

4m = ±1. Consequently, the photon energies required to excite a transition between

m and m+1 Zeeman states is: 4E = γ~B0. Thus, in a NMR spectrometer at a constant

magnetic field B0, one can record the absorbance of radiation as a function of frequency

with resonances at:

ν0 =
ω0

2π
=

γB0

2π
, (2.3)

where ω0 is the Larmor frequency of different nuclei.

High-resolution NMR focuses predominantly on I = 1
2 nuclei because nuclear spins

with a higher quantum number possess electric quadrapole moments that lead to fast

relaxation and broad spectral lines. These nuclei have only two spin states and two

energy levels are obtained by application of an external magnetic field. The spin state

with m = 1
2 is referred to as the α state and the state with m =− 1

2 is referred to as the β

state. At equilibrium, the energy states are unequally populated because lower-energy

orientation of the magnetic dipole vector is more probable. The relative population of

a state is given by the Boltzmann distribution:

16



2 Theoretical concepts

Nα
Nα +Nβ

= exp
(−Eα

kBT

)/[

exp
(−Eα

kBT

)

+ exp
(−Eβ

kBT

)]

. (2.4)

The population difference is on the order of 1 in 105 for 1H spins in an 11.7 T magnetic

field, which explains much of why is desirable to use powerful magnetic fields in NMR

spectroscopy.

Three of the four most abundant elements in biological materials, hydrogen car-

bon and nitrogen, have naturally occurring isotopes with 1
2 quantum spin number,

and are therefore suitable for high-resolution biomolecular NMR. The proton (1H) has

the highest natural abundance (0.98%) and the highest sensitivity due to its large gy-

romagnetic ratio (26.7519 [107·rad·T-1·s-1]). Because of the low natural abundance

and gyromagnetic ratios of 15N and 13C (0.37% and 1.11%, -2.7126 and 6.7238

[107·rad·T-1·s-1], respectively) the NMR experiments with this nuclei require iso-

tope enrichment which is routinely achieved by overexpression of proteins in isotope-

labeled media.

The observed resonances differ slightly from the frequencies calculated with Eqn.

2.3 as an influence of the local environment of the nuclei. The change of the Larmor

frequency caused by changes in the local environment of individual nuclei is referred

to as chemical shift. It stems from secondary magnetic fields induced by the motion

of electrons in the external magnetic field. The net magnetic field at the location of

a nucleus depends on the static magnetic field and the secondary fields. Chemical

shift dispersion provides the spectral resolution which is exploited to study chemical

structure, molecular conformations and the solvent environment of molecules.

NMR spectra of molecules in liquid solution show a splitting of resonances into mul-

tiplets. The fine structure of the spectral lines cannot be explained by direct dipolar in-

teractions between the nuclear magnetic dipole moments because the dipolar coupling

is averaged to zero by isotropic tumbling of the molecule in solution. This splitting

appears due to spin-spin interaction mediated by the electrons which form the chem-
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2 Theoretical concepts

ical bonds connecting the nuclei. This type of interaction is commonly referred to as

scalar coupling. Its strength is measured by the scalar coupling constant nJab for two

nuclei a and b separated by n covalent bonds.

2.1.2 Density matrix formalism

Theoretical analysis of a modern NMR experiment requires calculation of the signal

observed following a sequence of radio-frequency pulses and delays. The full descrip-

tion involves a quantum statistical representation known as the density matrix formal-

ism (Abragam, 1967). The initial state of the system is described by a equilibrium

density operator σ(0). Evolution of the density operator during the sequence of pulses

and delays σ(t) is given by the Liouville-von Neumann equation:

dσ(t)
dt

= −i [H ,σ(t)]. (2.5)

The Hamiltonian H includes the Zeeman, scalar coupling and radio-frequency pulse

terms that govern the evolution of the density operator.

2.1.3 Product operator formalism

Although the density operator theory provides a rigorous description of the evolution

of nuclear spin system during a NMR experiment, the required matrix calculation be-

comes prohibitive as the number of spins increases. Furthermore, it is difficult to get

a direct interpretation of the density operator evolution and therefore the formalism

lacks the qualitative insight into the NMR experiment.

A simplified formalism referred to as the product operator formalism was developed

to describe the system of weekly coupled nuclear spins. In the weak coupling regime

a simple set of operators is sufficient to describe the magnetization transfer pathways

during the NMR experiment (Sørensen et al., 1983). The product operator formalism

gives the spectroscopist an intuitive idea for the time evolution of the density operator
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while retaining much or the rigor of the full density matrix approach. It provides

simple rules for the chemical shift and the scalar coupling evolution during periods of

free precession and for the applied radio-frequency pulses.

2.2 NMR data for protein structure calculation

2.2.1 Nuclear Overhauser effects

The primary source of information for protein NMR structure determination is given by

a dense network of distance restraints derived from nuclear Overhauser effects (NOEs)

between neighboring hydrogen atoms in the protein. The nuclear Overhauser effect

reflects the magnetization transfer between spins coupled by the dipole-dipole inter-

action in a molecule that undergoes Brownian motion in a liquid (see Neuhaus and

Williamson, 1989 for a thorough discussion). In principle, all hydrogens atoms of a

protein form a network of spins coupled by dipole-dipole interactions. Magnetization

can be transfered from one spin to another not only directly but also by spin diffu-

sion, i.e. indirectly via other spins in the vicinity. The Solomon’s equations (Solomon,

1955) provide a semi-classical description of multiple interacting spins. The spin-

lattice relaxation is described by the rates of spin transitions between energy levels.

For the simplest approximation of an isolated homonuclear spin pair (IS, γI = γS = γ)

and assuming an isotropic tumbling rigid body model for the inter-proton vector, the

cross-relaxation rate predicted by the Solomon’s equations is:

σNOE
IS =

~µ0γτc

40π2r6
IS

(

−1+
6

1+4ω0τ2
c

)

. (2.6)

The intensity of a NOE, i.e. the volume V NOE
IS of the corresponding cross peak of the

NOESY spectrum is proportional to the cross-relaxation rate and therefore it is propor-

tional with the inverse of the sixth power of the distance between the two interacting

spins:
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V NOE
IS = r−6

IS f (τc). (2.7)

The isolated pair spin approximation is valid only for very short mixing-times of

the NOESY experiment. However very short mixing times are impractical because

the cross peak intensities have low signal-to-noise ratios. For longer mixing times the

NOE volumes are no longer proportional to the cross-relaxation rates of the isolated

spin pair because the magnetization is transfered between spins in multiple steps via

spin diffusion. Also, the intramolecular mobility and chemical exchange are additional

factors not taken into account by Egn. 2.6. As a consequence, Eqn. 2.7 cannot be used

to determine precise proton-proton distances. Instead, as an extension of Eqn. 2.7,

NOEs are usually treated as upper (U ) and lower (L) bounds on interatomic distances

rather than precise distance restraints:

U =

(

d−6
re f

Vre f
V
)−1/6

+∆+

L =

(

d−6
re f

Vre f
V
)−1/6

−∆−
, (2.8)

where ∆+/− are error estimates and dre f and Vre f are reference distance and volumes,

respectively. There are several possible choices for the reference distances: fixed dis-

tances defined by the covalent geometry, distances derived from the distribution of the

backbone-backbone distances or average distances from all distances smaller than a

cutoff in an ensemble of model structures (Nilges and O’Donoghue, 1998). Addition-

ally, spin diffusion can be taken into account by a relaxation matrix approach based on

the simulation of the NOE spectrum from the intermediate model structures to derive

correction factors for Eqn. 2.8 (Linge et al., 2004).
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2.2.2 Residual dipolar couplings

For a macromolecule in liquid solution which experiences restricted orientational sam-

pling, due to the presence of a liquid crystal or due to the paramagnetic properties of

the molecule, strong first order interactions such as chemical shift anisotropy of dipolar

coupling are no longer averaged to zero as in the case of an isotropic solution (Saupe

and Englert, 1963; Gayathri et al., 1982). While partial alignment will affect any first

order phenomenon, the most important application of non-isotropic averaging is the

measurement of residual dipolar couplings (Tolman et al., 1995; Tjandra and Bax,

1997). The intrinsic strength of the dipolar coupling interaction allows measurable ef-

fects under conditions of week alignment where the solution properties necessary for

high resolution NMR can be retained.

The Hamiltonian of the static dipolar interaction between two spins (I,S) in mag-

netic field depends on the angle of the internuclear vector relative to the magnetic field.

In solution NMR, the measured dipolar coupling is described by the time and ensemble

average of the dipolar Hamiltonian over all sampled orientations. For isotropic tum-

bling the average reduces to zero. Under the condition of partial alignment, where a

preferential orientation of the molecule relative to the static magnetic field exists, the

average is a convolution of the restricted motion of the molecule and the orientation of

the vector with respect to the molecule. Assuming a fixed molecular shape the resul-

tant residual dipolar coupling can be expressed in the terms of the orientation (θ,φ) of

the internuclear vector relative to the alignment tensor attached to the molecule:

DIS(θ,φ) = DIS
a

{

(

3cos2 θ−1
)

+
3
2

R(sin2 θcos2φ)

}

, (2.9)

where DIS
a and R are the axial component and the rhombicity of the alignment tensor,

respectively. For a given fixed distance I − S (e.g. N −HN), the extreme values DIS

correspond to the orientation of the I − S vectors closest to the z (θ = 0o) and y (θ =

90oand φ = 90o) axes of the alignment tensor. If the I − S vectors are distributed
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uniformly and isotropically, a histogram describing the probability of finding values of

DIS between these two extreme will have the same shape as the CSA (chemical shift

anisotropy) powder pattern. The following overdetermined system of equations links

the axial component and rhombicity values of the alignment tensor to the singularities

of the DIS histogram (Clore et al., 1998b):

DIS
zz = 2DIS

a

DIS
yy = −DIS

a (1+1.5R)

DIS
xx = −DIS

a (1−1.5R)

, (2.10)

where DIS
zz , DIS

yy are the average high and low extreme values and DIS
xx is the most pop-

ulated average value of the residual dipolar couplings histogram, respectively. With

two unknowns (DIS
a , R) and three observables (DIS

xx , DIS
yy, DIS

zz ), the values of axial com-

ponent and rhombicity of the alignment tensor can be calculated by nonlinear least-

squares optimization.

As a consequence of Egn. 2.9 the residual dipolar couplings (RDCs) provide angu-

lar restraints between all I −S vectors and the alignment tensor frame. This represents

useful long range geometric information because the (I,S) atoms can be far away in

the space. Residual coupling restraints can be incorporated into the structure calcula-

tion protocols by minimizing the difference between the observed and back-calculated

values (Tjandra et al., 1997b). Although the size of the alignment tensor (rhombicity

and axial component) can be derived from the distribution of the experimental dipo-

lar couplings, its orientation with respect to the coordinate system of the molecule is

unknown at the beginning of structure determination. This may cause convergence

problems in the structure calculation process. As an alternative, the dipolar couplings

can be translated into intervector projection angle restraints, which are independent

of the orientation of the alignment tensor with respect to the molecule (Meiler et al.,

2000).

In the case where the residual dipolar coupling histogram is sparse and the deter-
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mination of the most populated value DIS
xx ambiguous, the extreme values DIS

zz and DIS
yy

can be used to estimate the alignment tensor components. The initial estimation should

be iteratively corrected in several rounds of structure calculations based on the obser-

vation that maximum residual coupling value DIS
zz can be underestimated with up to

15-20% (Clore et al., 1998a).

2.2.3 Scalar couplings

The scalar coupling constants between atoms separated by three covalent bonds 3J are

related to the enclosed torsion angle θ by the Karplus equation (Karplus, 1963):

3J(θ) = Acosθ+Bcosθ+C, (2.11)

where A, B and C are empiric parameters which must be optimized for various types

of couplings and residues based on the best fit between the measured 3J values and the

corresponding value calculated with Egn. 2.11 for known protein structures.

In contrast to NOEs and RCDs, scalar couplings give geometrical information only

for the local conformation of the polypeptide chain (confined to angles between 3

neighboring atoms). However, they are extremely important for an accurate definition

of the local conformation of the backbone (φ and ψ angles), to obtain stereospecific

assignments for the stereotopic protons (usually β protons) and to detect torsion angles

that occurs in multiple states (usually χ1).

2.2.4 Hydrogen bonds

The slow hydrogen exchange in proteins is often caused by the fixation of the amide

protons in hydrogen bonds. The acceptor oxygen atom is frequently identified by a

careful analysis of the NOE connectivities between the neighboring protons belonging

to regular secondary structure elements. More reliable experimental proof is obtained

from the small hydrogen bond scalar couplings (3hJNCO) recorded in predeuterated pro-
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teins between the hydrogen bond donating amides and the accepting carbonyl groups

(Wang et al., 1999). The scalar coupling confirms the overlap between the electronic

orbitals of the atoms involved and unambiguously defines the pairs of atoms forming

the hydrogen bond.

The hydrogen bonds are used as distance restraints for structure calculations, typ-

ically by restraining the acceptor-hydrogen distance to 1.8-2.1 Å and the acceptor-

donor distance to 2.7-3.0 Å. As tight medium or long range restraints their impact on

structure determination is considerable. Restraints for architectural hydrogen bonds in

secondary structures enhance the regularity of the secondary structure elements.

2.2.5 Chemical shifts

Chemical shifts are very sensitive probes for the chemical environment of nuclear

spins. However, since quantitative correlation between chemical shifts and protein

structures has been difficult (Williamson and Asakura, 1997), empirical approaches

which attempt to link the chemical shift information to the protein architecture using

databases of high resolution protein structures were developed.

TALOS is a commonly used computer program for empirical prediction of φ and

ψ backbone torsion angles using a combination of five chemical shifts (Hα, Cα, Cβ,

CO, N) and the protein amino acid sequence (Cornilescu et al., 1999). The program

uses the chemical shifts of three consecutive residues (i.e. 15 chemical shifts) to make

predictions for the central residue in the triplet by searching the protein database for

a similar combination of chemical shift values. The search is evaluated by computing

a similarity factor based on the sum of square differences between the chemical shifts

in the target protein and the database entries. In addition, the similarity score includes

a qualitative residue-type term to bias towards similar sequences. TALOS database

contains 20 protein structures for which both a high-resolution X-ray crystal struc-

ture and almost complete NMR resonance assignments were available. The program
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searches the database for the best 10 matches to a given triplet in the target protein

and makes a prediction if 9 out the 10 pairs of φ and ψ angles fall in the same region

of the Ramachandran map. The average and the standard deviation of these φ and ψ

values provide an empirical estimation of the backbone torsion angles. A torsion an-

gle prediction is considered unambiguous when its standard deviation does not exceed

45o.

2.3 Structure calculation algorithms

2.3.1 Simulated annealing with molecular dynamics

NMR spectroscopy is not a ’microscope with atomic resolution’ which produces an

image of a protein but rather a technique which provides a wealth of indirect structural

information from which the protein three-dimensional structure can be obtained. The

calculation of a protein structure from NMR data represents a minimization problem

for a target function which measures the agreement between a conformation and a

given set of experimental restraints (NOEs, RDCs, J-couplings and hydrogen bonds).

Owing to the complexity of the problem (a protein typically consists of several thou-

sand atoms) an exhaustive search of the allowed configurations is not feasible. Instead,

a variety of non-linear optimization techniques adapted to this specific minimization

problem have been developed: the metric matrix distance geometry approach, the vari-

able target function method and simulated annealing in conjunction with molecular

dynamics in Cartesian or torsion angle spaces (see Güntert, 1998 for a thorough re-

view).

The most efficient minimization algorithm for NMR structure calculations is sim-

ulated annealing combined with molecular dynamics (SA-MD). In Cartesian coordi-

nates, the SA-MD minimization consists of finding the numerical solution of the New-

ton’s equation of motion:
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mi
d2−→ri

dt2 = −∇iEhybrid , (2.12)

where −→ri and mi are the position vectors and the masses of atoms forming the

molecular system, and Ehybrid is the hybrid target function of the minimization problem

(the potential energy of the system). The hybrid target function contains contributions

from both experimental data and a priori knowledge of local architecture defined by

the covalent geometry (the force field):

Ehybrid = wb ∑
bonds

Eb +wa ∑
angles

Ea +wi ∑
improper

Ei +wnb ∑
non−bonded

Enb (2.13)

+wdr ∑
distance restraints

Edr +war ∑
angle restraints

Ear,

where wb, wa, wi, wnb, wdr and war are the weighting factors of the force field and

experimentally derived geometric constraints. The principles of classical mechanics

ensure a convergent trajectory of the molecular system towards its minimum potential

energy and therefore solving Egn. 2.12 is equivalent with minimizing the pseudo-

energy target function. The molecular dynamics minimization is coupled with sim-

ulated annealing (heating and slow cooling of the molecular system) to provide the

kinetic energy necessary to cross barriers of the potential surface, thereby reducing

the problem of becoming trapped in local minima. During the high temperature stage

an approximate structure is calculated and as the temperature decreases the model is

gradually refined. Because the temperature, i.e. kinetic energy, determines the max-

imal height of the energy barrier that can be overcome in the molecular dynamics

simulation, the simulated annealing schedule is important to avoid local minima. Con-

sequently, complex protocols of MD-SA have been designed for efficient protein NMR

structure calculations (Güntert, 1998; Nilges and O’Donoghue, 1998).

The principles of molecular dynamics can be applied in torsion angle space using

26



2 Theoretical concepts

torsion angles instead of Cartesian coordinates as degrees of freedom (the Newton

equation is replaced by the Lagrange equation). Molecular dynamics in torsion angle

space (torsion angle dynamics, TAD) has two main advantages: it reduces the degrees

of freedom and fixes the covalent geometry (the high force constants used to maintain

the covalent geometry in Cartesian dynamics lead to high vibrational frequencies and

consequently longer time steps for the numerical integration). The simulated annealing

with torsion angle dynamics (SA-TAD) provides at present the most efficient way to

calculate NMR structures of macromolecules.

2.3.2 Iterative NOE assignment and structure calculation

Protein structure determination has been a driving force for NMR spectroscopy. The

flow of actions for protein NMR structure determination includes: sample preparation,

NMR experiments, spectrum calculation, peak picking, chemical shift assignment,

NOE assignment and collection of other conformational restrains, structure calcula-

tion and structure refinement (Wüthrich, 1986). Despite several new computational

approaches to circumvent the chemical shift and NOE assignment (Kraulis, 1994;

Atkinson and Saudek, 2002; Grishaev and Llinas, 2004), up to now all de novo pro-

tein NMR structure determinations were conducted following the ’standard’ procedure.

However, the iterative NOE assignment and structure calculations based on chemical

shift information has proven to be more accessible to automatization (Güntert, 2003).

One of the most time-consuming steps in NMR structure determination is the inter-

pretation of the NOESY spectrum, i.e. the NOE assignment, where pairs of hydrogen

atoms that correspond to the experimental NOESY cross peaks are identified based on

the previous sequence specific resonance assignments. The number of NOEs that can

be assigned based on the chemical shift information alone is restricted by the accuracy

of the NOESY cross peak positions and chemical shift values. Because of the limited

accuracy of chemical shift values and peak positions many NOEs cannot be attributed
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to a single proton pair but have an ambiguous assignment comprising of several pro-

ton pairs (often referred to as dispersion degeneracy). In addition, a poor chemical

shift dispersion (determined by the similar local environment of different protons, e.g.

α-helical regions) and a high number of NOEs (determined by the protein size) may

increase the problem complexity. In general it is impossible to assign all the NOESY

peaks unambiguously based on chemical shifts, not even in very small proteins (Mu-

menthaler et al., 1997). For manual NOE assignment an iterative process has typically

been used, in which preliminary protein structures calculated from a fraction of the

NOE derived distance restraints help to reduce the ambiguity of the remaining cross

peak assignments. Automated NOE assignment and structure calculation approaches

follow the same general scheme, although without manual intervention. They all have

three main features in common: a method to deal with the inherent chemical shift

ambiguity of the NOE data, a noise filter for spurious NOESY cross peaks and an as-

signment filter which gradually reduces the dispersion degeneracy of the NOE signals.

Two of the most commonly used computer programs for interactive NOE assignment

and structure calculations are CYANA1 (Güntert, 2004) and ARIA2 (Habeck et al.,

2004). Since ARIA was chosen for protein NMR structure calculations presented in

this thesis, the following paragraphs will describe the ARIA approach.

The cornerstone of the ARIA algorithm is the concept of ambiguous distance re-

straints (ADRs) introduced for handling ambiguities in chemical shift based NOE as-

signment (Nilges, 1995). For ambiguous distance restraints every NOESY cross peak

is treated as a superposition of the signals corresponding to different assignments al-

lowed by the frequency tolerances. The ADR is defined by an effective distance D,

which contains contributions from distances between all pairs of protons which are

possible assignments:

1Combined assignment and dYnamics Algorithm for NMR Applications.
2Ambiguous Restraints for Iterative Assignment.
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VNOE =
N

∑
i=1

Vi = k
N

∑
i=1

d−6
i ⇒ D =

(

N

∑
i=1

d−6
i

)−1/6

, (2.14)

where VNOE is the NOESY cross peak volume of the given NOE, N is the number of as-

signment possibilities within chemical shift tolerances, Vi is the cross peak volumes of

the hypothetic assignment i, and k is the NOE calibration constant in the isolated spin

pair approximation (see Eqn. 2.7). Because the effective distance D (also referred to as

’d−6 summed distance’) is always shorter than each of the individual distances di, an

ambiguous distance restraint is never misinterpreted by including incorrect assignment

possibilities as long as the correct assignment is present. In addition, the ambiguous

distance restraints allow a straightforward modality to include the additional symme-

try degeneracy present in symmetric oligomers where symmetry related protons have

identical chemical shifts:

D =

(

M

∑
j=1

N

∑
i=1

d−6
i

)−1/6

, (2.15)

where M is the number of monomeric units forming the symmetric oligomer and N is

the number of assignment possibilities allowed by the frequency tolerances. During

structure calculations, the effective distances can be restrained in a similar way as dis-

tances between protons by using a ’flat-bottom’ harmonic potential with an asymptotic

region for large violations where the function becomes linear:

ENOE(D) = wNOE















































(D−L)2, D < L

0, L ≤ D ≤U

(D−U)2, U < D < U +A

α+β(D−U)−1

+γ(D−U), D ≥U +A

, (2.16)

where wNOE is the NOE potential weight within the overall target function, U and L

are the upper and lower limits defined by Eqn. 2.8, A is a parameter that determines the
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cutoff distance where the potential switches from harmonic to asymptotic behavior, γ

is the slope of the asymptotic potential, and the coefficients α and β are defined such

that the potential is continuous and differentiable at D = U +A. The asymptotic-linear

potential allows large violations transiently, thus allowing the structure to escape from

local minima.

unassigned peaks
calibrate

one ADR per peak
(δppm)

check
consistency
(vtol,R )

restraint list [i]

structures [i]

remove unlikely
assignments

(p)

structures [i−1]

max

p1, p2

p3 assignment

...

calculation
with ADRs

calculation
with ADRs

I=0

I=1

I=8

Figure 2.1. Schematic representation of the ARIA algorithm. The NOESY cross peaks are
iteratively assigned in nine cycles of structure calculations. Iteration zero defines a structural
model using ambiguous distance restraints (ADRs). In each later iteration the original NOE
data is calibrated, assigned, filtered against the previous models and an improved generation of
structures are calculated.

The ARIA approach comprises of the following steps successively repeated along

nine iterations of coupled NOE assignment and structure calculations (Figure 2.1):

1. Read the full lists of NOEs and chemical shift assignments. In every iteration

the program uses the original, unassigned NOE lists.

2. For each NOE all possible assignments allowed by the frequency tolerance δppm

are used to define an ambiguous distance restraint (ADR).

3. Select the Sconv lowest energy structures from the previous iteration.

4. Convert the peak volumes into distance restraints by automatic calibration.

5. Extract the average distance daver for each assignment possibility based on the

Sconv structures.
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6. Apply a structural consistency check filter based on daver to remove the artificial

peaks. The noise filter is tolerant in early iterations and becomes more stringent

towards the end of the iterative procedure.

7. Discard the unlikely assignment possibilities based on an average distance cutoff

which is gradually decreased over the nine iterations.

8. Calculate the new generation of structures (typically 20) with the CNS3 program

(Brünger et al., 1998) using the updated set of distance restraints.

The conversion of NOESY cross peak volumes to distance restraints is achieved by

estimating a reference distance (dre f ) and a reference volume (Vre f , see 2.8). dre f is

computed as the < d6 > −1/6 average over all values for which the target distance is

smaller than a cutoff of 6 Å in the previously calculated structures and Vre f is given

by the arithmetic average over all corresponding volumes. Due to ensemble averaging,

the reference distances and volumes do not change much from iteration to iteration.

The noise filter is based on the structural consistency hypothesis which discards

NOEs violated with more than a threshold µ in more than a fraction Rmax (typically

0.5) of the converged structures Sconv. To allow violations caused by the insufficient

convergence of the structure calculation algorithm, µ has to be gradually decreased

during the iterative procedure. It is usually set to values between 10 Å in the first

iteration and 0.1 Å in the last iteration. The robustness of the method against noisy

restraints becomes particularly important if the structure determination is attempted

from automatically picked peak lists. Some noise can be rejected in a trivial way,

they fall outside the frequency tolerance (δppm) of any assigned resonance. NOESY

spectra de-noising prior to automated peak picking may also improve the peak list

quality. However, if the resonance assignment is not complete, even the most carefully

prepared peak list will contain peaks that cannot be correctly assigned.

3Crystallography and NMR System.

31



2 Theoretical concepts

Although ADRs which contain wrong together with at least one correct assignment

are compatible with the correct structure, it is important to reduce the ambiguity of

the NOE assignments as much as possible because the additional assignment possi-

bilities ’dilute’ the structural information and make it more difficult to the structure

calculation algorithm to converge to the correct structure. Therefore a structural based

assignment filter is applied in each iteration with the aim of discarding the assignment

possibilities which are incompatible with the previous generation of three-dimensional

structures. This filter is based on the relative contributions (cn) of different assignment

possibilities to the peak volume:

cn =
d−6

aver,n

∑N
i=1 d−6

aver,i
, (2.17)

where daver,i is the average distance of the ith assignment possibility in the previously

calculated structures, and N the number of contributions to the given ADR allowed

by the frequency tolerance. To obtain a partial assignment the relative contributions

are ordered by decreasing size and the smallest contributions are discarded such that:

∑
Np
i=1 ci > p, where p is the assignment cutoff and Np the number of contributions nec-

essary to account for a fraction of the peak volumes larger than p. The parameter p is

decreased form cycle to cycle and takes values between 1.0 and 0.8. For a hypothetical

NOE with two assignment possibilities and with the shorter of the two distances of 2.5

Å, a value p = 0.999 will exclude a second distance of 7.9 Å, a value of p = 0.95 a

second distance of 4.1 Å and a value p = 0.8 a second distance of 3.3 Å. If the shorter

distance is 4 Å, the corresponding minimal excluded distances are 12.6, 6.6 and 5.2 Å,

respectively.

The ground iteration of ARIA (iteration zero) is the key moment where structures

are calculated based on the ambiguous distance restraints defined by the frequency

tolerances alone. To ensure that the calculation will converge either additional unam-

biguous structural restraints (manually defined) or carefully prepared NOE (low noise
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content) and chemical shift lists (tight tolerances) has to be supplied. In the first case

the program uses the unambiguous structural information to build the initial model,

whereas in the former case the tight chemical shift tolerances provide a reasonable low

ambiguity level for the NOE data. From this respect, the approach used in CYANA has

a principial advantage by adding two new features which reduce the NOE potential hy-

persurface and significantly improve the convergence rate. These two features are as

follows: (I) a pre-filtering of the NOE assignment list based on the concepts of ’net-

work anchoring’ which requires that any given NOE should be part of a self-consistent

subset of NOEs, and a ’symmetry mapping’ which is based on the fact that NOESY

spectra are symmetric with respect to their diagonal, the presence of the symmetry re-

lated partner being a criterion to chose between different assignment possibilities; (II)

a restraint combination, which aims to minimize the impact of wrong assignments on

the expense of the temporary loss of information. Despite these conceptual improve-

ments CYANA performs well only for almost complete chemical shift assignments

lists (about 90%) and clean NOESY cross peak lists (Jee and Güntert, 2003). The

drawbacks of this method are the result of the excessive filtering of the NOESY lists

against chemical shift and peak list oriented criteria. A compromise between peak list

filtering and the completeness of the chemical shift assignment has to be found for

each particular structure calculation project. Therefore, a method capable of switching

on and off the peak list oriented filtering and using alternative de-noising strategies

coupled with efficient automated peak picking leads to a step forward for the full au-

tomatization of the NOE assignment process. This approach has been pursued in this

thesis by combining the wavelet de-noising of NOESY spectra with automated peak

picking, peak integration and consistency check of the NOEs list in the frame of the

ARIA program.
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2.4 Numerical analysis algorithms

2.4.1 Multiresolution analysis and wavelet series expansion

The multiresolution analysis (MRA) as introduced by Mallat (Mallat, 1989a,b, 1998)

provides a general framework to construct wavelet bases suitable to describe functions

at different resolution levels. MRA is a sequence of nested spaces
{

Vj
}

j∈Z
which

approximate the space L2(R) of all square integrable functions4 with increasing reso-

lution. The first step is to define a scaling function (father wavelet) φ in such a way that

the family
{

φ0,k = φ(x− k), k ∈ Z
}

forms an orthonormal base for the reference space

V0. Except for the Haar wavelet basis5 for which φ is the characteristic function of the

interval [0,1), the scaling function is chosen to satisfy certain continuity, smoothness

and tail requirements. The functions of V0 can be written as: f (x) = ∑k ckφ(x− k).

Starting from V0 linear spaces can be defined:

V1 = {g(x) = f (2x) : f ∈V0}

...

Vj = {g(x) = f (2 jx) : f ∈V0}.

(2.18)

The set {φ1,k, k ∈ Z} is an orthonormal basis in V1 with φ1,k(x) =
√

2φ(2x− k). Anal-

ogously, the basis functions of V j are φ j,k = 2 j/2φ(2 jx− k). In this way φ j,k generates

a sequence of spaces {V j, j ∈ Z
+} which are nested:

V0 ⊂V1 ⊂ . . . ⊂Vj ⊂ . . .

Vj ⊂Vj+1, j ∈ Z
+.

(2.19)

If in addition every square integrable function can be approximated by functions in

4L2(R) is the space of complex valued functions f on R with a finite norm: || f ||2 =
(

R ∞
∞ | f (x)|2dx

)

<
∞.

5The oldest wavelet basis introduced by the Hungarian mathematician Alfred Haar in 1909. For the
Haar wavelet basis the scaling function is: φ(x) = 1(0 ≤ x < 1).
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S

j≥0 Vj than {V j, j ∈ Z
+} is a MRA6.

Figure 2.2. Sequence of nested spaces V0, V1, V3 and their orthogonal complements W0 and
W1.

The nested spaces V0 and V1 define W0 as the orthogonal complement of V0 in V1:

V1 = V0
L

W0 (Figure 2.2). Because V0 ⊂ V1, any function in V0 can be written as a

linear combination of base functions φ(2x− k) from V1 and in particular:

φ0,k(x) = ∑
k

h(k)
√

2φ(2x− k), (2.20)

where the coefficients h(k) are defined by the scalar product
〈

φ(x),
√

2φ(2x− k)
〉

.

Analogously, one can define a set of functions ψ0,k for the orthogonal complement W0

as:

ψ0,k(x) = ∑
k

(−1)kh(−k +1)
√

2φ(2x− k). (2.21)

It can be shown that {ψ0,k(x) = ψ(x− k), k ∈ Z} forms an orthonormal basis for W0.

The same process can be repeated for higher values of j (Figure 2.2). This leads to

6S

j≥0Vj is dense in L2(R).
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consecutive summation of subspaces:

Vj+1 = Vj ⊕Wj

= Vj ⊕Wj−1 ⊕Wj

= V0 ⊕W0 ⊕W1 ⊕ ...⊕Wj (2.22)

= V0 ⊕
j

M

l=0

Wl.

Owing to the similarity property of MRA, {ψ j,k, k ∈ Z} is an orthonormal basis in

Wj, where ψ j,k(x) = 2 j/2ψ(2 jx− k). Since the sum of nested spaces spans the space

of square integrable functions: L2(R) = V0 ⊕
L j

l=0Wl , the family {ψ j,k, k ∈ Z} is a

basis for L2(R). For any given function f ∈ L2(R), one can find j such that f j ∈ Vj

approximates f up to a preassigned precision in terms of L2 closeness. If wi ∈Wi and

vi ∈Vi, then:

f j = v j +w j = v j−k,k≤ j +
k,k≤ j

∑
i=1

w j−i = v0 +
j

∑
i=1

w j−i, (2.23)

which gives the wavelet decomposition of f . The properties and the functional form of

the wavelet base functions {ψ j,k, k ∈Z} are determined by the properties of the chosen

father wavelet φ.

In summary, starting from a father wavelet (scaling function) φ an orthonormal

mother wavelet ψ is obtained. Dyadic dilatations (2 j) yield nested subspaces which

form a MRA. The base functions ψ jk are derived by additional translations (k):

ψ j,k(x) = 2 j/2ψ(2 jx− k). (2.24)

The wavelet base functions have compact support, i.e. the wavelet is zero outside a

finite interval
[

k ·2− j,(k +1) ·2− j
)

and form an orthonormal basis for L 2(R). There-

fore any square integrable function f (x)∈ L 2 can be represented as a series of ψ j,k
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with the corresponding scaling function φ0,k:

f (x) = ∑
k

α0,kφ0,k(x)+∑
j
∑
k

β j,kψ j,k(x), (2.25)

where the scaling α0,k and the wavelet β j,k coefficients are defined by:

α0,k =
Z 1

0
f (x)φ0,k(x)dx, β j,k =

Z 1

0
f (x)ψ j,k(x)dx. (2.26)

This representation of f provides a location in both frequency (determined by j) and

time (determined by k). The larger the value of j the higher the frequency related to

ψi,k and consequently the resolution.

Figure 2.3. Graphic representation of Haar, Daubechies 6, Symmlet 6 and Coiflet 6 wavelets.

Daubechies wavelets (D) , Coiflets (C) and Symmlets (S) are the most commonly

used wavelets which fulfill these basic requirements without the discontinuity of the

Haar wavelet (Figure 2.3). They were originally designed to represent smooth func-

tions with a sparse set of coefficients.
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2.4.2 Discrete wavelet transform

Practical applications are usually involving discretely sampled rather than continuous

functions. The extension of the wavelet series expansion to discretely sampled func-

tions leads to the discrete wavelet transform (DWT), which can represented in a matrix

form as:

d = W f , (2.27)

were f = { f1, f2, ..., fN}′ is the original signal represented as a column vector of N = 2n

discrete data points, d is a N × 1 vector comprising both the discrete scaling coef-

ficients, α0,k, and the discrete wavelet coefficients, β j,k. W is a N × N orthogonal

transformation matrix defined by the chosen orthonormal wavelet basis.

Figure 2.4. Schematic representation of Mallat’s pyramidal algorithm for fast discrete wavelet
transform.

A computationally efficient algorithm for fast discrete wavelet transform is the Mal-

lat’s pyramidal wavelet decomposition and reconstruction (Mallat, 1989b). The con-

nection between the fast discrete wavelet transform and MRA is described by the op-

erator representation of the quadrature mirror filters, known as the low-pass (L) and
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the high-pass (H) filters which are specifically defined by the chosen orthonormal

wavelet basis. If f (n) is the original signal (of 2n data points), at each stage the wavelet

decomposition moves to a coarser approximation, i.e f (n−1) = L f (n)and d = H f (n),

where d(n−1) is the detail lost by approximating f (n) by the averaged f (n−1). In this

way the discrete wavelet decomposition of f (n) is represented as another sequence of

length 2n, where the coarser approximation, f (n−1), has only half of the original signal

length. This procedure can be continued until one approximation coefficient remains

(Figure 2.4). Thus the DWT (the equivalent of Eqn. 2.27) can be summarized as:

f → (H f ,HL f ,HL2 f , ...,HL j f , ...,HLn−1 f ,Hn f )

= (d(n−1),d(n−2), ...,d j, ...,d1,d0, f 0),
(2.28)

where the ’detail’ sequences d j contain the wavelet coefficients (β j,k). The original

signal can be reconstructed from the wavelet coefficients by reversing the filter opera-

tions.

2.4.3 Wavelet de-noising

Wavelet de-noising is based on the property of wavelets to represent signals with a set

of coefficients which have desirable statistical properties in the suppression of noise

(Daubechies, 1992). A substantial reduction of the noise level is achieved by applying

a wavelet transform followed by a suppression of noise-related wavelet coefficients

and backward wavelet transform (Figure 2.5). The most widely used methods to sup-

press noise-related coefficients are global hard- and soft-thresholding of the wavelet

coefficients (Donoho and Johnstone, 1994; Donoho and Johstone, 1995). In hard-

thresholding all coefficients below a threshold λ are zeroed (keep or kill), while in the

soft-thresholding, in addition, all the other coefficients are also shrunk towards zero by

subtracting λ (shrink or kill):
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β jk,hard =











β jk if |β jk| > λ

0 if |β jk| ≤ λ
, β jk,soft =























β jk +λ if β jk < −λ

β jk −λ if β jk > λ

0 if |β jk| ≤ λ

. (2.29)

λ is determined using the ’universal threshold’ estimator: λ = σ
√

2logN, where σ

represents the median absolute deviation of the wavelet coefficients obtained after the

first wavelet decomposition step divided by an empirical factor of 0.6745 and N is the

total number of data points. This is a very robust procedure to estimate the noise level

because the wavelet coefficients at the finest resolution level represent predominantly

spectral noise. A large number of methods to estimate the wavelet coefficient threshold

were compared in a review article (Antoniadis et al., 2001) some of which were also

tested in this work.
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Figure 2.5. Schematic representation of wavelet de-noising: the DWT decomposes the origi-
nal signal in wavelet coefficients (k) at different dyadic levels ( j). Noise related coefficients are
eliminated by thresholding and the spectrum is reconstructed by an inverse wavelet transform.

The first dyadic levels ( j = {1,2,3, ...} in Eqn. 2.28) represent the low frequency
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components of the signal, i.e. baseline and peak shape features. Therefore the suppres-

sion of the wavelet coefficients belonging to these levels is usually not desirable. For

this reason a low-frequency cutoff J is applied to coefficient thresholding.

In addition to wavelet thresholding which has a smoothing effect on the spectra

and suppresses noise it is also possible to apply a multiresolution analysis (MRA).

This is based on the idea that a function or a signal can be approximated at different

dilatation levels. MRA has previously been exploited for solvent suppression in NMR

spectra (Günther et al., 2002). In a MRA only a subset of the resolution levels are used

to restore the signal. This concept is useful to suppress low frequency components

of the signal leading to baseline correction or high frequency signal components for

smoothing/de-nosing.

2.4.4 Translation invariant wavelet transform

Wavelet suppression using hard- or soft-thresholding causes artifacts in the vicinity

of the discontinuities introduced by suppressing individual coefficients (Gibbs phe-

nomena). These artifacts can be attributed to the lack of translation invariance of the

wavelet base. A simple method to average the translation dependence is ’cycle spin-

ning’ where data is shifted, de-noised and un-shifted. Subsequently the results for

different shifts are averaged. A translation invariant (TI) transformation algorithm

(Coifman and Donoho, 1995) was designed for fast cycle-spinning over all N points of

the spectrum. In conjunction with de-noising, the TI wavelet transform has significant

advantages, particularly when sharp signals in an NMR spectrum cause pronounced

Gibbs artifacts.
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2.4.5 Principal component analysis

Principal component analysis (PCA) is a linear transformation which can be used to

visualize similarities and differences in large data sets. PCA can be applied to large

data sets to detect similar groups of data, outliers and trends of changes within groups

of data (Jackson, 1991; Wold et al., 1987). A PCA describes the variation in data with

a minimum set of variables. Variables are often dependent on to each other and PCA

reveals the latent variables which describe the underlying structure in the data.

Figure 2.6. The three-dimensional representation of the data projection using principal com-
ponents.

Figure 2.6 shows the principles of PCA in three dimensions. The data matrix X

contains n objects described by k variables (k = 3). Each observation is represented

by one point in the k-dimensional space, the matrix X forming a swarm of points in

this space. The PCA is equivalent to a least squares fitting of orthogonal lines in the

k-dimensional variables space. The first principal component is the line which best

approximate the data, the second principal component improves the approximation of

X as much as possible and so forth. The first two principal components are orthogonal

to each other and form a plane in the space of X, a two-dimensional window into the

k-dimensional space. The original points are projected onto this plane.
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If X is the data matrix which contains n NMR spectra in columns with k frequencies

in rows7

X =

x11 x12 · · · x1n

...
...

...

xk1 xk2 · · · xkn

, (2.30)

one can estimate a reference centered covariance matrix of X as:

CX ≡ (X −Xr)(X −Xr)
T , (2.31)

where Xr is the reference data matrix which represents a reference spectrum. The ref-

erence data set in spectra of proteins recorded for ligand screening is most commonly

the spectrum of the free protein in absence of ligand. Alternatively, the mean over all

spectra may be used.

For fully uncorrelated NMR spectra, all off-diagonal elements of the Cx matrix are

zero and the diagonal elements represent the variances of the individual rows. For cor-

related data the off-diagonal elements are the covariances between the different spec-

tra. The visualization of noisy data represents a high-dimensionality problem because

noisy NMR spectra are never fully correlated. Multivariate statistics helps to visualize

different degrees of correlation between noisy data.

To reduce the dimensionality of a series of NMR spectra contained in the matrix X

one has to find a linear transformation Y = MX to a new set of variables with a diagonal

covariance matrix CY (so that each of its elements is uncorrelated). The covariance

matrices of X and Y are related by:

CX = MTCY M. (2.32)

Because CY is a diagonal and M is an orthonormal matrix, the columns of MT are the

7In the MATLAB implementation this matrix is transposed. The two-dimensional NMR spectra
([1H,15N]-HSQC) were represented as vectors obtained by a concatenation of the 15N strips.
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eigenvectors of CX while the diagonal elements of CY are the corresponding eigenval-

ues. If there are linear combinations among the elements of the original data matrix X

then some of the eigenvalues in Cy will vanish. For highly correlated data the values

of the Eigenvalues in Cy will be small. For screening data these small Eigenvalues

represent spectra which are similar to the reference spectrum.

Using the covariance matrix of a set of experiments to find a transformation to a new

set of uncorrelated variables is called Principal Component Analysis (PCA). PCA starts

with the covariance matrix of all the original data and then eliminates the insignificant

components.

Eqn. 2.32 is an eigendecomposition problem which can be solved with the Singular

Value Decomposition (SVD) algorithm for the general case of a non-square eigenvec-

tors matrix. SVD (Golub and van Loan, 1996) decomposes a real matrix A according

to:

A = UWV T , (2.33)

where U and V are orthonormal matrices, i.e. UU T = I and VV T = I where I is

the identity matrix. W is a square diagonal matrix containing the singular values of A.

Proceeding from the singular value decomposition of the matrix A one can demonstrate

that:

AAT = UW 2UT . (2.34)

The SVD can be used to obtain a PCA of a covariance matrix. For a reference cen-

tered matrix A = X −Xr, matrix U in Eqn. 2.34 represents the orthonormal eigenvector

matrix MT and W 2 represents the corresponding eigenvalues Cy. Therefore, applying

SVD on the reference centered matrix A = X −Xr yields the transformation matrix M

(also referred to as PCA loadings) and the diagonal eigenvalues of the covariance ma-

trix Cx which represent the variances of the principal component representation. The
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principal components (also referred to as PCA scores) of X are easily computed from:

Y = MX .
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3 Experimental procedures

3.1 NMR sample preparation for Sud protein

The expression and purification of the Sud protein was carried out using a similar

protocol to that previously described (Klimmek et al., 1998) including a C-terminal

His-tag of six residues. Uniform 15N and 15N/13C labeling was performed by growing

bacteria on isotope enriched minimal medium using 15N ammonium chloride (Martek)

and 13C3 enriched glycerol (Martek) as main nitrogen and carbon sources. For protein

samples labeled with 2H/15N/13C, the bacteria were grown on Celtone@-dCN (Martek,

deuteration degree: 97 %). NMR samples of purified protein (0.6 - 1.2 mM dimer)

were prepared in 50 mM sodium phosphate at pH 7.6, 1 mM polysulfide (S2−
n ), 13

mM sulfide, and 5% (v/v) D2O. The protein was loaded with sulfur before transferring

to the buffer solution described above. In order to exclude oxygen from the NMR

probes, the sample tubes were flushed with nitrogen while filling and tightly sealed

afterwards. Under these conditions the protein remains loaded with sulfur during the

NMR experiments.

The asymmetrically labeled samples used for the measurement of the inter-monomer

NOEs were prepared from unlabeled and 2H/15N(13C)-labeled Sud-His6 dimers mixed

in equal amounts at a very low concentration (each species 10 mM) in an anaerobic

buffer containing 50 mM potassium phosphate and 10% (v/v) glycerol at pH 8.0. To

induce the monomerization of the isolated dimers 0.02% (w/v) sodium dodecylsulfate

was added. The mixture was stirred for 48 h at room temperature under anaerobic
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conditions. To initialize the dimerization and to recover the protein the whole mixture

was applied to a 10 ml Ni-nitrilotriacetic agarose (Qiagen) column equilibrated with

50 mM potassium phosphate and 10% (v/v) glycerol at pH 8.0. The column was ex-

tensively rinsed with the same buffer (0.5 l) for removing the SDS, and then the protein

was eluted with this buffer containing 0.2 M imidazole. The eluted Sud protein was

concentrated up to 30 g/l by pressure dialysis using a 10 kDa filter and the imidazole

was removed by repeated dilution and concentration (five times) of the protein with a

buffer containing 50 mM potassium phosphate at pH 7.65.

For residual dipolar coupling measurements, the isotropic sample contained 0.55

mM dimeric protein in 50 mM sodium phosphate at pH 7.6, 1 mM polysulfide (S2−
n ),

13 mM sulfide, and 10% (v/v) D2O, while the anisotropic one had 0.48 mM protein

in the same buffer plus the alignment medium C8E5/n-octanol (Rückert and Otting,

2000). The molar ratio of C8E5 to n-octanol was 0.87 and the C8E5/water ratio was

6% (w/v).

3.2 NMR sample preparation for Sud-Str complex

Three different samples were prepared for the Sud-Str complex (1:1 Sud monomer, Str

protein): (I) in the absence of the polysulfide-sulfur substrate, (II) only the Str protein

was loaded with polysulfide before complex formation and (III) both proteins were

loaded with polysulfide. In the case of the second sample the Str protein was fully

loaded with polysulfide and dialyzed over night in a potassium phosphate buffer to

remove the loosely bound sulfur atoms. A second 24 hours dialysis did not produce any

further polysulfide-sulfur removal suggesting a stable ligand bound form of the protein.

Afterwards the Str protein was mixed with the ligand-free form of the Sud protein in a

polysulfide-free buffer. These conditions guarantee that any polysulfide-sulfur attached

to the catalytic cysteines of Sud protein must be a result of the transferase activity of

the Str protein. The third sample was prepared using the polysulfide loaded forms of
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the both proteins mixed in an anaerobic buffer containing an excess of polysulfide and

sulfide.

3.3 NMR experiments

Unless stated otherwise, the NMR data was acquired at 300 K using Bruker DMX-600

and DRX-800 NMR spectrometers equipped with xyz-gradient 1H, 15N, 13C triple res-

onance probe heads. The sensitivity and resolution of the triple resonance experiments

was improved employing the TROSY technology (Pervushin et al., 1997; Salzmann

et al., 1999). The software packages XWINNMR, AURELIA (Bruker Analytische

Messtechnik GmbH, Karlsruhe), NMRLab (Günther et al., 2000) and NMRPipe (De-

laglio et al., 1995) were used for data processing and data analysis. 1H chemical shifts

were referenced to internal DSS (2,2-dimethyl-2-silapentane-5-sulfonate sodium salt)

while the 15N and 13C chemical shifts were calibrated indirectly using the appropriate

gyromagnetic ratios (Wishart et al., 1995).

The 13C side chain assignments for 2H/13C/15N-labeled Sud were based on 3D

CC(CO)NH (Farmer and Venters, 1995) and CC(CA)NH (Löhr and Rüterjans, 2002)

experiments with 13C spin-lock times of 21 ms and 17 ms, respectively. The 1Hα chem-

ical shifts were obtained from a 3D HCACO experiment and the 1H side chain reso-

nances were assigned using 3D H(C)CH-COSY and H(C)CH-TOCSY experiments

with a 13C spin-lock time of 17 ms on a uniformly 15N/13C labeled protein. The aro-

matic proton resonances were obtained via a 2D NOESY with a mixing time of 70 ms,

a 2D TOCSY with 44 ms 1H spin-lock time on an unlabeled sample in D2O and a 3D

13C-separated NOESY HSQC experiment with a mixing time of 70 ms employing a

constant-time [13C, 1H]-TROSY evolution period (Pervushin et al., 1998) optimized

for aromatic carbons on a 15N/13C labeled sample in H2O.

Stereospecific assignments for the isopropyl groups of Val and Leu residues were

determined using a biosynthetic approach (Neri et al., 1989) based on the 13C-13C
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one-bond couplings observed in 2D 13C-HSQC and 2D constant-time 13C-HSQC ex-

periments on a 10% 13C-labeled sample. The NOE assignments and distance restraints

for NH-NH correlations were obtained from a 4D 15N/15N-separated NOESY spec-

trum (Venters et al., 1995; Grzesiek et al., 1995) recorded with a mixing time of 300

ms on uniformly 1H/15N labeled protein in H2O. Additional NOE data was collected

from a 3D 13C-separated NOESY-HSQC with a mixing time of 80 ms using a uni-

formly 13C/15N labeled protein in D2O, from a 3D 15N-separated NOESY-HSQC with

a mixing time of 75 ms recorded with a uniformly 15N labeled protein in H2O, from a

3D constant-time methyl 13C-separated NOESY-HSQC with a mixing time of 100 ms

on a uniformly labeled 13C/15N protein in H2O, and from a 2D NOESY with a mixing

time of 70 ms on an unlabeled sample in D2O.

To determine NOEs across the dimer interface a 3D 15N-separated NOESY-HSQC

experiment with a mixing time of 120 ms on a heterodimer sample containing a

mixture of 2H/15N-labeled and unlabeled monomers (Ferentz et al., 1997) and a 4D

constant-time J-resolved 13C-separated NOESY experiment (Melacini, 2000) with a

mixing time of 150 ms on a sample containing a mixture of 13C-labeled and unlabeled

monomers were recorded. The first experiment yields inter-monomer NOEs between

the amide protons of the 2H/15N-labeled and the carbon-bound protons of the unlabeled

species. The second allows the separation of inter- and intra-molecular NOEs along

the J-resolved dimension in which the intra-molecular NOEs between 13C-bound pro-

tons appear at ±JCH/2 Hz, while inter-molecular NOEs between 13C- and 12C-bound

protons appear at zero-frequency offset because they are not J-modulated.

Slowly exchanging amide protons were identified by recording 2D [1H,15N]-HSQC

experiments, one day and five days after transferring the protein into a D2O solution.

This information combined with the strong HN-Hα connectivities within and between

different β-strands were used to identify the β-strands and the hydrogen bonds between

β-strands. The amide protons located in the internal five-stranded parallel β-sheet re-

main unexchanged five days after the addition of D2O. The backbone amide protons

49



3 Experimental procedures

involved in hydrogen bonding were also measured using a h3JNCO TROSY-NHCO ex-

periment (Wang et al., 1999).

A generalized version of the [15N-1H]-TROSY experiment (Pervushin et al., 1997;

Andersson et al., 1998; Lerche et al., 1999) was used for the measurement of 1JHN

and (1JHN +DHN) couplings on a non-oriented and oriented sample, respectively. The

residual dipolar coupling values (RDC,DHN ) were calculated from the coupling differ-

ences between the couplings (JHN +DHN) and 1JHN scalar couplings.

All NMR measurements for the Sud-Str complex were carried out on a Bruker

DRX500 spectrometer equipped with a 5 mm triple-resonance gradient probe, oper-

ating at 293 K. 2D sensitivity-enhanced [15N,1H]-TROSY experiments were recorded

with 512 and 256 complex data points in the 1H and 15N dimensions, respectively.

The spectral widths were set to 7002 Hz (1H) and 2532 Hz (15N). After quadratic sine

apodization and linear prediction up to twice the original size, FIDs were zero-filled

and subjected to Fast Fourier Transformation in both dimensions. After stripping the

high-field half of the spectrum a data matrix of 512x512 real points was recovered.

Protons were referenced to internal DSS, and the 15N dimension was calibrated indi-

rectly with respect to the proton chemical shift. Processing and subsequent analysis of

the spectra were performed with the use of NMRLab.
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4.1 Structural data preparation for Sud protein

NOESY cross peaks were picked manually using the AURELIA program. The

peak volumes were determined using an automated routine of AURELIA (Geyer

et al., 1995) and converted into distance restraints using the symmetry-ADR protocol

(Nilges, 1993) which accounts for the ambiguity in the NOEs arising from dispersion

and symmetry degeneracy. The experimental unambiguous inter-monomer NOEs and

the NH-NH NOE assignments derived from the 4D 15N/15N-separated NOESY experi-

ment were used as 6 Å upper- and 2 Å lower-bounds, respectively. The hydrogen bond

restraints were defined as 1.8-2.3 Å for the H-O distance and 2.8-3.3 Å for the N-O

distance.

The TALOS program was used to predict the backbone torsion angle intervals from

the amino acid sequence and chemical shift information. The tolerance of φ and ψ

angles was set to ±2 · SD (standard deviation) for all the dihedral angle constraints.

Only the unambiguous torsion angle predictions (i.e. consistent values for the φ and ψ

angles within the used database of protein structures) were taken into account, covering

66% of the residues for which the chemical shift information was available.

The alignment tensor parameters (axial component and rhombicity) of the oriented

sample were determined from the ’powder pattern’ distribution of the residual dipolar

couplings values (Figure 4.1). The RDC histogram singularities (high, low and the

most populated values) determine an overdetermined system of linear equations (see
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Figure 4.1. Histogram of the (RDC, DHN ) values obtained for the Sud protein.

Eqn. 2.10) which yields three different solutions for the alignment tensor components

when pairs of equations are solved separately. For a dense RDC data set, the three sets

of possible solutions should be consistent with standard deviations smaller than 10-

20% of the average values. The further non-linear least squares optimization provides

the axial component and rhombicity values for structure calculations.

4.2 Sud protein structure calculation

NMR studies of homodimers are problematic due to difficulty in distinguishing be-

tween intra-, inter- and co-monomer (mixed) NOE correlations. To overcome the

intrinsic symmetry degeneracy of NOE data the symmetry-ADR protocols of ARIA

(O’Donoghue and Nilges, 1999; Nilges and O’Donoghue, 1998) were used for iterative

NOE assignment and structure calculations. Symmetry-ADRs describe the ambiguity

of NOE peaks arising from both symmetry and dispersion degeneracy by computing

a d−6 summed distance over all pairs of protons that are possible assignments for a

particular cross-peak, including the intra- and inter-monomer contributions. To en-

force the two-fold symmetry, the conformational target function contains two special
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pseudo-energy terms: a non-crystallographic symmetry (NCS) restraint (Brünger et al.,

1998) and a distance symmetry (DSYM) restraint potential (Nilges, 1993). The for-

mer serves to minimize the atomic r.m.s. deviation between the two monomers, thus

making the two monomers identical, while the latter forces the two monomers into a

symmetrical arrangement.

The NOE assignment was performed in nine iterations using the ARIA scheme

(Linge et al., 2001), where a generation of structures is used for the NOE analysis (cal-

ibration, partial assignment and noise removal) of the following one. In each iteration

50 structures were calculated (60 in the last iteration) and the best 30% of these models

were used for the refinement of the next ones. Starting conformers were constructed

using hydrogen bonds and manually assigned NOEs from the 4D 15N/15N-separated

NOESY and from the NOESY experiments on the asymmetrically labeled dimers, in

conjunction with the TALOS prediction for dihedral angles. RDC data was introduced

in the third iteration with a low weighting factor. After complete iterative NOE assign-

ments, the weight of the target function RDC term was increased within several turns

of structure calculations until the observed and back-calculated values of the residual

dipolar couplings agreed within experimental error.

A collection of MATLAB routines were developed (see Section 4.3) to examine

the consistency between the NOE assignment table and the 3D 15N- and 13C-edited

NOESY spectra by looking at the cross peaks symmetry within the spectra. In the

absence of spin diffusion, every HN-HN NOE should appear twice in a 15N-resolved

NOESY spectrum. The same type of symmetry should be present for Hα-Hα pairs

within 13C- and for HN-Hα pairs between 15N- and 13C-resolved NOESY spectra.

All NOE assignments which were not supported by other cross peaks between the

corresponding residues and which had no symmetry partners were verified manually.

Structures were calculated using a simulated annealing protocol comprising of four

stages: (I) a high temperature torsion angle dynamics phase at 10000 K (2200 MD

steps), (II) a torsion angle cooling stage from 10000 to 2000 K (2200 steps), (III)
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a Cartesian dynamics cooling stage from 2000 to 1000 K (20000 steps) and (IV) a

second Cartesian dynamics cooling stage from 1000 to 50 K (18000 steps). All non-

stereospecifically assigned prochiral groups, except the manually assigned isopropyl

groups, were treated with a floating chirality approach (Folmer et al., 1997).

The polysulfide-binding Sud structure was calculated by assuming a Cys residue

containing five polysulfide-sulfur atoms. The polysulfide tail topology was derived

from structural information available from the X-ray studies of the polysulfide con-

taining organic complexes (Steudel et al., 1995) which exhibit a helical geometry for

the sulfur chain. The following force field parameters were used: S-S bond length of

0.203 Å, C-S-S angle of 103.7998◦ and S-S-S-S dihedrals with a zero phase shift and

a multiplicity of 2 (defines minima at ±90◦ for the dihedral angle pseudo-energy func-

tion). Since there is no structural information available for the polysulfide from NMR,

the orientation of the sulfur chain has been modeled from steric considerations.

The final structures were calculated with an ab initio simulated annealing protocol

starting from a random monomer structure with good local geometry. The dimer was

generated by a duplication of the monomer unit followed by a 180◦ rotation around

one of its internal axes and a 60 Å translation in the same dimension. Therefore the

starting monomer orientation has a two-fold symmetry, which is completely unbiased

due to the explicit inter- and intra-monomer NOE assignments performed in an iterative

manner. To account for the electrostatic interactions between the side-chains of the

ionic residues (44 per monomer not including the His-tag) and to prevent the unrealistic

packing that might result from a simple repulsive representation of the non-bonding

energy term, the final structures were refined in explicit solvent (water) using a full

force field for electrostatic and van der Waals interactions (Linge and Nilges, 1999).

The symmetry restraint terms were deliberately left out at this final stage to allow small

deviations from the ideal two-fold symmetry. Out of 100 calculated structures the 10

structures with lowest conformational energy were refined in water.
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4.3 Consistency check of the NOESY peak lists

The NOE assignment process can be substantially facilitated by checking the consis-

tency of the NOESY peak lists using sequence-specific resonance assignments. The

checking procedure is based on the following two considerations: (I) a NOESY cross

peak is usually part of a network of connections between pairs of spin systems (network

anchoring), (II) NOESY spectra have an intrinsic symmetry (symmetry mapping).

In 15N-edited NOESY spectra, symmetry mapping selects pairs of NH-NH signals,

whereas between 15N- and 13C-edited NOESY spectra HN-CαH pairs are identified

(see Figure 4.2). A similar scheme was originally introduced to discriminate between

multiple NOE assignments (Herrmann et al., 2002a) and later used for NOESY cross

peak validation (Herrmann et al., 2002b).

Figure 4.2. Schematic representation of network anchoring (A) and symmetry mapping (B).

The consistency check was implemented within the NMRLab software package in

three different functional forms: for NOESY cross peak validation, as a method to se-

lect NOE assignments and alternatively, as a method to verify NOE assignment tables

obtained by other means. The routine uses 15N- and 13C-edited NOESY peak lists and
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the corresponding chemical shift lists (both XEASY and CNS formats are accepted).

The individual assignment possibilities of the NOESY peaks allowed by the frequency

tolerance are subject to a two-pass filtering which yields a zero-or-one score as fol-

lows: (I) the network anchoring score is positive if at least a second non-diagonal peak

between to the same pair of residues was found, (II) the symmetry mapping score is

positive if a symmetric partner exists and if this is also anchored in its own network of

NOE contacts. The last condition was introduced to minimize the amount of erroneous

symmetry partners owing to the residual noise or missing chemical shifts.

The validation filter identifies the ’lonely’ NOESY cross peaks which do not belong

to any possible network of NOE contacts and do not have any symmetry partner. To

discriminate between the different assignment possibilities of a NOESY cross peak the

conditions are more restrictive: an assignment is made only if it anchors the peak in a

network and if it allows a symmetry related partner. Based on this selection criterion

the unambiguous assignments which form a self-consistent network of NOE contacts

and possess symmetry related partners are determined. The output consists of two files

for each NOESY spectrum. The first file contains a list of all cross peaks which are

scored for at least one of the filter criteria and can therefore be considered as reliable.

The second file contains a list of the validated NOEs together with the unambiguous

assignments obtained using the network/symmetry search.

The same type of filtering is used to verify the NOE assignment tables against the

original spectroscopic data. For each entry of the NOE assignment table the network

anchoring and the symmetry mapping are examined using the original NOESY peak

lists and the assignments of 1H-, 13C- and 15N-nuclei. The software provides an anno-

tated list of NOE assignments which shows the filter criteria which were fulfilled for

each entry. All the long-range NOE assignments which are not anchored in a network

of contacts or do not have a symmetry related partner should be regarded with caution

and manually checked.

The consistency check filters of the NOESY cross peak lists were also embedded
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into the ARIA program (Linge et al., 2003). They represent additional non-structural

filters which can be utilized during the iterative process of NOE assignment and struc-

ture calculations. A supplementary field was added to ARIA interface which allows

to select between including the full NOESY data, only the validated NOEs and/or the

unambiguous assignments provided by network anchoring and symmetry mapping at

any stage of a structure calculation project using ARIA program.

4.4 Wavelet de-noising of the multidimensional NMR

spectra

The basis of noise suppression by wavelet shrinkage was described in Section 2.4.3. It

is achieved by performing a wavelet transform and applying a threshold to the wavelet

coefficients. In the simplest approach, a one-dimensional (1D) wavelet transform can

be applied to each 1D strip of the multidimensional NMR spectra. Alternatively, two-

dimensional (2D) wavelet transforms can be used to de-noise 2D slices of the NMR

spectra. The NMRLab wavelet de-noising routines are based on the WAVELAB8.02

wavelet toolbox1 of MATLAB (Buckheit and Donoho, 1995).

To evaluate the effect of wavelet de-noising on the noise level in the spectrum, on

peak intensities and on automatically generated peak lists four different criteria were

used: a statistical measure of the noise level in spectra and three scores which compare

the peaks picked after de-noising with the reference peak list.

(I) For each 1H-1H-slice of the NOESY spectrum a statistical de-noising factor

d f actor = σraw/σwav was calculated using the noise standard deviation σ of the base-

line regions (see Section 4.5).

(II) The effect of the wavelet shrinkage on the fine structure of the NMR signals was

quantified by a fine structure score which compares the reference peak volumes (Vre f )

1http://www-stat.stanford.edu/~wavelab/
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with the corresponding volumes after wavelet de-noising (Vwav):

f score = 1−mean

(

∣

∣Vre f −Vwav
∣

∣

Vre f

)

(8).

Peaks were picked using the automated procedures described in Section 4.5 in the case

of the wavelet de-noised spectra and manually for the reference peak list. Peak volumes

were obtained by the integration algorithm which is described in the next section.

(III) To identify signals which fall below the peak picking threshold as a conse-

quence of the smoothing effect of the wavelet de-noising a peak picking score has

been defined as: pscore = Nwav/Nraw, where Nwav is the number of real peaks auto-

matically picked on the wavelet de-noised spectrum and Nre f the number of peaks in

the reference list. This score measures the relative amount of small signals or signal

shoulders which were lost.

(IV) Because the noise standard deviation σ did not always provide a useful mea-

sure for noise suppression in the peak list, an additional de-nosing score which calcu-

lates the ratio of the noise-related peaks obtained before (Nnoise
raw ) and after de-noising

(Nnoise
wav ) was introduced: dscore = 1−Nnoise

wav /Nnoise
raw . This score ranks the performance

of wavelet de-noising and the quality of the peak picking algorithm.

With the exception of the de-noising factor which is always larger than one, these

scores have values between zero and one where a value of one represents the ideal case

of a fully de-noising peak list without any distortion of the real signals. A negative

dscore indicates truncation artefacts (causing additional local extrema) introduced by

the wavelet transform.
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4.5 Automated peak picking and peak integration of the

multidimensional NMR spectra

A robust numerical procedure for automated peak picking and peak integration of the

multidimensional NMR spectra was developed and integrated into NMRLab. The peak

picking procedure consists of four distinct steps which will be described in detail for a

paradigmatic 2D data set.

(I) To overcome distortions from non-uniform noise distributions and noise bands

(water line, diagonal and T1-noise bands) the spectral local background noise lev-

els were determined as described previously (Koradi et al., 1998). For each one-

dimensional strip of the spectrum a noise standard deviation σ was calculated by taking

the minimum of the standard deviations for 16 consecutive sections of the strip. The

local background noise level of a point P of coordinates (i1, i2, ..., in), belonging to a

n-dimensional NMR spectrum, is calculated according to:

bnoise(Pi) = F ·
√

n

∑
dim=1

σ2
dim,idim

− (n−1) ·min
dim,i

(σdim,i)2

where F is an empirical user-adjustable factor (between 2 and 5).

(II) In a second step, the spectrum was segmented into regions of points with the

absolute value of the intensity larger than the local noise levels bnoise(P) (Figure 4.3,

blue crosses). Because the standard deviation of the signal after de-noising is not a

suitable descriptor for local noise levels, the bnoise(P) values obtained for the raw

spectra were also used for the segmentation of the de-noised spectra.

(III) The local extrema (maxima or minima, depending on the peak signs) were

determined by a grid search using the sparse matrix obtained after segmentation. In the

present implementation the width of the grid cell can be adjusted by the user according

to the digital resolution of the data set; in this work the smallest possible grid cell size

of 3×3 points was used. A peak list containing the coordinates of all the local extrema
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Figure 4.3. Two examples for peak integration in the presence of the spectral overlap. The
plots represent the initial integration boxes, blue crosses depicts the digits with an intensity
larger than the estimated local noise levels, magenta squares are the refined integration boxes
and the red crosses the actual points which are found to be part of the peak subject to integra-
tion.

above the local noise levels is obtained.

(IV) An algorithm for digital peak integration which can separate overlapping sig-

nals (even if those have very different intensities and widths) was designed. This al-

gorithm first defines an initial integration box around each local maximum2 (Figure

4.3: full boxes). Its rational size is determined by a rectangular local minimum search

starting from the central maximum along the Cartesian dimensions of the spectrum

which stops either if the background noise level is reached or if a local minimum is

encountered (Figure 4.3: magenta boxes). Within the refined rectangular integration

box the peak shape is resolved by an object-related growing algorithm around the local

maximum (Figure 4.3: red crosses) which iteratively adds one square shell centered on

the central maximum (Figure 4.4: continuous line) until the end of the integration box

is reached in each dimension. A point of the new shell (Figure 4.4: point 7) is added

to the peak if the first order neighbor (Figure 4.4: point 2) has a higher intensity in the

previous layer and if the second order neighbors have intensities above the local noise

levels (points 1 and 3 in Figure 4.4). For corners (Figure 4.4: point 5) the condition is

2For negative signals a positive mirror image of the initial integration box is computed prior to inte-
gration.
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Figure 4.4. Object-related growing algorithm used for the peak integration: the dashed and
solid lines represent the first and second shells which define the peak limits around the central
local maximum, respectively. Point 7 is considered to be a part of the peak if the first order
neighbor (point 2) has a higher intensity and if the two second order neighbors (points 1 and 2)
have intensities above the noise threshold. For corners a variation of this definition is used: the
first order neighbor of point 5 is point 3 and the second order neighbors are points 6 and 4.

slightly different, the first order neighbor is considered to be the edge of the previous

shell (Figure 4.4: point 3) and the second order neighbors are located within the same

layer (points 4 and 6 in Figure 4.4).

Using this algorithm all data points which are part of a given peak can be determined,

even in the presence of strong chemical shift degeneracies without any a priori assump-

tions about the shape of the signals. The peak integrals are calculated by adding the

data points determined in (I)-(IV). The integrator also provides the matrices describing

the peak shapes for further statistical multivariate or Bayesian analysis (Grahn et al.,

1989; Schulte et al., 1997).

4.6 NMR chemical shift mapping

NMR is a powerful tool for assessing protein-ligand and protein-protein interactions.

Information about these interactions can be obtained on various levels by using dif-

ferent experimental techniques (Zuiderweg, 2002; Clarkson and Campbell, 2003).

Chemical shift perturbation mapping is the most widely used method to identify

protein-substrate interfaces. The method is based on monitoring chemical shifts in the
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[15N,1H]-HSQC(TROSY) spectrum of a protein when the unlabeled partner is added.

The key parameter is the chemical shifts of the backbone amides which are very sen-

sitive for local geometric and electrostatic changes. The interaction causes changes in

the magnetic environment of the N and HN atoms on the protein-substrate interface

and, hence, affects the chemical shifts of the nuclei in this area. Both surface and

non-surface residues can be affected by secondary effects to regions under the protein

surface. In some cases when a large part of the protein changes conformation and

many chemical shifts are affected, chemical shift perturbations may not provide the

information of the binding interface.

In this thesis chemical shift mapping has been used to examine the interaction be-

tween the Sud protein and its functional substrate, the polysulfide-sulfur ligand, as well

as between Sud and Str proteins. [15N,1H]-TROSY spectra of the Sud protein were

compared in the absence and in the presence of the polysulfide-sulfur and Str protein.

Changes of backbone amide proton (1HN) and nitrogen (15N) resonances of Sud pro-

tein were determined and weighed according to the formula:
√

(1HN)2 +(15N/6.5)2

(Mulder et al., 1999). The weighted chemical shift changes were normalized to a maxi-

mum of 100% for each data set and the individual values were color-coded and mapped

on the Sud structure plots.

4.7 Multivariate analysis of the NMR screening data

NMR spectroscopy is now commonly used in screening of pharmaceutical libraries

for protein inhibitors. When series of 2D [15N,1H]-HSQC(TROSY) spectra of 15N-

labeled proteins are used to detect ligand binding, the high sensitivity of the 1HN

and 15N chemical shifts of the protein backbone for small geometric or electrostatic

changes induced by ligand binding is exploited. To analyze large numbers of spec-

tra for changes and similarities efficient pattern recognition methods such as principal

component analysis (PCA) are frequently used. Principal components are linear com-
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binations of the original data which help to visualize similarities in an ensemble of

spectra. Since all principal components are orthogonal and ordered with respect to

maximum variance between the samples, the largest two or three principal compo-

nents provide an excellent representation of variability within a set of data (see Section

2.4.5). The first two or three principal components of the spectra with little variance as

compared to the reference spectrum cluster around the reference, while outliers of the

main cluster represent hits in ligand screening.

PCA is computationally expensive even if only few principal components are cal-

culated. Therefore, several data manipulations are usually applied prior to PCA, both

to reduce the data size and to minimize artifacts. Simple thresholding helps to elim-

inate noise related alterations between the spectra. In addition, in a procedure called

’bucketing’ (Ross et al., 2000), adjacent data points (in the case of two-dimensional

spectra a rectangular subsection of the spectrum) are added to one ’bucket’ thus re-

ducing the amount of data points. This procedure is broadly used in common NMR

screening software. Bucketing helps to eliminate artifacts by averaging small chemi-

cal shift perturbations arising from small variations in pH or other sample conditions

and reduces the size of the data. The ’bucket’ descriptors which are subsequently used

in PCA maintain much of the information of the spectrum although details which are

only available at high resolution may be lost. Bucketing is also prone to introduce arti-

facts when peaks experience small chemical shift perturbations at the border between

buckets. In this case a large change may be detected for a small effect. Another artifact

may arise from cancellations in the bucket when different points which contribute to

one bucket add and subtract equal or similar intensities. In this case no or only a small

overall effect is left in the bucket.

With higher resolution offered by increasing field strengths of NMR spectrometers

PCA should preserve the full information available in the spectra. The present study

shows how wavelet de-noising and multiresolution analysis can be efficiently com-

bined with PCA to analyze large series of NMR data. To demonstrate the advantage
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Figure 4.5. Schematic representation of different PCA data reduction schemes: (A) bucketing
scheme, (B) bucketing on wavelet de-noised data, (C) PCA on wavelet coefficients.

of a wavelet filter as compared to the plain bucketing approach three different pre-

processing schemes prior to PCA analysis were compared (Figure 4.5). The test data

set was comprising of 101 [15N,1H]-HSQC spectra of hsp90 protein recorded in the

presence of different ligands on a Bruker DMX600 spectometer. 1024 complex data

points were recorded in the direct dimension and 128 increments were recorded for

each spectrum. All spectra were processed in NMRLab with a quadratic sine apodiza-

tion prior to the Fast Fourier Transform in both dimensions and two-dimensional auto-

mated phase correction. After stripping the high-field half of the spectrum and remov-

ing some lines of the spectrum without any signals a data matrix of 512× 512× 101

real points was recovered for subsequent multivariate analysis.

The 101 HSQC spectra were scaled using the mean of the largest peaks with mini-
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mum variability within the data set. Subsequently, different protocols were employed

for the three analysis schemes shown in Figure 4.5. For scheme A a threshold value

of 20% of the largest point in each spectrum was applied prior to adding data points

in 16× 16 point bucket cells. Subsequently, common baseline regions of all spectra

with zero intensity after thresholding were removed and the two-dimensional HSQC

spectra were concatenated into one-dimensional objects prior to PCA analysis.

In scheme B a wavelet de-nosing step was added before thresholding and bucketing

using a one-dimensional discrete wavelet transform in both dimensions. The overall

process of wavelet de-noising consists of four stages: (I) data scaling with respect

to the average noise level estimated by the median absolute deviation of the wavelet

coefficients on the first dyadic level (σ, see Section 2.4.3), (II) a discrete wavelet trans-

form using a Symmlet 8 quadrature mirror filter and a low-frequency cutoff of 4, (III)

a global soft-thresholding of the wavelet coefficients applying the universal threshold

λ =
√

2 · logN (where N is total number of data points) and (IV) an inverse discrete

wavelet transform which returns a matrix with the same size as the input data matrix.

The subsequent steps (thresholding, bucketing, concatenation, removal of common ze-

roes and PCA) were identical with scheme A.

In scheme C the thresholding and bucketing steps of schemes A and B were cir-

cumvented by using the sparse representation of soft-thresholded wavelet coefficients

for subsequent concatenation, removal of common zeroes and PCA. The scaled data

was subject to a wavelet transform and soft-thresholding with identical parameters

as in scheme B. The wavelet coefficient thresholding has a triple effect: it reduces

the stochastic component of the spectra (de-nosing), minimizes insignificant spectral

perturbations (smoothing) and decreases the size of the data matrix (compression).

This approach is more efficient than the ’blind’ bucketing procedure in the sense that

wavelet decomposition is a clever bucketing, precisely adapted to the nature of the ana-

lyzed NMR data. Additional multiresolution analysis (MRA) was applied by suppress-

ing the four low-frequency dyadic levels for a selective filtering of the baseline-related
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artifacts.

Automated analysis of the PCA clusters was used to evaluate the PCA result. The

clustering algorithm was based on the hierarchical clustering analysis (Johnson, 1967),

where objects are linked together based on the network of Euclidean distances be-

tween pairs of objects. In a first step binary clusters of objects in close proximity were

formed. As objects were paired into binary clusters, the newly formed clusters were

grouped into larger clusters until a hierarchical tree was formed. Finally, the hierarchi-

cal tree was divided into clusters of objects by detecting the natural groupings in the

cluster tree. To allow the formation of a main cluster surrounded by several outliers, a

tight clustering threshold was used to cut the hierarchical tree. The principal compo-

nents were scaled with respects to the largest distance in the data set and a clustering

factor was estimated as the mean scaled distance between the PCA outliers and the

closest neighbor belonging to the main cluster. Compression factors were calculated

as the ratio between the number of elements of the original data matrix and the number

of elements of the pre-processed matrix used for the subsequent PCA. The de-noising

factor describes the relative number of points eliminated by thresholding. In schemes

A/B it is calculated as the quotient of the number of elements of the data matrix zeroed

by thresholding and the total number of elements of the original matrix. For scheme C

the quotient of the number of wavelet coefficients eliminated by thresholding and the

total number of elements of the original matrix was used.

66



5 Results and Discussion

5.1 Sud protein

5.1.1 Solution structure of Sud protein

Using the backbone chemical shifts of Sud protein (Lin et al., 2000) as a starting point,

the majority of side chain 1H and 13C resonances were assigned by a combination

of 3D CC(CO)NH, CC(CA)NH, H(C)CH-COSY and H(C)CH-TOCSY experiments.

Approximatively 74% of the resonances were assigned. Stereospecific assignments

of nearly all isopropyl groups of Val and Leu residues were obtained, with a single

exception: Leu73.

A total number of 8 (16 considering the symmetric related ones) inter-monomer

NOEs were unambiguously assigned using asymmetric labeling experiments. Due

to the low concentration of the asymmetrically labeled dimers in the NMR sample

only few inter-monomer NOEs could be determined. Based on these experiments,

the contact regions between the two monomers were found to involve mainly the

residues F7, D8, T10, F11 of one monomer and A75, Y105 of the other monomer.

From 9532 experimental NOESY peaks (2D homonuclear and 3D 15N- and 13C-

edited NOESYs) 1095 ambiguous and 3758 unambiguous non-redundant NOE derived

distance restraints were obtained, including 86 inter-monomer and 142 co-monomer

NOEs. This structural data together with 340 TALOS-derived φ and ψ angle con-

straints, 402 backbone-backbone and backbone-side chain NH-NH distance restraints
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Table 5.1. Structural statistics for the 10 lowest energy simulated annealed and water
refined structures of Sud homodimer.

Unambiguous NOE distance restraints 4182
Sequential (|i− j| = 1) 1115
Medium range (1 < |i− j| ≤ 4) 605
Long range (|i− j| > 4) 830
Inter-monomer 102

Ambiguos NOE distance restraints 1095
Co-monomer 142

H-bond restraints 22
Dihedral angle restraints 340
RDC restraints 162
(a)R.m.s. deviation from distance restraints (Å) 0.014±0.001
(a)R.m.s. deviation from angle restraints (deg.) 0.509±0.016
(a)R.m.s. deviation from RDC restraints (Hz) 1.043±0.039
(a)R.m.s. deviation from covalent geometry

Bond lengths (Å) 0.0034±0.0001
Angles (deg.) 0.507±0.0154
Impropers (deg.) 1.335±0.057

(b)Ramachandran plot
Most allowed regions 86.3 %
Disallowed regions 0.6 %

(c)RMSD of the NMR ensemble (Å)
Monomer core backbone 0.81±0.18
Dimer backbone 0.96±0.20

(a)Evaluated by CNS/ARIA.
(b)Calculated with PROCHECK-NMR (Laskowski et al., 1996).
(c)Mean global backbone RMSD calculated with MOLMOL(Koradi et al., 1996). The
flexible loop between residues 89-94 was not used for RMSD calculations.

derived from the 4D 15N/15N-separated NOESY, 22 hydrogen bonds between the β-

strands, 16 experimental inter-monomer NOEs (asymmetric labeling) and 162 amide

residual dipolar couplings were used for the final structure calculations (see Table 5.1

for a detailed structural statistics).

The consistency check of the NOE assignment table (see Section 4.3) obtained with

ARIA for the Sud protein revealed 10% of the 4639 distance restraints originating from

3D heteronuclear NOESY experiments which did not fulfill any of the filter criteria.

Further inspection showed that none of these ’questionable’ NOE restraints were in-

68



5 Results and Discussion

volving long range contacts (between more than five residues in the primary sequence),

about half of them were clearly wrong assignments and the rest could not be interpreted

unambiguously. The short-range restraints define the local geometry of the secondary

structure elements. Although they may not be essential for the global fold definition,

wrong entries always cause structural inconsistencies and distortions in the local ge-

ometry reflected by elevated values of the target function. The removal of these 10%

’questionable’ short-range restraints led to a improved structure calculation. While the

RMSD between the 10 best structures was unchanged within the error limits the to-

tal conformational energy dropped by 14%. The detailed results of this analysis are

summarized in Table 5.3.

Table 5.3. Consistency check of the NOE assignment data of the Sud protein.

NOE assignments Symmetry Spin system Symmetry mapped
(3D NOESY) mapped anchored or spin system anchored
4639 1365 3862 4145

Target function Mean bb RMSD
[kcal/mol] [Å]

All NOEs 386±5 0.95±0.21
Symm. OR Anch. 334±7 0.96±0.20

Figure 5.1 shows the backbone superposition of the energetically best 10 models of

the Sud structure calculated with and without residual dipolar coupling restraints. The

relative orientation of the two monomers was significantly improved by the residual

dipolar coupling restraints, the RDC-refined dimer structure showing a more compact

form compared to the RDC-free one. The mean backbone RMSD of the NMR ensem-

bles drops from 1.64 to 0.96 Å for the RDC-refined conformers considering the whole

dimer, although the monomer cores (without the α-helical N-terminus) were equally

well defined having a value of about 0.8 Å in both cases. For the RMSD calculations

the segment between residues 89 and 94, which is poorly defined due to the lack of

experimental data, was not considered. Comparing the monomer structures in the two
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(a) (b)

(c)

Figure 5.1. (a) Backbone plot of the best 10 RDC-refined structures of the Sud dimer. (b)
Backbone plot of the RDC-free NMR ensemble (10 models) of Sud. (c) Backbone represen-
tation of the monomer cores (residues: 25-130) superposition for the RDC-refined (red) and
RDC-free (blue) structures of the Sud protein. The flexible loop (residues: 89-94) is colored in
green.

ensembles, the core regions are nearly superimposable, the main difference resulting

from the relative orientation of the monomer units dictated by different positioning of

the N-terminal α-helix. The secondary structure elements are also similar. The result

illustrates how the residual dipolar coupling restraints improve the definition of the

relative orientation of the monomer units within the homodimer.

Figure 5.2 shows the ribbon representations of the solution structure of the Sud

homodimer. The monomer unit has an α/β topology with six α-helices (helix I to

VI) packed against a central core of five parallel β-strands (βA, βB, βD, βE and βF)

and a lateral two-stranded antiparallel β-sheet (βC and βG) which may be involved

in the structural stabilization of the C-terminal segment. For the minimized average

structure, the β-strands were formed by the residues 23-25 (βA), 41-44 (βB), 56-57
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Figure 5.2. Ribbon representations of the Sud dimer. The catalytic cysteines (with a 5-atoms
long polysulfide chain attached) are depicted using a CPK model. The two-fold symmetry axes
are the OZ and OX axes for the top and bottom structures, respectively. The active-site loop
(residues 89-94) is colored in green.
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(βC), 62-64 (βD), 85-88 (βE), 110-113 (βF), and 127-128 (βG) within each subunit,

while the helices are observed for the sequences 4-20 (I), 27-36 (II), 48-53 (III), 71-

77 (IV), 95-103 (V) and 117-122 (VI). The polysulfide chains bound to the cysteine

residues are pointing in opposite directions, to the outside of the protein. The distance

between the two Sδ atoms of cysteine residues is ranging between 16.7 and 18.9 Å.

The N-terminal helices (I and I’) of the two monomers are oriented parallel to each

other, but rather distant in space, and therefore an interaction between them is unlikely.

Helix I of one monomer unit interacts with helices IV’ and V’ of the second unit to

form a three-helix bundle stabilizing the dimeric structure.

Based on the inter-monomer NOEs assigned with ARIA, the residues participating

in the interaction between the two monomers are mainly F7, F11 and V15, located at

the hydrophobic side of helix I with partners L74’, A75’, L79’, L97’ and Y105’ in the

opposite unit. Hence, mainly hydrophobic interactions are involved in stabilizing the

dimeric structure. For example, the aromatic side-chains of F7 and F11 interact with

Y105’ and the methyl groups of L74’, while F11 and V15 interact with L97’. Due to

the interactions with aromatic rings, the Hδ resonances of L74 and L79 are shifted to

higher field by values between 0.1 and 0.2 ppm. A salt-bridge in this region between

K12 (helix I) and E71’ (helix IV’) may form, since the side chains approach each other

by less than 5 Å.

Sud serves as a polysulfide-sulfur binding and transfer protein, transferring the aque-

ous polysulfide to the active site of polysulfide reductase, which is exposed to the

periplasmic side of the cytoplasmic membrane of W. succinogenes. The two identical

subunits of Sud, each with a single cysteine residue covalently bind two polysulfide

chains with up to 10 sulfur atoms. Using site-directed mutagenesis it was shown that

the cysteine residues are essential for the sulfur binding and transferase activity of Sud

(Klimmek et al., 1999).

The active-site environment of Sud resembles that of rhodanese of A. vinelandii

(RhdA), in both cases the catalytic cysteine residues being located at the bottom of
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Figure 5.3. The positively charged polysulfide binding pocket. Due to the lack of resonance
assignments the side chains conformation is poorly defined. The left side of the plot represents
a superposition of the NMR ensemble (10 models) of the Sud dimer structure, while the right
side represents the minimized average conformer of the ensemble.

shallow round pockets close to the inter-domain boundary, at the beginning of a loop

with a cradle-like conformation that is connecting a central β-strand with an interface

α-helix. RhdA is a covalently bound multidomain protein consisting of two similar

but not identical α/β domains, respectively the N-terminal and the C-terminal domain.

Unlike Sud which has a polysulfide binding site in each monomer unit, RhdA has a sin-

gle functional cysteine residue located in the C-terminal domain. Side chains in the in-

termonomer contact area around the active site of Sud indicate that the dimer formation

is required for the protein function. The active-site cysteine is the first residue of the

89-94 loop, connecting the βE strand to helix V (Figure 5.2). Due to the lack of chem-

ical shift assignments (both backbone and side chain resonances were unassignable,

excepting HN-N, Hα-Cα of C89 and Hα-Cα of T91) this segment is poorly defined,

which may be a result of multiple conformations induced by the polysulfide mobility.

In a similar way resonances of R46 and R67, both located near the sulfur tail, were not
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assigned presumably to such a conformational heterogeneity and mobility.

The Sud structure reveals a positively charged binding pocket for the negative

polysulfide-sulfur chain formed by the residues R46, R67’ (adjacent monomer unit)

K90 and R94 (Figure 5.3). An electrostatic binding pocket that partially covers the

Sud-polysulfide tail is consistent with previous MALDI mass spectroscopy investiga-

tions which indicated a much lower dissociation constant for the first two sulfur atoms

of the polysulfide chain (Klimmek et al., 1999). The positively charged side chains

of R46, R67’, K90 and R94 of Sud interact with and stabilize the first two S-S bonds

of the negatively charged polysulfide, while the negatively charged side chain of E50

interacts with R46 (Figure 5.3). The mutation of any of the above-mentioned residues

leads to a loss of the sulfur-transferase activity (data not shown). The amino acid se-

quence alignment of RhdA and Sud indicates that R46, E50, R67, C89 and R94 (Sud

numbering is used) are conserved residues (Figure 1.1).

The active-site loop surrounding the catalytic cysteine (which is preserved in all rho-

danese enzymes) appears to be flexible for the Sud protein as evidenced by the missing

chemical shift assignments of the related residues (residues 89-94). The polysulfide

tail extends out of a positively charged binding pocket (residues R46, R67’, K90 and

R94), where Sud may contact the polysulfide reductase.

The coordinates of the Sud protein together with the NMR structural data have been

deposited in RCSB Protein Data Bank under the PDB ID code 1QXN.
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5.1.2 Chemical shift mapping of the polysulfide binding

The Sud dimer is a polysulfide-sulfur binding and transferase protein. Each momo-

mer unit contains a catalytic cysteine residue which covalentely binds the polysulfide

substrate. Dialysis and MALDI experiments indicate that Sud binds two sulfur atoms

with a low dissociation constant and seven more sulfur atoms with a higher dissocia-

tion constant, in addition to the sulfur atom linked to cysteine (Klimmek et al., 1999).

Despite of the different apparent dissociation constants, it is likely that all the bound

sulfur atoms form a common chain that is covalently linked to the cysteine residue.

The structural work carried out using the substrate bound form of the Sud protein

shows a positively charged binding pocket that covers partially the polysulfide ligand,

which explains the uneven distribution of the dissociation constant values. The S-S

bonds of the sulfur chain are stabilized by the covalent linkage to cysteine and by the

environment of the binding pocket, both having a decreasing power of influence as the

distance from the cysteine residue increase. The substrate binding was further investi-

gated by a comparison between the [15N,1H]-TROSY spectra of the Sud protein in the

presence and in the absence of the polysulfide ligand. With this approach, every amide

group which shows a chemical shift perturbation yields structural information about

the region affected by the polysulfide binding. In addition, the comparison provides

the backbone amide chemical shift assignments of the polysulfide free form of the Sud

protein. An excess of polysulfide was added to ensure that the protein was fully loaded

with sulfur.

The comparison between the spectra of free and polysulfide loaded forms of the Sud

protein revealed a large spectral variation (Figure 5.4, red/blue spectra). Besides chem-

ical shift perturbations some additional peaks were found for the substrate free form

of the Sud protein which may be a result of the slow-intermediate exchange induced

by the polysulfide binding (see Figure 5.4, marked peaks). This view is supported by

the previous results where resonances belonging to the active-site loop surrounding the
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Figure 5.4. [15N, 1H]-TROSY spectra of the Sud protein. Blue depicts the spectrum obtained
for the polysulfide bound form of the Sud protein, red the polysulfide free form of the protein,
green the Sud-Str complex in the absence of the polysulfide substrate, magenta the Sud-Str
complex where only the Str protein was loaded with polysulfide before complex formation
and yellow the Sud-Str complex where both proteins were fully loaded with polysulfide. The
small circles mark peaks which are disappearing upon polysulfide binding. The backbone
assignments were indicated by the corresponding residue numbers.
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Figure 5.5. Overview of the weighted chemical shift changes for the backbone amide 1HN
and 15N resonances of the Sud protein. Panel (A) displays the chemical shift changes upon the
polysulfide binding, panel (B) the changes caused by the Sud-Str interaction when only the Str
protein was polysulfide loaded before complex formation, panel (C) the changes induced by the
Sud-Str interaction for a complex were both partners were fully loaded with their functional
substrate and panel (D) the spectral variation for the Sud-Str complex in the absence of the
polysulfide-sulfur.

catalytic cysteine (residues 89-94) could not be observed, presumably due to the multi-

ple conformations induced by the polysulfide-sulfur chain mobility to the neighboring

residues.

A large number of chemical shifts showed significant perturbations: 21 backbone

amides out of 112 were shifted with more than 0.05 ppm (Figure 5.5, panel A). The

residues with the largest chemical shift changes (>0.1 ppm) were: V45, E50, R67’,

C89, A96, M117 and D118, all in the near vicinity or part of the polysulfide sulfur

binding pocket (ball-and-sticks in Figure 5.6). Figure 5.6 also depicts the color coded

distribution of the chemical shift perturbations (from gray to red) plotted on the ribbon

representation on the Sud protein structure. Substrate binding affects chemical shifts

in a large region surrounding the active site of the protein. Because the polysulfide
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Figure 5.6. The ribbon representation of the Sud protein structure color coded (from grey to
red) according to the weighted backbone amide chemical shift changes induced by the polysul-
fide binding as depicted in the panel (A) of Figure 5.5. The most affected residues are drawn
as ball-and-sticks and the active-side loop is shown in green. The prime symbol (e.g. R67’)
indicates a residues belonging to the second monomer unit.

binding site is situated at the bottom of a shallow pocket formed in the dimer interface,

polysulfide binding affects both non-surface residues and residues belonging to the

opposite monomer unit. Furthermore, the large number of residues belonging to the

dimer interface which are affected by the substrate binding suggests a change of the

native dimer fold.

The chemical shift changes induced by the polysulfide ligand may indicate certain

conformational rearrangements for the Sud protein upon substrate binding, where both

the local geometry of the polysulfide binding site and the dimer interface are affected.

The conformational changes and the internal dynamics induced by the polysulfide

binding could be the trigger of the subsequent polysulfide-sulfur transfer.
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5.1.3 Chemical shift mapping of the Sud-Str interaction

The Str protein is a second polysulfide-sulfur binding and transferase protein found in

the bacterial periplasm of the W. succinogenes. It is a 40 kDa protein and its primary

sequence contains seven cysteine residues. The amino acid sequence alignment with

other sulfur transferase enzymes (rhodanese-like proteins) suggests a covalently bound

two domains protein, with one catalytic cysteine for polysulfide binding. The native

concentration of the Str protein in the bacterial periplasm is approximatively five times

higher than of the Sud protein. Therefore, the two proteins are thought to form a poly-

sulfide harvesting complex in which Str collects and delivers the aqueous polysulfide

to Sud, which in turn mediates the sulfur transfer to the catalytic molybdenum ion lo-

cated at the periplasmic active site of the membrane protein polysulfide reductase. The

transferase interaction between the two proteins was assessed by observing the chem-

ical shift perturbation induced in the [15N,1H]-TROSY spectra of Sud protein by the

complex encounter and polysulfide-sulfur transfer.

[15N,1H]-TROSY spectra of Sud in complex with the Str protein (1:1) were recorded

in the presence and in the absence of the polysulfide ligand (Section 3.2: samples I,

II and III). The Sud-Str complex in the absence of the polysulfide-sulfur produced a

spectrum virtually identical with the one of the substrate free form of the Sud protein

(Figure 5.4, green/red spectra). Only two residues located in the C-terminal part (D129

and R130) showed significant chemical shift perturbations, most likely caused by tran-

sient interactions of the His-tag attached to Sud rather than by a direct protein-protein

interaction (Figure 5.5, panel D).

For the second sample of the Sud-Str complex (ligand bound Str and ligand free Sud)

the [15N,1H]-TROSY spectrum was significantly different compared to the spectrum

originating from the polysulfide free form of the Sud protein and similar to the spec-

trum of the polysulfide loaded Sud protein (Figure 5.4, spectra magenta/blue). This

result shows that the polysulfide-sulfur is transferred between the interaction partners
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Figure 5.7. Graphic representation of the accessible surface of the Sud protein. The surface
is color coded (from grey to red) according to the weighted chemical shift changes induced by
the interaction between Sud and Str proteins as presented in panel (C) of Figure 5.5. The peak
shifts smaller than a cutoff value of 0.03 ppm were not considered for color mapping. The
prime symbol (e.g. R67’) indicates a residues belonging to the second monomer unit.

upon complex encounter. The residues which show large chemical shift perturbations

are virtually the same as those affected by polysulfide binding (Figure 5.5, panels B and

A). The most affected residues are part of the polysulfide binding pocket (R45, R67,

C89), direct neighbors (G115, M117) and most of the helix V (residues 96-99) which

is formed as a continuation of the active-site loop. Based on this spectra comparison

it is difficult to distinguish between effects related to protein-protein interaction and

effects caused by polysulfide binding. Furthermore, the analysis is complicated by the

presumably short length of the sulfur chain attached to the Sud protein in the process of

polysulfide transfer. To answer this question a third experiment was performed using

a Sud-Str complex where both proteins were fully loaded with polysulfide before the

addition to the buffer solution containing an excess of polysulfide-sulfur. In this case

the previous chemical shift changes were reproduced at a lower scale (Figure 5.4, yel-

low/blue spectra and Figure 5.5, panel C). Most affected residues belong to the active
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site (R46, R67, C89) and its close vicinity (V45, L97, A98, G99, M117). In Figure 5.7

the largest shifts (> 0.03 ppm) are color coded and mapped on accessible surface of the

Sud dimer. Four residues closely surrounding the catalytic cysteine of the Sud protein:

R46, M54, R67’ and G115, and three additional residues: A53, L73’ and K12, form a

potential contact surface of the Sud-Str complex.

Chemical shift perturbation mapping was used to probe the interaction between Sud

and the second sulfur binding protein (Str) involved in the electron transfer chain cat-

alyzing the polysulfide respiration in W. succinogenes. The polysulfide-sulfur transfer

between Sud and Str protein was confirmed and a possible protein-protein interface is

proposed. In the absence of the polysulfide substrate no interaction between the Sud

and the Str protein could be observed, implying a transferase mode of action whereby

the two proteins encounter each other and allows the polysulfide-sulfur transfer only

when the suitable driving force is present.

81



5 Results and Discussion

5.2 Automated protein structure determination using

wavelet de-noised NOESY spectra

5.2.1 Optimal wavelet based de-noising scheme

Spectral noise impairs significantly the automation of peak picking. An efficient tool

for spectral de-nosing should be designed in such a way that noise suppression does

not affect the fine structure of the signals of interest. For wavelet based de-nosing

there are three variables that can be optimized: the wavelet base function, the wavelet

transform type and the thresholding procedure. In addition, the decomposition depth

(low-frequency cutoff) may affect the fine structure of overlapping peaks. In this work

an efficient wavelet based de-nosing scheme for the multidimensional NOESY spec-

tra of isotopically labeled proteins was developed. The effect of various de-noising

schemes on the completeness and accuracy of the automatically picked NOESY peak

list has been subject to a detailed investigation.

Different schemes for wavelet de-noising were evaluated and compared. These in-

cluded one-dimensional (1D) and two-dimensional (2D) discrete wavelet transforms

(DWT), where each was evaluated for several mother wavelets (Symmlet 5, 8, 10;

Daubechies 4, 20; Coiflet 1, 5 and Haar), different de-noising schemes (hard, soft, TI

hard and TI soft) and various low-frequency cutoffs (J = 2− 5). De-noising was al-

ways applied to the 1HN-1H planes of the NOESY test spectrum and in the case of the

1D DWT the effect of the order in which the two dimensions were de-noised (1H/1HN

or 1HN/1H) was examined.

384 different de-noising protocols were tested using the scores described in Section

4.4 for a two-dimensional 1H-1H cross section of the 3D 15N-edited NOESY of Sud

protein with significant spectral overlap (Figure 5.8). The Haar wavelet scored low re-

gardless of the shrinkage scheme (methods: 8, 16, 24 and 32 in Figure 5.8). It suffers

from the fact that its basis is not continuous which makes it less suitable for a sparse
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Figure 5.8. Scores for 384 de-noising protocols using a test plane of a 3D 15N-edited NOESY
spectrum of the Sud protein. The four sections separated by dashed lines correspond to soft-,
hard-, TI soft- and TI hard-thresholding. For each section, the following wavelet bases were
used: S5, S8, S10, D2, D20, C1, C5 and Haar. Red and green colors represents the 1D DWT
de-noising order 1H/1HN and1HN/1H, respectively whereas blue represents the 2D DWT. The
low-frequency cutoffs are represented by the symbols + (J = 2), ◦ (J = 3), × (J = 4) and ∗
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representation of smooth functions. Wavelets with better smoothing properties were

designed to minimize number of wavelet coefficients for smooth functions. Symmlets

and Daubechies wavelets represent a good compromise between noise reduction and

the preservation of the fine structure (methods: 1-5, 9-13, 17-21 and 25-29 in Fig-

ure 5.8). Compared to the 1D DWT the 2D decomposition is computationally more

efficient, however the overall scores were inferior (Figure 5.8: blue spots). The decom-

position order for the 1D DWT within the 2D data matrix has little influence although

slightly better scores were obtained when the incremented proton dimension was de-

noised first (1H/1HN, Figure 5.8: red spots). Soft-thresholding yields the best possible

noise suppression (large d f actor and dscore) at the expense of fine structure (low

f score) and completeness of the peak list (low pscore). In contrast, hard-thresholding
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Table 5.5. Scores for different de-noising procedures applied on the 15N-edited
NOESY of Sud protein.

De-noising 1D DWT
Method dfactor fscore pscore dscore
S5 Soft 3.254±0.298 0.850 0.812 0.522
S5 TI Soft 2.850±0.262 0.857 0.828 0.576
D4 Soft 5.398±0.651 0.848 0.805 0.525
D4 TI Soft 4.277±0.491 0.849 0.799 0.611
S5 Hard 1.242±0.056 0.973 0.945 0.134
S5 TI Hard 1.335±0.068 0.975 0.943 0.264
D4 Hard 1.621±0.180 0.968 0.942 -0.401
D4 TI Hard 1.800±0.194 0.978 0.933 0.232

De-noising 2D DWT
Method dfactor fscore pscore dscore
S5 Soft 2.673±0.260 0.829 0.813 0.517
S5 TI Soft 2.943±0.298 0.829 0.806 0.609
D4 Soft 4.045±0.556 0.832 0.798 0.532
D4 TI Soft 4.378±0.533 0.823 0.774 0.655
S5 Hard 1.232±0.056 0.960 0.916 0.183
S5 TI Hard 1.400±0.083 0.957 0.923 0.354
D4 Hard 1.473±0.130 0.960 0.932 -0.447
D4 TI Hard 1.807±0.155 0.964 0.903 0.426

preserves the fine structure at a modest gain of signal-to-noise. TI de-noising proved

superior in all scores because it eliminates truncation artifacts and averages residual

noise (de-noising methods 16-32 in Figure 5.8). The low-frequency cutoff (J) was not

an essential parameter for hard-threshold based de-noising scoress owing to the much

larger wavelet coefficients of the peaks (intense singularities) compared to the baseline

areas. For soft de-noising lower values of J yield smoothing because all the wavelet

coefficients are shrunk regardless of their absolute value. As a general result, for digital

signals with less than 2500 data points, a low-frequency cutoff of three (J = 3) yields

a good compromise between signal-to-noise and resolution.

For a more accurate analysis, the S5 (Symmlet 5) and D4 (Daubechies 4) wavelet

de-nosing protocols were applied on the full 3D spectrum (Table 5.5). The low-
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frequency cutoff J was set to a value of 3 for all de-noising schemes. The previ-

ous result obtained for 2D slices was qualitatively confirmed for the 3D spectrum:

depending on the desired result there were two possible de-noising strategies which

yield either strong de-noising or high preservation of fine structure, respectively. Soft-

thresholding leads to a high signal-to-noise ratio (d f actor = 2.7−5.4) but suppresses

the low intensity signals (pscore = 0.77− 0.83) whereas hard-thresholding preserves

the fine structure (pscore = 0.92− 0.94) on the expense of the signal-to-noise gain

(d f actor = 1.2− 1.8). Best results were obtained when the 1D DWT was used in

combination with the TI de-noising. For soft-thresholding Daubechies wavelets gave

the best scores while hard-thresholding gave the best scores for the Symmlet basis.

A better compromise could not be found even with more sophisticated thresholding

schemes.

5.2.2 NOESY peak list validation

By incorporating the validation filters based on network anchoring and symmetry map-

ping (Section 4.3) all de-noising scores were further improved with a minimal loss

of real peaks. This is reflected by a larger de-noising score (dscore) and minimally

smaller peak picking scores (pscore) (see Table 5.8). Limitations for this validation

scheme are excessively noisy peak lists (when the large number of noise-related peaks

are obscuring the relevant signals), incomplete assignment tables, shifted peaks or tight

frequency tolerances. Furthermore, unique contacts between amino acids of different

structural elements of proteins with high information content may get lost. When the

validation filters are applied without prior wavelet de-noising the quality scores indi-

cate that 4% of the real peaks were eliminated while 70% of the noisy entries were

removed. However, by combining de-noising and consistency assessment up to 90%

of the residual noise can be removed while only 2% additional peaks are eliminated.
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Table 5.8. Quality scores after NOESY peak list validation using the network anchor-
ing and symmetry mapping filters.

De-noising 1D DWT 2D DWT
Method fscore pscore dscore fscore pscore dscore
none∗ 1 0.961 0.709 - - -
S5 Soft 0.851 0.791 0.845 0.831 0.731 0.864
S5 TI Soft 0.858 0.806 0.868 0.830 0.783 0.874
D4 Soft 0.848 0.774 0.852 0.832 0.722 0.881
D4 TI Soft 0.850 0.777 0.891 0.829 0.752 0.901
S5 Hard 0.973 0.920 0.727 0.960 0.894 0.737
S5 TI Hard 0.975 0.918 0.771 0.957 0.899 0.799
D4 Hard 0.969 0.913 0.586 0.961 0.908 0.559
D4 TI Hard 0.978 0.903 0.775 0.964 0.878 0.819

∗automatically picked peaks using the original spectrum.

5.2.3 Iterative NOE assignment and structure calculations using

wavelet de-noised spectra

The two de-noising strategies which were derived in this analysis have complementary

features. The first de-noising scheme employing soft-thresholding (1D-DWT-D4-TI-

Soft) yields a peak lists which is approximately 80% complete and 60% de-noised

(list I). The second de-noising scheme which is more conservative and uses hard-

thresholding of the wavelet coefficients (1D-DWT-S5-TI-Hard) provides a peak list

which is 95% complete and 25% de-noised (list II). Combined with NOESY peak list

validation the peak lists were 75% complete and 90% de-noised (I) or 90% complete

and 75% de-noised (II), respectively. Automated iterative NOE assignment and struc-

ture calculation can take advantage of the complementary features of the two schemes

if the two peak lists are employed incrementally. In a first stage only the best and most

reliable peak list (I) is used while peak list (II) with modest noise suppression and a

large number of signals is introduced in a later stage.

This strategy was tested using the experimental NOESY data of the Sud dimer.

To simplify the assignment procedure the NOE assignment and structure calculations
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were carried out only for the monomer unit (residues 20-130). The N-terminal α-helix

was not considered since its positioning is essentially determined by the dimer fold.

The monomer reference structure was recalculated using only the intra-monomer dis-

tance constraints originating from the 15N,13C and methyl-13C edited-NOESY spectra.

The incremental peak lists obtained after wavelet de-noising were implemented in a

three stage protocol of iterative NOE assignment and structure calculations with ARIA.

The first stage of structure calculation started with the ’cleanest’ NOESY peak list (I)

and five iterations in ARIA. In this stage 2117 NOEs were collected from the three

heteronuclear NOESY spectra. Besides validation of NOESY peaks, the network an-

choring and symmetry mapping filters produced 562 unambiguous NOE assignments.

This unambiguous assignment list was verified using the reference model and only 22

entries were found to be misinterpreted. The coupled NOE assignment and structure

calculation protocol followed the standard ARIA scheme (Linge et al., 2001) of the

first five iterations. To take the best possible advantage of the clean but incomplete

peak list (I) and to minimize the amount of peaks that may be incompatible with the

transient three-dimensional models owing to underestimated upper limits, the qmove

flag of the violation analysis module in ARIA was used throughout these initial five it-

erations1. In each iteration 30 structures were calculated and the 10 models with lowest

energy were used to interpret the spectra in the following cycle. The ambiguity cutoff2

was gradually decreased from 1 to 0.98. At this stage a bundle of conformers with a

mean backbone RMSD of 4.68±1.08 Å between the best 10 models was obtained. The

RMSD between the average structure and the reference model was 2.64 Å (Figure5.9,

panel B).

In the second stage these models were used as a starting point for a new cycle of

four ARIA iterations using the peak list (II) and after the anchoring/symmetry based

1The qmove feature moves the upper limit for each systematically violated restraint to 6 Å , repeats
the violation analysis and rejects only the remaining violated restraints.

2The number of assignment possibilities ranked and taken into account based on the previously calcu-
lated structures.
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Figure 5.9. (A), (C) and (E) represent a 2D slice of the 3D 15N-edited NOESY spectrum
of the Sud protein from W. succinogens: (A) after 1D-DWT-D4-TI-Soft de-nosing, (C) after
1D-DWT-S5-TI-Hard de-noising and (E) the original cross section. Red crosses depict the
automatically picked peaks for each spectrum. (B), (D) and (F) show backbone plots of the
reference structure (red) together with the 10 best conformers (blue) obtained in subsequent
stages of automated NOE assignment and structure calculation using NOESY spectra (A), (C)
and (E), respectively.
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validation (2615 NOEs). The protocol was identical with the one employed in the first

stage but no initial assignments were imposed. In this way all assignment possibilities

were reassessed based on the previous structural models. After four iterations a bundle

of conformers with a mean backbone RMSD of 2.00±0.36 Å and a deviation between

the average and the reference structure of 1.72 Å was achieved (Figure 5.9, panel D).

Despite a high ambiguity cutoff for the NOE assignments (0.98) which allows a large

number of ambiguous distance restraints the calculation converged to a reasonably

well-defined model. The sparseness of the cross peak list in this stage does not repre-

sent a drastic limitation because NOESY based structure calculations are tolerant with

respect to the data incompleteness (Jee and Güntert, 2003).

In the third stage the previously calculated models were used to interpret the peak

lists obtained by automated peak picking performed on the original data (approxi-

mately 3500 assignable peaks). Four cycles of ARIA (iteration 5-8) were carried out

imposing strict violation tolerances (1.0-0.1 Å) and spin diffusion correction. The

ambiguity cutoff was gradually decreased from 0.96 to 0.8. It is important to use

the original spectra for the final NOE assignment and structure calculation because a

significant fraction of the informative long-distance NOE signals may have very low

intensities and can be suppressed even with the most conservative de-noising schemes.

The final list of NOE derived distance restraints (1923 non-redundant restraints)

were subject to an ultimate ARIA structure calculation (100 structures) leading to a

bundle of the 10 best conformers with a mean backbone RMSD of 0.85±0.2 Å (Figure

5.9, panel F). An identical structure calculation protocol was applied to the distance

restraints previously obtained by an interactive approach with manual peak picking.

The automated and manual scheme gave similar target functions and almost identical

RMSD values. The backbone RMSD between the mean structures of the two bundles

(automated versus manual) was 1.06 Å. Table 5.10 presents the structural statistics

summary of the three stage automated NOE assignment and structure calculation com-

pared to the corresponding values for the interactive manual approach.
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Table 5.10. Structural statistics for the three stages of automated NOE assignment and
structure calculation; comparison with the result of the interactive manual approach.

Stage 1 Stage 2 Stage 3 Manual
NOE cross peaks 2117 2615 3507 2700
NOE distance restraintsa 1615 1965 1923 1896
Target function [kcal/mol] 2215.1±417.3 944.3±309.1 132.9±7.0 110.6±3.4
backbone RMSD [Å]b 4.68±1.08 2.00±0.36 0.85±0.20 0.84±0.10

2.64 1.72 1.06

a unambiguous and ambiguous distance restraints (ADR).
bfirst row denotes the mean backbone RMSD of energetically best 10 models, the sec-
ond row the RMSD between the ensemble average structure and the reference model.
For all RMSD calculations only residues 21-89 and 95-129 were considered.

The difficulty of de novo protein structure calculation using iterative NOE as-

signment strategies is to distinguish between multiple assignment possibilities of the

NOESY cross peaks in the presence of different types of noise. The most direct type

of noise is spectral noise arising from the NMR hardware. Although this has been sub-

stantially reduced by the introduction of cryogenic probes there is always remaining

noise, especially as NMR spectroscopists now use proteins at very low concentrations.

In addition, there is noise in the peak lists after peak picking, typically arising from

artifacts or chemical shift ambiguities in the spectrum. The method described in this

work takes advantage of direct spectral noise to determine de-noised peak lists at dif-

ferent levels of reliability. Clearly, this method is limited to noise present in the data

and will fail for perfect spectra.

The analysis of many different wavelet de-noising schemes applied to a sample

NOESY spectrum showed that no single wavelet de-noising strategy produces a per-

fect peak list. High levels of de-noising are usually associated with some smoothing

effect which suppresses very low intensity signals and removes some signal shoulders.

However, the special features of different de-noised peak lists provide complementary

information which facilitate a combination of automated peak picking, NOE assign-

ment and structure calculations employing the ambiguous distance restraints (ADR)
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concept in ARIA.

ADR based structure calculations suffer from additional local minima introduced

in the NOE hybrid energy function by incorrect assignment possibilities which lead

to a more demanding minimization problem. To simplify the landscape of the NOE

potential surface and to reduce the effect of spectral artifacts additional filters based on

the chemical shift assignments and the intrinsic properties of the NOESY spectra (net-

work anchoring, symmetry mapping, restraint combination and Gaussian frequency

windows) were previously introduced (Herrmann et al., 2002a,b). However, for these

filtering strategies high chemical shift assignment completeness and clean NOESY

cross peak lists are required (Jee and Güntert, 2003; Güntert, 2003).

The strategy presented here combines filters which use the intrinsic logic of the peak

list (symmetry mapping and network anchoring) with wavelet de-nosing which re-

duces the spectral noise independent of any specific features of the peak list. Different

stages of de-noising complement the requirements of the ADR algorithm by providing

a highly reliable but incomplete peak list in a first stage followed by a less stringently

de-noised but almost complete peak list in a second stage of combined assignment and

structure calculation. This strategy is less prone to move into local minima than other

concepts which emphasize filters relying on the internal logics of the peak list.

The advantages of the de-noising strategy will be most significant for somewhat

noisy NOESY spectra. The required amount of processing to obtain de-noised spectra

is very limited, in fact commonly used DWT algorithms are faster than the Fast Fourier

Transformation (Mallat, 1989b). Post-processing and peak picking require minimal

added computational time to obtain peak lists for different stages of the procedure.

The combined software tools provide de-noising, peak picking and integration with

export modules to different file formats. Therefore this software should be commonly

applicable in conjunction with different programs for combined NOESY assignment

and structure calculation. The symmetry and network anchoring filters were directly

incorporated into the ARIA program, a software broadly used for iterative NOE
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assignment and structure calculations.

5.3 Wavelet de-noising for NMR screening

Principal component analysis (PCA) is a commonly used algorithm for multivariate

analysis of NMR screening data. PCA substantially reduces the complexity of data in

which a large number of variables are interrelated. For large series of NMR spectra

obtained for ligand binding, PCA is employed to visually group spectra with a similar

response to ligand binding. The correct classification of the NMR screening data by

PCA is a notoriously difficult problem owing to the noise and baseline distortions and

to the small spurious shifts caused by pH changes upon addition of the ligand solution.

The approach described here uses the noise filtering, baseline correction and data com-

pression ability of wavelet transforms to address this problem. Different schemes for

pre-processing the NMR screening data prior to PCA have been compared (Section 4.7:

schemes A, B and C). Scheme A involves the standard bucketing approach, scheme B

is a hybrid of wavelet de-nosing and bucketing while scheme C propose a combination

of PCA with the wavelet coefficient thresholding and multiresolution analysis. The

novel concept is to apply the PCA in the multiresolution space of wavelet coefficients,

which allows for a selective filtering of noise- and baseline-related artifacts.

In scheme A (Figure 4.5) a standard bucketing approach with 16× 16 buckets was

used to reduce the size of the data. The result of this bucketing procedure is presented

in the first panel of Figure 5.10 which shows a plot of the first three principal compo-

nents (pc1, pc2 and pc3). A cluster between 0 and 100 on pc1 and pc2 and -40 and

40 on pc3 (blue ’+’) represents spectra with little change compared to the reference.

Positive hits in the screening appear with negative values in pc2 (green ’+’). In addi-

tion, spectra 42 and 28 (red ’+’) appear with large values in pc3. The corresponding

spectra for both cases show few effects compared to the reference. Figure 5.10D shows
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Figure 5.10. (A) The first three principal component obtained using scheme A with 16×
16 bucketing prior to PCA for a set of 101 HSQC spectra of hsp90 recorded with different
ligands. Each ’+’ represents one HSQC spectrum. (B) Principal components obtained using
scheme B with 16× 16 bucketing on wavelet de-noised data using a Symmlet 8 quadrature
mirror filter and soft-threshold de-noising prior to PCA. (C) Principal components obtained
employing scheme C using a wavelet transform with a Symmlet 8 quadrature mirror filter and
MRA including dyadic levels j = [5,8] prior to PCA. (D) spectrum 42 (blue) superimposed to
the reference spectrum (red, without ligand) showing few chemical shift changes. (E) spectrum
41 (blue) superimposed to the reference spectrum (red, without ligand) showing significant
chemical shift changes.
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the HSQC spectrum of the complex form (protein with ligand, blue) superimposed on

the reference spectrum (without ligand, red) for the false hit 42. In contrast, Figure

5.10E shows an example for a positive hit with various small chemical shift changes

compared to the reference.

In scheme B (Figure 4.5) a wavelet de-nosing step was applied prior to thresholding

and bucketing (see Section 4.7 for details of the procedure). Here wavelet shrinkage is

used for de-noising and smoothing of the spectra but not for data compression. Com-

bined de-noising/bucketing depicted in Figure 5.10B exhibits improved clustering in

spectra of protein with non-binding ligands. In addition, some hits are clearly sepa-

rated (green ’+’). Spectrum 42 appears again as a false hit (red ’+’) whereas spectrum

28 joins the cluster around the reference. The improvement for spectrum 28 can be

explained by the smoothing effect of wavelet thresholding on the spectrum.

In scheme C (Figure 4.5) PCA was applied directly to the wavelet coefficients.

Since the wavelet transform is a unitary transformation (Eqn. 2.27) eigenvalues of the

wavelet coefficients are equivalent to the eigenvalues of the original data. Therefore a

PCA analysis performed directly on the wavelet coefficients conveys the multivariate

properties as if it was applied on the original data. In addition, the soft-thresholding

of the wavelet coefficients eliminates the stochastic component of the spectra (de-

noising), minimizes insignificant spectral perturbations (smoothing) and decreases the

size of the data matrix (compression). Figure 5.10C shows good clustering for the

first three principal components obtained by applying the PCA on the sparse matrix of

thresholded wavelet coefficients. In this case spectra 42 and 28 appear on the edge of

the cluster around the reference.

For a quantitative comparison of the three different schemes, a compression factor,

a de-noising factor, a clustering factor and the CPU time for the PCA were evaluated

(Table 5.10, see Section 4.7 for details). Compression, de-nosing and clustering factors

are better for scheme B compared to scheme A owing to the reduced noise in spectra.

For scheme C the de-noising factor is better than for schemes A and B owing to the
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larger number of zeroes in the thresholded matrix. However, the compression factor

is lower because the number of common zeroes between all spectra is much lower for

de-noising in wavelet space than for de-noising of the actual spectra. The separation

of outliers from the cluster representing spectra of protein with non-binding ligands

is greatly improved in scheme C. This leads to a higher clustering factor compared to

schemes A and B. The lower compression rate of scheme C leads to increased CPU

time.

Table 5.12. Compression factors, de-noising factors, clustering factors and elapsed
CPU time1 obtained for the three different schemes (A, B and C) of multivariate anal-
ysis of the NMR screening data using a set of 101 HSQC spectra of hsp90 protein
recorded in the presence of different ligands.

Scheme Compression factor De-noising factor Clustering factor CPU time [s]
A 1008 0.858 0.106 0.58
B 1231 0.861 0.198 0.41
C 11 0.903 0.346 15.25

1CPU time required for the PCA of the pre-processed data on a 1.5 GHz AMD proces-
sor.

Further analysis of the false hit 42 in the bucketing schemes showed that it is not

the outcome of the local noise dissimilarities but rather an artifact resulting from peak

shifts in the vicinity of the bucket borders. Figure 5.11A shows an example of signals

in spectrum 42 which cause border artifacts in bucketing. When several effects of this

kind are accumulated in one spectrum relatively large principal components will be

observed. This cumulative effect can be shown by computing the sum of the squared

differences between the reference and each spectrum at bucket borders. Figure 5.11B

shows that this function has a clear maximum for spectrum 42 due to an accumulation

of bucket border artifacts. The effect of artifacts on bucket borders has also been

confirmed using simulated spectra (not shown).

While PCA has become a standard technique for data reduction and visualization

of large data sets, the preparation of NMR data for PCA remains difficult. Filters ap-
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Figure 5.11. (A) Example of peaks which cause a border effect in the bucketing schemes.
Blue corresponds to spectrum 42 and red to the reference. The green grid represents the bucket
borders. (B) Summed squared differences between each of the 101 spectra and the reference
spectrum calculated at the bucket borders. Real hits (spectra 5, 7, 8, 9, 41, 55, 61, 62, 67 and
71) were not included. For a better visualization all the spectra identified as true hits were
excluded from this analysis (zeroes in the plot).

plied prior to PCA should reduce the size of data to improve computational efficiency

and minimize the sensitivity towards small irrelevant shifts in the NMR data. This

has typically been achieved employing bucketing as a simple and highly efficient filter.

Unfortunately bucketing may introduce artifacts when peaks move on borders between

buckets and in the case of spectra with large variations of the background noise lev-

els. The addition of spectral points into one bucket causes a modest reduction of noise

depending on the size of the bucket. However, large buckets would be required to

achieve a noticeable noise reduction. Applying a threshold to the experimental data is

a frequently used alternative. Nevertheless, sharp thresholds tend to distort the buck-
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ets leading to more severe artifacts. In addition, with increasing resolution of spectra

at higher magnetic fields with proton frequencies of up to 900 MHz, typical bucket-

ing schemes reduce the effective resolution substantially. For this reason more subtle

methods of smoothing and noise suppression are required.

In this study it has been shown that wavelet coefficient thresholding is a suitable

alternative with desirable properties for subsequent PCA analysis. Two different

schemes which combine the wavelet transforms to suppress noise related coefficients

with the PCA analysis have been tested. When PCA is applied to spectra after wavelet

de-noising subsequent bucketing is still required to reduce the size of the data (scheme

B). This scheme showed improved clustering owing to the reduced noise contribu-

tion to buckets. It also eliminates the noise-related artifacts observed for spectrum 28,

but not the bucketing artifacts observed for spectrum 42. Further improved cluster-

ing was achieved when PCA was directly applied to the wavelet coefficients (scheme

C). This scheme eliminates noise-related (spectrum 28) and bucketing artifacts (spec-

trum 42) efficiently. The scheme offers a modest and scalable smoothing for one- or

two-dimensional NMR data. The result can be optimized by selecting threshold lev-

els in wavelet space and suitable levels to be suppressed in MRA. The effect of MRA

will be more pronounced for data sets with strong baseline distortions typical for one-

dimensional spectra.

Although the formation of data buckets is computationally less demanding than cal-

culating the wavelet transformation, the additional computational effort seems justified

considering the preservation in fine structure and the reduction in artefacts that can be

achieved. The computing time of the lifting scheme used to obtain the wavelet co-

efficients is proportional to the number of data points N of the data set and therefore

by a factor of log(N) faster than the Fast Fourier Transformation. In scheme C where

PCA is performed in wavelet space no inverse transform is required. Once data is

represented in wavelet space different thresholding or MRA schemes can be applied

rapidly.
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Die Ermittlung von Proteinstukturen mittels NMR-Spektroskopie ist ein komplexer

Prozess, wobei die Resonanzfrequenzen und die Signalintensitäten den Atomen des

Proteins zugeordnet werden. Zur Bestimmung der räumlichen Proteinstruktur sind

folgende Schritte erforderlich: die Präparation der Probe und 15N/13C Isotopenan-

reicherung, Durchführung der NMR Experimente, Prozessierung der Spektren, Bes-

timmung der Signalresonanzen (’Peak-picking’), Zuordnung der chemischen Ver-

schiebungen, Zuordnung der NOESY-Spektren und das Sammeln von konforma-

tionellen Strukturparametern, Strukturrechnung und Strukturverfeinerung. Aktuelle

Methoden zur automatischen Strukturrechnung nutzen eine Reihe von Computeralgo-

rithmen, welche Zuordnungen der NOESY-Spektren und die Strukturrechnung durch

einen iterativen Prozess verbinden. Obwohl neue Arten von Strukturparametern wie

dipolare Kopplungen, Orientierungsinformationen aus kreuzkorrelierten Relaxation-

sraten oder Strukturinformationen, die sich in Gegenwart paramagnetischer Zentren

in Proteinen ergeben, wichtige Neuerungen für die Proteinstrukturrechnung darstellen,

sind die Abstandsinformationen aus NOESY-Spektren weiterhin die wichtigste Basis

für die NMR-Strukturbestimmung.

Der hohe zeitliche Aufwand des ’peak-picking’ in NOESY-Spektren ist hauptsäch-

lich bedingt durch spektrale Überlagerung, Rauschsignale und Artefakte in NOESY-

Spektren. Daher werden für das effizientere automatische ’Peak-picking’ zuver-

lässige Filter benötigt, um die relevanten Signale auszuwählen. In der vorliegen-

den Arbeit wird ein neuer Algorithmus für die automatische Proteinstrukturrech-
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nung beschrieben, der automatisches ’Peak-picking’ von NOESY-Spektren beinhal-

tet, die mit Hilfe von Wavelets entrauscht wurden. Der kritische Punkt dieses Algo-

rithmus ist die Erzeugung inkrementeller Peaklisten aus NOESY-Spektren, die mit

verschiedenen auf Wavelets basierenden Entrauschungsprozeduren prozessiert wur-

den. Mit Hilfe entrauschter NOESY-Spektren erhält man Signallisten mit verschiede-

nen Konfidenzbereichen, die in unterschiedlichen Schritten der kombinierten NOE-

Zuordnung/Strukturrechnung eingesetzt werden. Das erste Strukturmodell beruht auf

stark entrauschten Spektren, die die konservativste Signalliste mit als weitgehend

sicher anzunehmenden Signalen ergeben. In späteren Stadien werden Signallisten aus

weniger stark entrauschten Spektren mit einer größeren Anzahl von Signalen verwen-

det. Die Auswirkung der verschiedenen Entrauschungsprozeduren auf Vollständigkeit

und Richtigkeit der NOESY Peaklisten wurde im Detail untersucht. Durch die Kom-

bination von Wavelet-Entrauschung mit einem neuen Algorithmus zur Integration der

Signale in Verbindung mit zusätzlichen Filtern, die die Konsistenz der Peakliste prüfen

(’Network-anchoring’ der Spinsysteme und Symmetrisierung der Peakliste), wird eine

schnelle Konvergenz der automatischen Strukturrechnung erreicht. Der neue Algo-

rithmus wurde in ARIA integriert, einem weit verbreiteten Computerprogramm für

die automatische NOE-Zuordnung und Strukturrechnung. Der Algorithmus wurde

an der Monomereinheit der Polysulfid-Schwefel-Transferase (Sud) aus Wolinella suc-

cinogenes verifiziert, deren hochaufgelöste Lösungsstruktur vorher auf konventionelle

Weise bestimmt wurde.

Neben der Möglichkeit zur Bestimmung von Proteinlösungsstrukturen bietet sich

die NMR-Spektroskopie auch als wirkungsvolles Werkzeug zur Untersuchung von

Protein-Ligand- und Protein-Protein-Wechselwirkungen an. Sowohl NMR Spektren

von isotopenmarkierten Proteinen, als auch die Spektren von Liganden können für

das ’Screening” nach Inhibitoren benutzt werden. Im ersten Fall wird die Sensitiv-

ität der 1H- und 15N-chemischen Verschiebungen des Proteinrückgrats auf kleine ge-

ometrische oder elektrostatische Veränderungen bei der Ligandbindung als Indikator
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benutzt. Als ’Screening’-Verfahren, bei denen Ligandensignale beobachtet werden,

stehen verschiedene Methoden zur Verfügung: Transfer-NOEs, Sättigungstransferdif-

ferenzexperimente (STD, ’saturation transfer difference’), ePHOGSY, diffusionsedi-

tierte und NOE-basierende Methoden. Die meisten dieser Techniken können zum

rationalen Design von inhibitorischen Verbindungen verwendet werden. Für die

Evaluierung von Untersuchungen mit einer großen Anzahl von Inhibitoren werden

effiziente Verfahren zur Mustererkennung wie etwa die PCA (’Principal Component

Analysis’) verwendet. Sie eignet sich zur Visualisierung von Ähnlichkeiten bzw. Un-

terschieden von Spektren, die mit verschiedenen Inhibitoren aufgenommen wurden.

Die experimentellen Daten werden zuvor mit einer Serie von Filtern bearbeitet, die u.a.

Artefakte reduzieren, die auf nur kleinen Änderungen der chemischen Verschiebun-

gen beruhen. Der am weitesten verbreitete Filter ist das sogenannte ’bucketing’, bei

welchem benachbarte Punkte zu einen ’bucket’ aufsummiert werden. Um typische

Nachteile der ’bucketing’-Prozedur zu vermeiden, wurde in der vorliegenden Arbeit

der Effekt der Wavelet-Entrauschung zur Vorbereitung der NMR-Daten für PCA am

Beispiel vorhandener Serien von HSQC-Spektren von Proteinen mit verschiedenen

Liganden untersucht. Die Kombination von Wavelet-Entrauschung und PCA ist am

effizientesten, wenn PCA direkt auf die Wavelet-Koeffizienten angewandt wird. Durch

die Abgrenzung (’thresholding’) der Wavelet-Koeffizienten in einer Multiskalenanal-

yse wird eine komprimierte Darstellung der Daten erreicht, welche Rauschartefakte

minimiert. Die Kompression ist anders als beim ’bucketing’ keine ’blinde’ Kompres-

sion, sondern an die Eigenschaften der Daten angepasst. Der neue Algorithmus kom-

biniert die Vorteile einer Datenrepresentation im Wavelet-Raum mit einer Datenvisu-

alisierung durch PCA. In der vorliegenden Arbeit wird gezeigt, dass PCA im Wavelet-

Raum ein optimiertes ’clustering’ erlaubt und dabei typische Artefakte eliminiert wer-

den.

Darüberhinaus beschreibt die vorliegende Arbeit eine de novo Strukturbestim-

mung der periplasmatischen Polysulfid-Schwefel-Transferase (Sud) aus dem anaer-
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oben gram-negativen Bakterium Wolinella succinogenes. Das Sud-Protein ist ein poly-

sulfidbindendes und transferierendes Enzym, das bei niedriger Polysulfidkonzentration

eine schnelle Polysulfid-Schwefel-Reduktion katalysiert. Sud ist ein 30 kDa schweres

Homodimer, welches keine prosthetischen Gruppen oder schwere Metallionen enthält.

Jedes Monomer enhält ein Cystein, welches kovalent bis zu zehn Polysulfid-Schwefel

(Sn
2-) Ionen bindet. Es wird vermutet, dass Sud die Polysulfidkette auf ein katalytis-

chen Molybdän-Ion transferiert, welches sich im aktiven Zentrum des membranständi-

gen Enzyms Polysulfid-Reduktase (Psr) auf dessen dem Periplasma zugewandten Seite

befindet. Dabei wird eine reduktive Spaltung der Kette katalysiert.

....Die Lösungsstruktur des Homodimeres Sud wurde mit Hilfe heteronuklearer,

mehrdimensionaler NMR-Techniken bestimmt. Die Struktur beruht auf von NOESY-

Spektren abgeleiteten Distanzbeschränkungen, Rückgratwasserstoffbindungen und

Torsionswinkeln, sowie auf residuellen dipolaren Kopplungen, die für die Verfeinerung

der Struktur und für die relative Orientierung der Monomereinheiten wichtig waren.

In den NMR Spektren der Homodimere haben alle symmetrieverwandte Kerne äquiv-

alente magnetische Umgebungen, weshalb ihre chemischen Verschiebungen entartet

sind. Die symmetrische Entartung vereinfacht das Problem der Resonanzzuord-

nung, da nur die Hälfte der Kerne zugeordnet werden müssen. Die NOESY-

Zuordnung und die Strukturrechnung werden dadurch erschwert, dass es nicht möglich

ist, zwischen den Intra-Monomer-, Inter-Monomer- und Co-Monomer- (gemischten)

NOESY-Signalen zu unterscheiden. Um das Problem der Symmetrie-Entartung der

NOESY-Daten zu lösen, stehen zwei Möglichkeiten zur Verfügung: (I) asymmetrische

Markierungs-Experimente, um die intra- von den intermolekularen NOESY-Signalen

zu unterscheiden, (II) spezielle Methoden der Strukturrechnung, die mit mehrdeutigen

Distanzbeschränkungen arbeiten können. Die in dieser Arbeit vorgestellte Struktur

wurde mit Hilfe der Symmetrie-ADR- (’Ambigous Distance Restraints’) Methode in

Kombination mit Daten von asymetrisch isotopenmarkierten Dimeren berechnet. Die

Koordinaten des Sud-Dimers zusammen mit den NMR-basierten Strukturdaten wur-
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den in der RCSB-Proteindatenbank1 unter der PDB-Nummer 1QXN abgelegt.

Das Sud-Protein zeigt nur wenig Homologie zur Primärsequenz anderer Proteine

mit ähnlicher Funktion und bekannter dreidimensionaler Struktur. Bekannte Proteine

sind die Schwefeltransferase oder das Rhodanese-Enzym2, welche beide den Transfer

von einem Schwefelatom eines passenden Donors auf den nukleophilen Akzeptor (z.B

von Thiosulfat auf Cyanid) katalysieren. Die dreidimensionalen Strukturen dieser Pro-

teine zeigen eine typische α/β Topologie und haben eine ähnliche Umgebung im ak-

tiven Zentrum bezüglich der Konformation des Proteinrückgrades. Die Schleife im ak-

tiven Zentrum umgibt das katalytische Cystein, welches in allen Rhodanese-Enzymen

vorhanden ist, und scheint im Sud-Protein flexibel zu sein (fehlende Resonanzzuord-

nung der Aminosäuren 89-94). Das Polysulfidende ragt aus einer positiv geladenen

Bindungstasche heraus (Reste: R46, R67, K90, R94), wo Sud wahrscheinlich in Kon-

takt mit der Polysulfidreduktase tritt. Das strukturelle Ergebnis wurde durch Mutage-

neseexperimente bestätigt. In diesen Experimenten konnte gezeigt werden, dass alle

Aminosäurereste im aktiven Zentrum essentiell für die Schwefeltransferase-Aktivität

des Sud-Proteins sind. Die Substratbindung wurde früher durch den Vergleich von

[15N,1H]-TROSY-HSQC-Spektren des Sud-Proteins in An- und Abwesenheit des

Polysulfidliganden untersucht. Bei der Substratbindung scheint sich die lokale Ge-

ometrie der Polysulfidbindungsstelle und der Dimerschnittstelle zu verändern. Die

konformationellen Änderungen und die langsame Dynamik, hervorgerufen durch die

Ligandbindung können die weitere Polysulfid-Schwefel-Aktivität auslösen.

Ein zweites Polysulfid-Schwefeltransferaseprotein (Str, 40 kDa) mit einer fünffach

höheren nativen Konzentration im Vergleich zu Sud wurde im Bakterienperiplasma

von Wolinella succinogenes entdeckt. Es wird angenommen, dass beide Protein einen

Polysulfid-Schwefel-Komplex bilden, wobei Str wässriges Polysulfid sammelt und an

Sud abgibt, welches den Schwefeltransfer zum katalytischen Molybdän-Ion auf das

1http://www.rcsb.org/
2e.g. GlpE Protein aus Escherichia coli, Rhodanese Protein aus Azobacter vinelandii und Rinderleber

Rhodanese Protein.
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aktive Zentrum der dem Periplasma zugewandten Seite der Polysulfidreduktase durch-

führt. Änderungen chemischer Verschiebungen in [15N,1H]-TROSY-HSQC-Spektren

zeigen, dass ein Polysulfid-Schwefeltransfer zwischen Str und Sud stattfindet. Eine

mögliche Protein-Protein-Wechselwirkungsfläche konnte bestimmt werden. In der

Abwesenheit des Polysulfidsubstrates wurden keine Wechselwirkungen zwischen Sud

und Str beobachtet, was die Vermutung bestätigt, dass beide Proteine nur dann

miteinander wechselwirken und den Polysulfid-Schwefeltransfer ermöglichen, wenn

als treibende Kraft Polysulfid präsent ist.
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