1,429 research outputs found

    Geoinformatics in Citizen Science

    Get PDF
    The book features contributions that report original research in the theoretical, technological, and social aspects of geoinformation methods, as applied to supporting citizen science. Specifically, the book focuses on the technological aspects of the field and their application toward the recruitment of volunteers and the collection, management, and analysis of geotagged information to support volunteer involvement in scientific projects. Internationally renowned research groups share research in three areas: First, the key methods of geoinformatics within citizen science initiatives to support scientists in discovering new knowledge in specific application domains or in performing relevant activities, such as reliable geodata filtering, management, analysis, synthesis, sharing, and visualization; second, the critical aspects of citizen science initiatives that call for emerging or novel approaches of geoinformatics to acquire and handle geoinformation; and third, novel geoinformatics research that could serve in support of citizen science

    Collaborative custodianship through collaborative cloud mapping : challenges and opportunities

    Get PDF
    Collaborative custodianship refers to an arrangement where a number of custodians work together to produce integrated datasets for a spatial data infrastructure (SDI), e.g. local authorities contributing address or street data to a national SDI dataset. Collaborative cloud mapping allows for ubiquitous, convenient, on-demand, configured and tailor-made mapping with resources shared between various entities collaborating on a specific initiative, such as an SDI or for disaster management. This paper presents the results of a workshop in South Africa during which case studies from the Netherlands, Belgium and Austria of collaborative custodianship of address data were presented, and OpenStreetMap as a case study of collaborative cloud mapping. Subsequently, challenges and opportunities for implementing similar initiatives in the context of the South African SDI were debated in break-away sessions. The results from these sessions were analysed using the PESTEL framework

    State of apps targeting management for sustainability of agricultural landscapes. A review

    Get PDF
    International audienceAbstractThe triple-bottom-line approach to sustainability in agriculture requires multi- and inter-disciplinary expertise and remains a major design and implementation challenge. Tools are needed to link extension agents, development workers, farmers, and other agriculture decision-makers to information related to practices that improve sustainability across agricultural landscapes. The digital age has brought many new cloud-based and mobile device–accessible software applications (apps) targeted at farmers and others in the agriculture sector; however, the effectiveness of these tools for advancing sustainability goals is unknown. Here, we review apps for agriculture in order to identify gaps in information provisioning and sharing for tools that connect decision-makers to knowledge in support of sustainable agricultural landscapes. The major findings are (1) Agricultural apps can be categorized as supporting regulatory compliance, equipment optimization, farming simulator games, information management, agronomic reference information, product tracking, pest identification, emissions accounting, or benchmarks for marketing claims. (2) Many apps are developed to link specific products for single solutions, such as GPS-guided crop implementation or sensors within Internet-of-things connectivity. (3) While pilots, prototypes, and case studies are available in both Apple and Android digital markets, public mobile apps to improve multidirectional agriculture knowledge exchange are limited and poorly documented. (4) There remains a need for apps emphasizing knowledge exchange and resource discovery, rather than simply information delivery, to help farmers identify evidence-based practices that improve indicators of sustainability. (5) Development of a digital decision support tool requires early and ongoing interactions with targeted end users to clarify app performance objectives and social networking preferences, ensure reliability of scientific input and business management plans, and optimize the user experience

    Usability of VGI for validation of land cover maps

    Get PDF
    Volunteered Geographic Information (VGI) represents a growing source of potentially valuable data for many applications, including land cover map validation. It is still an emerging field and many different approaches can be used to take value from VGI, but also many pros and cons are related to its use. Therefore, since it is timely to get an overview of the subject, the aim of this article is to review the use of VGI as reference data for land cover map validation. The main platforms and types of VGI that are used and that are potentially useful are analysed. Since quality is a fundamental issue in map validation, the quality procedures used by the platforms that collect VGI to increase and control data quality are reviewed and a framework for addressing VGI quality assessment is proposed. A review of cases where VGI was used as an additional data source to assist in map validation is made, as well as cases where only VGI was used, indicating the procedures used to assess VGI quality and fitness for use. A discussion and some conclusions are drawn on best practices, future potential and the challenges of the use of VGI for land cover map validation

    The role of passive surveillance and citizen science in plant health

    Get PDF
    The early detection of plant pests and diseases is vital to the success of any eradication or control programme, but the resources for surveillance are often limited. Plant health authorities can however make use of observations from individuals and stakeholder groups who are monitoring for signs of ill health. Volunteered data is most often discussed in relation to citizen science groups, however these groups are only part of a wider network of professional agents, land-users and owners who can all contribute to significantly increase surveillance efforts through “passive surveillance”. These ad-hoc reports represent chance observations by individuals who may not necessarily be looking for signs of pests and diseases when they are discovered. Passive surveillance contributes vital observations in support of national and international surveillance programs, detecting potentially unknown issues in the wider landscape, beyond points of entry and the plant trade. This review sets out to describe various forms of passive surveillance, identify analytical methods that can be applied to these “messy” unstructured data, and indicate how new programs can be established and maintained. Case studies discuss two tree health projects from Great Britain (TreeAlert and Observatree) to illustrate the challenges and successes of existing passive surveillance programmes. When analysing passive surveillance reports it is important to understand the observers’ probability to detect and report each plant health issue, which will vary depending on how distinctive the symptoms are and the experience of the observer. It is also vital to assess how representative the reports are and whether they occur more frequently in certain locations. Methods are increasingly available to predict species distributions from large datasets, but more work is needed to understand how these apply to rare events such as new introductions. One solution for general surveillance is to develop and maintain a network of tree health volunteers, but this requires a large investment in training, feedback and engagement to maintain motivation. There are already many working examples of passive surveillance programmes and the suite of options to interpret the resulting datasets is growing rapidly

    A service-oriented middleware for integrated management of crowdsourced and sensor data streams in disaster management

    Get PDF
    The increasing number of sensors used in diverse applications has provided a massive number of continuous, unbounded, rapid data and requires the management of distinct protocols, interfaces and intermittent connections. As traditional sensor networks are error-prone and difficult to maintain, the study highlights the emerging role of “citizens as sensors” as a complementary data source to increase public awareness. To this end, an interoperable, reusable middleware for managing spatial, temporal, and thematic data using Sensor Web Enablement initiative services and a processing engine was designed, implemented, and deployed. The study found that its approach provided effective sensor data-stream access, publication, and filtering in dynamic scenarios such as disaster management, as well as it enables batch and stream management integration. Also, an interoperability analytics testing of a flood citizen observatory highlighted even variable data such as those provided by the crowd can be integrated with sensor data stream. Our approach, thus, offers a mean to improve near-real-time applications

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management
    corecore