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Summary 

Volunteered geographic information (VGI), the information sourced from the 

platforms for interactive geospatial data production and consumption fostered 

by Web 2.0 technologies, have enabled spatial decision-making at a much larger 

spatial scale and faster temporal scale. In the field of integrated pest 

management (IPM), utilizing VGI has been suggested as a means to improve 

the efficiency and effectiveness of IPM due to its inherent advantages in 

information collection and dissemination. However, current VGI-based IPM 

has been limited to a primitive conceptual framework with three components–

information collection, sense making (knowledge discovery), and 

dissemination–and its software implementation for data collection and 

dissemination. Several questions related to VGI-based IPM remain unanswered: 

(1) How can the primitive VGI-based IPM framework be enhanced? (2) Can 

VGI sense making indeed generate meaningful outcomes for enhancing IPM? 

(3) How can the quality of VGI be assured? (4) Lastly, what are the roles of 

volunteer participants in VGI-based IPM, and by extension, how can the 

volunteer participation be motivated and sustained? Therefore, answering these 

questions become the research objectives of this thesis. 

To answer the first question, an enhanced conceptual framework of VGI-based 

IPM based on the epistemological foundation of VGI was proposed. The 

framework incorporates quantitative, qualitative, or combined quantitative-

qualitative methods that are suited for the transformative paradigm afforded by 

VGI. It serves as a framework of reference for enhancing IPM based on VGI as 

an alternative to the positivist paradigm adopted in traditional IPM, and for the 

development of more comprehensive VGI-based IPM. Regarding the second 

question, VGI were collected pertaining to both short-term (pest outbreaks) and 

long-term (pest invasions) pest risks. The study explored a range of sense 

making methods that are well suited to the characteristics of VGI, including hot 

spot analysis, phenological analysis, and ecological niche modelling. The sense 

making indeed revealed important directional, clustering, and temporal 

characteristics of crop pest outbreaks; and provided insights into the possible 

distributional changes of invasive crop pests. To answer the third question, an 

expert system based on fuzzy set theory was developed and tested in this study 

for VGI quality assurance. Regarding the last research question, three clusters 

of participant roles were identified and conceptualized based on the lessons 

learned from the explorations for research question two and three. These roles 

are: (1) basic geospatial data contributions for knowledge discovery and 

decision-making; (2) metadata creation; and (3) higher level data contributions 

for community building (cognitive engagement in IPM). Additionally, the 
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results of a participation incentive analysis through questionnaire surveys 

showed that farmers tend to concern temporal patterns (i.e., specific timings of 

pest risk management) more than spatial patterns of pest outbreaks (i.e., specific 

areas of pest risk management); an important factor contributing to a continued 

and more engaged user participation was the usefulness of information 

disseminated to individual participants.  

By answering the research questions, this study has its important significances 

as follows. It moves beyond a primitive conceptual framework by offering an 

operational VGI-based IPM that enables sustainable VGI collection, effective 

VGI quality assurance, and insightful knowledge discovery. Practically, this 

research benefits relevant experts by alleviating them from collecting geospatial 

information to focusing on data analysis. It also has significances to pesticide 

reduction, pest managerial investments, agricultural productivity enhancement, 

and to the design, development, testing, and deployment of VGI-based IPM 

tools and systems. 

In conclusion, VGI offers a promising way to improve traditional IPM. This 

study sheds light on how IPM can be enhanced through VGI efforts. 

Nevertheless, future work is still needed to explore VGI-based IPM further, 

particularly in terms of (1) big data collection, storage, analysis, and 

dissemination; (2) cognitive abilities of participants in IPM; and (3) user privacy 

in data production and consumption.
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1 Introduction 

1.1 Volunteered geographic information 

VGI is the most frequently used term in geographic information science 

(GIScience) to describe the information sourced from the platforms for 

interactive geospatial data production and consumption fostered by Web 2.0 

technologies (Goodchild, 2007a). In such platforms, how geospatial 

information is created, maintained, and used have been revolutionized. 

Traditional geospatial data production is restricted to experts who produce 

professional GIScience outputs to be consumed by non-experts. This is a top-

down approach based on an expert-centric paradigm, which enforces a clear-cut 

boundary between information providers and consumers. However, due to Web 

2.0 technologies, the top-down approach has given way to a bottom-up approach 

in which non-experts not just consume but also can contribute geospatial 

information. Such a bottom-up approach blurs the boundary between data 

providers and consumers as those traditionally seen as data consumers can now 

play the role of producers, which allows for the acquiring and consumption of 

ubiquitous, real-time, and near zero-cost spatially referenced information. One 

famous such example is OpenStreetMap (https://www.openstreetmap.org/). 

Users of OpenStreetMap can contribute their data to the online community 

https://www.openstreetmap.org/
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anytime and anywhere, and are allowed to freely use, distribute, transmit, and 

adapt the data generated by other users.  

Therefore, VGI phenomenon creates more opportunities for the general public 

to involve in GIScience. Hitherto, the value of VGI has been explored in many 

application domains, including, but not limited to, those for disaster, emergency, 

and crisis management (Pultar et al., 2009; De Longueville et al., 2010); 

surveillance or monitoring programs (Fowler et al., 2013; Langley et al., 2013); 

urban or environmental management and planning (Seeger, 2008; Song and Sun, 

2010); new generation of gazetteer (Keßler et al., 2009a; Keßler et al., 2009b); 

and land use/cover mapping (Foody and Boyd, 2012; Vaz and Jokar Arsanjani, 

2015). These explorations represent the belief in GIScience community that 

non-experts can be engaged in and benefit from geospatial data collection and 

analysis.  

1.2 VGI-based integrated pest management 

Exploring the value of VGI must be grounded in a specific application 

domain because without a domain, it is impossible to derive meaningful 

geographic knowledge from geographic data. In this thesis, VGI-based 

integrated pest management (IPM) was explored. IPM seeks 

multidisciplinary approaches for agricultural pest management in order to 

reduce pesticide use, which has become one of the most important ways for 
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ensuring high agricultural productivity (Morse and Buhler, 1997; Peshin et 

al., 2009a; Peshin and Dhawan, 2009a). 

IPM comes in two branches, the tactical and strategic IPM (Barfield and 

Swisher, 1994; Morse and Buhler, 1997; Zalucki et al., 2009). It has been 

suggested that IPM should be enhanced in both branches (Beddow et al., 

2010). Tactical IPM is a short-term and timely prevention of pest infestations 

for relatively small regions, e.g., predicting local pest outbreaks to alert the 

corresponding stakeholders to prepare for reducing pest damages. It is 

therefore conducted to react to problems at present or in the near-term. In 

contrast, strategic IPM focuses on long-term and large-area agricultural 

planning. It is implemented to react to potential problems that will be 

encountered in the future, and concerns less about current problems. 

Strategic IPM are therefore conducted to answer abstract or hypothetical 

questions, which may impact fundamental aspects about the future, leading 

to substantial consequences for pest management problems in the years 

ahead. For example, the siting of cropland, the optimal selection of crop 

variety in an area to avoid potential infestations caused by pest invasions 

associated with climatic change.  

Each type of IPM is conducted possibly based on different types of information 

and faces its particular challenges in gathering the required information. On the 
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one hand, tactical IPM is conducted using the information on what is actually 

occurring or is expected to occur soon. The challenge is, collecting such real-

time information based on traditional data collection means is resource 

demanding. On the other hand, achieving strategic IPM requires pest 

information to be collected over large spatiotemporal extents. Studies are 

needed to use these pieces of information to counter the potential environmental 

and economic damages of pests. However, collecting such information across 

large areas and in long-term scales is even more challenging, especially given 

the fact that there exists a large number of pest species. Without efficient and 

sufficient data collections, it is also hardly possible to achieve effective IPM 

information disseminations to exert influences (Peshin and Dhawan, 2009a). 

Especially, traditional top-down IPM dissemination (e.g., radio programmes) is 

often aimed for a large heterogeneous audience without adjusting its 

information to individual needs. The information are packed and thrown to the 

audience without any personalization and further interaction (Peshin and 

Dhawan, 2009a). As a result, the over and indiscriminate use of pesticides 

(pesticide use reduction is the central management objectives of IPM (Lewis et 

al., 1997; Morse and Buhler, 1997)) are still common in most countries despite 

the deployment of various IPM approaches. This problem is particularly serious 

in underserved farming communities in developing countries where access to 
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effective information for solving or avoiding pest infestation is problematic 

(Van den Berg and Jiggins, 2007; Deng et al., 2012; Deng and Chang, 2012).  

The emergence of Web 2.0 technologies seems promising in overcoming the 

challenges mentioned above due to its inherent advantages in information 

collection and dissemination. Web 2.0 has the potential to foster interactive 

communities in which not only experts but also non-experts can create spatially 

referenced information (i.e., VGI). The information created by them can even 

be ubiquitous, real-time, and near zero-cost. In turn, the general public can 

benefit from the information collectively contributed by themselves, which are 

closely bound up with their own interests. Indeed, a VGI-based IPM approach 

has already been proposed with its conceptual framework (Figure 1.1) (Deng 

and Chang, 2012). This framework is composed of a VGI retrieval component 

that facilitates VGI collection (e.g., volunteered crop pest surveillance 

information), a VGI analysis component that performs sense making 

(knowledge discovery), and a dissemination component that disseminates pest 

management information. It resembles the two interactive and dynamic 

conceptual workflows pertaining to VGI-based crisis management proposed by 

Ostermann and Spinsanti (2011) and Craglia et al. (2012), but has its own 

specificities on crop pest risk management. Nevertheless, current VGI-based 

IPM has been limited to this primitive conceptual framework (Deng and Chang, 

2012) and its software implementation for data collection and dissemination 
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(Suen et al., 2014). Several issues related to VGI-based IPM remain 

unaddressed: (1) How can the primitive VGI-based IPM framework be 

enhanced conceptually and practically for it operation? (2) Can VGI sense 

making indeed generate meaningful outcomes for enhancing tactical and 

strategic IPM? (3) How can the quality of VGI be better assured despite the 

suggestion of ensuring the user friendliness of VGI collection tools for reducing 

mistakes in VGI (Deng and Chang, 2012)? (4) Lastly, what are the roles of 

volunteer participants in VGI-based IPM, and by extension, how can the 

volunteer participation be motivated and sustained?  

 

Figure 1.1 VGI-based IPM framework. 

1.3 Research objectives 

To address the research questions raised above, this research aimed to 

achieve the following four objectives pertinent to VGI-based IPM: 

(i) Propose and develop an enhanced conceptual framework of VGI-based 

IPM; 

(ii) Explore VGI sense making to enhance IPM; 

(iii) Develop an approach to assure the quality of VGI; 
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(iv) Explore the roles of volunteer participants in VGI-based IPM, and by 

extension the appropriate approaches to motivate and sustain the volunteer 

participation. 

The first objective is concerned with the conceptual framework of IPM. As 

mentioned in Section 1.2, the conceptual framework proposed by Deng and 

Chang (2012) is primitive. An enhanced conceptual framework of VGI-based 

IPM is needed with more contributing components added, which could serve as 

a framework of reference for guiding the research on VGI-based IPM, and thus 

the development of more comprehensive VGI-based IPM. 

The second objective is concerned with whether VGI sense making can 

indeed generate meaningful outcomes for solving both tactical and strategic 

IPM problems. As VGI defies conventional data collection, storage, and 

analysis processes, the data can be contributed anytime and anywhere, which 

are somewhat unstructured (Miller and Goodchild, 2015). As a result, raw 

VGI tends to be heterogeneous and diverse, which may hinder the discovery 

of valuable knowledge for IPM. It is therefore necessary to investigate whether 

VGI can indeed be made sense of to enhance IPM; in other words, to investigate 

whether it is feasible to utilize VGI as a source of data for IPM knowledge 

discovery. 
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The third objective is concerned with the quality of VGI. The extent to which 

a user can trust VGI has always been called into question because VGI is 

inherently heterogeneous and diverse, and because its creation tends not to 

adhere to standards required in the creation of conventional authoritative 

data (e.g., government generated data) and it lacks data quality descriptions 

(e.g., standard metadata) for determining its fitness for a particular purpose 

(Yanenko and Schlieder, 2012). Thus, it is imperative to develop an approach 

to assure the quality of VGI for IPM. 

The fourth objective is concerned with the practical and potential roles of 

volunteer participants in VGI-based IPM, and by extension the ways they are 

incentivized. It is important to learn what a volunteer participant can do in VGI-

based IPM, as maximizing the value of volunteer participants by understanding 

their roles in a concerned management issue contributes to the realization of the 

corresponding management goals (Seeger, 2008; Song and Sun, 2010; Li and 

Goodchild, 2012). Volunteer participation must also be motivated and sustained, 

in order to ensure the sustainability of effective management (Li and Goodchild, 

2012). 

1.4 Research significance 

By achieving the research objectives indicated above, the significance of this 

research is as follows. It moves beyond a primitive conceptual framework by 
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offering an operational VGI-based IPM that enables sustainable VGI 

collection, effective VGI quality assurance, and insightful knowledge 

discovery. Practically, this research benefits relevant experts by alleviating 

them from laborious and expensive geospatial information collection and 

thus enabling them to focus on data analysis. It also has significances to 

pesticide reduction, pest managerial investments, agricultural productivity 

enhancement, and to the design, development, testing, and deployment of 

VGI-based IPM tools and systems. 

1.5 Research scope 

This thesis focuses on the VGI related to quantitative spatiotemporal pest 

surveillance, based on which the research objectives mentioned in Section 

1.3 are set. VGI related to the cognitive ability of volunteer participants (e.g., 

farmers’ knowledge about pests’ ecology, farmers’ ability in defining pest 

management problems, farmers’ ability in analyzing and interpreting spatial 

data) in pest management is beyond the scope of this thesis. The provision 

of information pertinent to pest surveillance is the most basic ability of 

volunteer participants, it therefore should be fully explored prior to 

extending the research to the cognitive ability of volunteer participants in 

IPM. 
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1.6 Thesis structure 

The structure of the following parts of this thesis and the main contents are 

briefly described as follows. 

Chapter 2 will provide literature reviews pertinent to the proposed research 

objectives. Contributions by the previous studies will be introduced. The related 

research progresses, gaps, and challenges will also be discussed. 

Chapter 3 will propose an enhanced framework of VGI-based IPM. 

Chapter 4 will cover the topic pertinent to VGI sense making for enhancing 

tactical IPM, participation incentive issues, and the roles of volunteer 

participants in tactical VGI-based IPM. 

Chapter 5 will cover the topic pertinent to VGI sense making for enhancing 

strategic IPM, and the roles of volunteer participants in strategic VGI-based 

IPM. 

Chapter 6 will discuss the development of a VGI quality assurance approach 

and the roles of volunteer participants in the quality assurance. 

Lastly, Chapter 7, the major findings and the implications of this study will be 

summarized. The limitations and suggested future work will also appear in this 

chapter.
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2 Literature review 

This chapter provides a detailed literature review. In Section 2.1, the value of 

VGI will be identified and a typology of the diverse forms of VGI creation will 

be described, followed by a review in Section 2.2 about the shortcomings of 

IPM and the potential improvements through VGI. Section 2.3 will identify the 

research gaps pertaining to the development VGI-based IPM. 

2.1 Volunteered geographic information 

2.1.1 The value of VGI 

VGI has attracted considerable attention from researchers as it can be an 

important source of understanding of the surface of the Earth (Goodchild, 

2007a). In VGI settings, the general public are encouraged to share their 

spatially-referenced information, through ways that are easy for non-experts to 

master, including mainly (1) uploading, marking, and annotating geographic 

features using geospatial Web (or GeoWeb, e.g., Wikimapia: 

http://wikimapia.org); (2) contributing information collected through personal 

location-aware devices to VGI databases (e.g., OpenStreetMap: 

http://www.openstreetmap.org/); and (3) adding information to online shared 

media, such as location-based photographs, and texts (e.g., Flickr: 

http://www.flickr.com/). Through them, the creators of VGI establish virtual 
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networks to work on a common task (or subtask) in either a synchronous or an 

asynchronous manner. They share their understanding of a common situation, 

shape contexts, and convey cognition through contextual knowledge of a place. 

VGI phenomenon thereby defies the traditional asymmetric power structure of 

geospatial information production and consumption, i.e., a minority of 

authorized data producers versus a majority of passive data consumers 

(illustrated in Figure 2.1a). On VGI platforms, geospatial data consumers are 

enabled to produce data and vice versa. The traditional division between data 

consumers and producers blurs. Dialogue between official and non-official 

voices on an equal footing is advocated (Figure 2.1b). A neologism “produser” 

has therefore emerged to describe this balancing effect that enables people to 

play the dual roles of geospatial data producers and consumers (Coleman et al., 

2009). Some have argued that the “produsers” may have knowledge that is 

unknown to experts; local people in a sense may themselves count as experts in 

their own local or indigenous knowledge (Cinderby and Forrester, 2005). As 

such, the creation of previously unrecorded spatial data for the discovery of 

previously unknown knowledge, may be on the list of the most exciting value 

of VGI (Cinnamon and Schuurman, 2013). 
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Figure 2.1 Change in the power structure of geospatial information production 

and consumption, from (a) the asymmetric power structure to (b) the 

symmetric power structure. 

From the technical perspective, the rapid development of VGI is attributed to 

Web 2.0 technologies which favor participation and collaboration in the creation 

of common goods over the Internet. The Internet in the Web 2.0 era functions 

as a cyberspace of radical inclusion, bringing together indirectly-related 

physical communities into directly-connected virtual communities. It creates 

platforms for free and ubiquitous collaborations of intelligence and thus 

promotes a digital democracy, where techno-libertarian and egalitarian are the 

norms (Haklay et al., 2008; Han, 2012). Among the key principles of Web 2.0, 

harnessing collective intelligence is at the core for sustaining VGI platform 

building (O'reilly, 2007). This principle embraces cyber-collectivism for the 

formation of Web 2.0 cyberspaces where great opportunities for achieving 

explosions of productivity and innovation are offered. In Web 2.0, information 

technologies are increasingly socially embedded; new forms of social 

interaction within information networks are formed, and netizens are no longer 

exogenous (Castells, 2000). Therefore, Web 2.0 has driven the general public 
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to contribute information on an unprecedented scale and made real-time 

information interactions possible, leading to diverse initiatives using 

information by citizens (Elwood et al., 2012). By contributing their collective 

intelligences, the general public is in their true sense involved in GIS democracy. 

Therefore, thanks to Web 2.0 technologies, the creation of sheer amounts of 

ubiquitous, cost-effective, and real-time geospatial information by the general 

public is also one of the most important value of VGI (Goodchild, 2007a).  

2.1.2 The forms of VGI creation 

This section provides a typology of VGI creations forms identified from the 

literature, which can be taken into consideration for scientific inquiries. 

(1) Active VGI creation (Goodchild, 2007b): for active VGI creation, 

participants contribute personal knowledge or local/indigenous observations for 

specified purposes on their own initiative. The contribution is non-compensated 

and non-coerced. Most VGI projects fall in this category, e.g., Wikimapia, 

OpenStreetMap, and Flickr (https://www.flickr.com/). Underlying this type of 

VGI is the notion of participant emancipation and activism (Jones and Weber, 

2012). There are two major concerns when using active VGI for scientific 

inquiries. The first concern is about the uncertain expertise of VGI creators 

(Keßler et al., 2009a). The second concern is about digital vandalism, the act 

https://www.flickr.com/


 

15 
 

that some “damagers” degrade the fruits of VGI platforms through ways such 

as making nonsense, spam, or false information (Coleman et al., 2009). 

(2) Passive VGI creation (Craglia et al., 2012): for passive VGI creation, data 

are contributed implicitly in the sense that making contributions is not a 

contributor’s primary intention. Passive VGI creation has also been referred to 

as ambient geographic information (AGI). It is argued that active VGI creation 

is crowdsourcing (i.e., outsourcing specific tasks to the general public), while 

AGI is crowd harvesting (i.e., harvesting information created by the general 

public in a meaningful manner) (Stefanidis et al., 2012). Social media 

applications, e.g., Facebook (https://www.facebook.com/) and Twitter 

(https://twitter.com/), are two such examples. Facebook and Twitter users 

communicate with one another or present themselves by posting articles, photos, 

and blogs. But in most cases, they are not conscious of their shared information 

being used for other purposes. Another example is the retrieval of geographic 

footprints from location-aware smartphones, such as the case in gamification of 

VGI (Matyas et al., 2011). Passive VGI creation is less problematic with digital 

vandalism since this type of VGI creators are not directly involved in data 

collection. It does not mean, however, that data quality issue can be neglected. 

In fact, sometimes, Twitter and Facebook users publish misleading or biased 

information for better self-presentation (Bakshy et al., 2011).  

https://www.facebook.com/
https://twitter.com/
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(3) Facilitated VGI creation (Seeger, 2008; Cinnamon and Schuurman, 2013): 

Cinnamon and Schuurman (2013) mentioned that many of the best-known VGI 

projects (e.g., OpenStreetMap) operate on a distributed model in which direct 

interactions between VGI creators and VGI users are not necessary. Facilitated 

VGI, however, is created through an assisted data contribution model in which 

a targeted group of participants (with necessary abilities) is requested to 

contribute geospatial data according to predefined questions or criteria in order 

to achieve a pre-established objective within an established geographic extent 

(Seeger, 2008; Cinnamon and Schuurman, 2013). Interactions between the 

facilitators and data creators can be through face-to-face communications, 

digital communications, or the combination of both, due to which data tend to 

be consciously contributed. For example, Cinnamon and Schuurman (2013) 

asked the emergency medical service paramedics from Cape Town to identify 

injury hotspots in their service areas through both face-to-face and digital 

communications. Girres and Touya (2010) stated that a balance must be sought 

between data contribution freedom and the need for contributors to comply with 

specifications, so as to improve data quality. Indeed, in the assisted data 

contribution model with knowledgeable participants, participants can be 

directly facilitated, encouraged, or even trained to provide accurate information 

for achieving objectives. Note that the core value of commonly referred 

conceptions of VGI (i.e., voluntariness) is retained in facilitated VGI creation. 
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However, compared to active and passive VGI creations, facilitated VGI 

creation approach may be limited in fostering the empowerment of marginalized 

communities due to its inherent constrains on data contribution freedom. Lastly, 

projects that are based on facilitated VGI creation may not produce information 

that are accessible to the general public (Cinnamon and Schuurman, 2013). 

The following chapters of this thesis will explore active and facilitated VGI 

creations for enhancing IPM. Passive VGI is not considered in this thesis 

because crop pest observation so far is still a topic in the minority on passive 

VGI platforms (e.g., Twitter, based on searches using the keywords related to 

crop pests on these platforms via their application programming interface).    

2.2 Integrated Pest Management  

In the following sub-sections, a review about the shortcomings of traditional 

IPM will be reviewed first. The possibility of taking advantage of VGI to 

enhance IPM and the related challenges will be given next. 

2.2.1 From traditional IPM to VGI-based IPM  

Since the 1960s, due to the rising pest resistances to pesticides, IPM has been 

applied to improve the control of pests in the field. Traditional IPM strategies 

since the 1960s rely on linear, top-down, and research-driven strategies 

(Table 2.1). However, the ineffectiveness of such strategies, specifically the 



 

18 
 

inappropriateness of the recommended pest control strategies and the lack of 

sense of farmer participation and thus the ownership of the programs (van 

den Berg et al., 2002; Litsinger et al., 2009), quickly surfaced as major 

obstacles toward effective implementations of IPM. Researchers could 

achieve only limited success in alleviating pest problems without being more 

inclusive of non-official voices. Despite working closely with professionally 

trained IPM extension workers, the IPM would make limited progress 

without involving farmers participating directly in official decision-making 

processes (Norton et al., 2005). 

To address the aforementioned problems, participatory IPM, a non-expert-

led, non-closed-systems, and non-research-driven strategy, was proposed 

(Table 2.1). It advocates farmer involvement as a means to enhance 

traditional IPM, by leveraging on farmers’ own experiences in their own crop 

pest managements (Pretty, 1995). In addition, it takes advantage of the 

complementarity of farmer and scientific knowledge to improve the 

effectiveness in managing pests. Perhaps one of the most widely adopted 

participatory IPM approaches is farmer-field-school, through which IPM has 

moved from training towards education, exploration, and empowerment 

(Peshin and Dhawan, 2009b; Peshin and Dhawan, 2009a). Despite of these 

benefits, participatory IPM is costly, measured in terms of per farmer reached, 

which severely limited its outreach capacity to a relatively small proportion 
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of farming communities (Luther et al., 2005). The questions remain as to 

how to enable participatory actions of millions of farmers to reveal IPM 

knowledge; and how personalized pest management information can be 

diffused to them cost-effectively. 

Recently, scholars have started promoting information and communication 

technology (ICT) as a way to enhance participatory IPM (Peshin et al., 

2009a). Incorporating geo-aware and community-based technology into 

IPM, thus a VGI-based IPM, has been proposed as one such solution (Deng 

and Chang, 2012). A VGI-based IPM approach is envisioned to enable 

interactions amongst all pest management stakeholders (e.g., farmers, 

scientists, extension workers, and policy makers) beyond geographic 

boundaries, taking care of their daily observations, perceptions, resource 

constraints, and objectives in pest management. Such a bottom-up approach 

has the potential to drive IPM towards a new paradigm of greater 

participation, communication, collaboration, and transparency that 

necessitate a timely, ubiquitous, and constant flow of diverse pest 

management information.  

The next sections will further review the advantages of VGI pertaining to the 

enhancement of IPM in detail, the challenges to achieving VGI-based IPM 

will then be idenfited. 
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Table 2.1 Development of IPM and its supporting techniques. Note that different IPM strategies (participatory and non-participatory strategies) 

coexist from 1970s onwards. 

Period IPM strategy Main supporting technique Characteristics Reference 

1960s 

onwards 

Linear, top-down, and research-

driven. 

 

Training and visit extension, 

integration of biological control 

and chemical control, habitat 

management, genetic 

engineering (pest-resistant crop 

varieties), semio-chemicals, 

selective pesticides and 

botanicals, cultural control, 

ecological niche. 

Expert-led operations, closed-

systems, lack of farmer 

participations. 

(Peshin and Dhawan, 

2009a), (Peshin and 

Dhawan, 2009b) 

1970s 

onwards 

Participatory. Farmer field school, farmer-first, 

rapid rural appraisal, 

participatory rural appraisal, 

focus groups, structured 

workshops, farmer congress. 

Criticism on top-down IPM 

techniques, an emerging role 

as an active participatory 

approach for community 

engagement. 

(Dlott et al., 1994), 

(Norton et al., 2005), 

(Peshin and Dhawan, 

2009a), (Peshin and 

Dhawan, 2009b)  

2000s 

onwards 

Location- and community-

based, participatory, and 

ubiquitous collaboration. 

VGI, participatory GIS, user-

generated content, GPS, Web 

2.0 services, keyhole markup 

language (KML), application 

programming interface (API), 

webGIS. 

Interactive geospatial ICT for 

multilateral social interactions 

and collaborations among all 

stakeholders, such as farmers, 

scientists, extension workers, 

and policy makers. 

(Goodchild, 2007a), 

(McCall, 2008), (Deng 

and Chang, 2012) 
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2.2.2 The potential value of VGI in enhancing tactical and strategic 

IPM 

Barfield and Swisher (1994), amongst others, have defined what they call two 

“schools of thought” under the umbrella of IPM, i.e., tactical IPM and strategic IPM 

(see Section 1.2 for their definitions). Essentially, Tactical IPM (the dominant form 

of current IPM) is seen as a more responsible approach to the use of pesticide (e.g., 

forecasting pest outbreaks to determine the best timings for pesticide uses) based on 

a “sample, spray, and pray” cycle; while strategic IPM emphasizes the needs for a 

thorough understanding of the pest physiology and ecology across the globe 

(Zalucki et al., 2009; Zalucki et al., 2015). Morse and Buhler (1997) proposed a 

tactical-strategic IPM axis model, of which the strategic end of the axis is 

continuously extending as the understanding of agro-ecosystem evolves while the 

tactical end of the axis is more stable as it is less ambitious.  

Section 2.1.1 has described the value of VGI in general, the following sections will 

describe the value of VGI in improving IPM (both tactical and strategic) in 

particular.  

2.2.2.1 Value in IPM information collection for sense making 

In terms of tactical IPM, the sample phase of tactical IPM sends experts to fields 

(McMaugh, 2005) or deploy pest monitoring traps (Augustin et al., 2012) to collect 

pest surveillance data. These data collection methods have the well-known issues 
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pertaining to high human resources cost, experts’ lack of indigenous knowledge, 

inaccessibility to remote rural areas, coarse temporal resolution to reflect changes 

on the ground, and inaccurate “geo-registration” of the data (e.g., pest traps can 

attract pests from outside the targeted area). However, the change towards real-time 

and ubiquitous pest surveillance data collection through the general public (i.e., 

VGI) has the potential to remediate these issues (Goodchild, 2007a). 

In terms of strategic IPM, managing pests strategically is conducive to avoid 

potential pest risks in the years ahead. Studies are needed to counter the 

environmental and economic impacts of such risks. Large-area plus long-term pest 

surveillance is therefore needed to understand the ecology of pests pertaining to 

various external factors (e.g., environmental factors, habitat factors, and 

phenological factors) and the related risks. Such a task demands even higher human 

resources and expenses. The problem is further exacerbated given the fact that 

certain pest species are rare, elusive, or difficult to detect (Thompson, 2013) . 

Therefore, the strategic IPM has often been seen as only an inspirational goal, and 

the strategic IPM researchers and practitioners are in a minority compared to those 

of tactical IPM (Barfield and Swisher, 1994; Zalucki et al., 2015). However, VGI 

gives hope to accelerate the development of strategic IPM, simply because VGI are 

ubiquitous and cost-effective (Goodchild, 2007a). 
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Due to these inherent advantages of VGI in information collection for both tactical 

and strategic IPM, it has the potential to reveal more meaningful knowledge that are 

unknown through traditional IPM approaches. The next section will further describe 

the value of VGI in IPM information dissemination. 

2.2.2.2 Value in IPM information dissemination  

In contrast to traditional participatory IPM which can only accommodate limited 

numbers of participants (e.g., Farmer field school and structured workshops, see 

Table 2.1), all pest management stakeholders can freely interact with each other to 

exchange ubiquitous information in VGI-based IPM platforms. VGI-based IPM 

therefore allows for the sense making of the ubiquitous data of individual 

participants and the dissemination of personalized IPM information of close 

interests of the participants; it also allows for feedback from information receivers 

in a cost-effective manner. This is a great advantage of VGI-based IPM 

dissemination compared to traditional ones (e.g., radio programmes) which are often 

aimed for a large heterogeneous audience without adjusting its information to 

individual needs and allowing for any further interaction (Peshin and Dhawan, 

2009a). In addition, data collection in VGI platforms can be real-time across large 

areas. This can enable instantaneous and ubiquitous information disseminations for 

time-critical scenarios (e.g., pest outbreaks). Pest management stakeholders enabled 
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with Internet or cell phone connections can receive and view the information almost 

anytime and anywhere. 

Enhancing both types of IPM with VGI, however, comes with challenges. The 

following sections will identify several research gaps pertinent to achieving such a 

goal. This thesis specifically aims to fill these research gaps. 

2.3 Research gaps in VGI-based IPM 

2.3.1 Potential enhancement of VGI-based IPM framework 

As mentioned in the Section 1.2, the current VGI-based IPM has been limited to the 

primitive conceptual framework consisting of three general components, i.e., 

information collection, sense making, and dissemination (Deng and Chang (2012). 

Computational implementation for VGI-based IPM can be readily built using existing 

off-the-shelf computing technologies such as the implementation presented by Suen et 

al. (2014). It is, however, necessary to enhance the framework by incorporating 

components regarding the methods of information collection, quality assurance, and 

sense making into it. In addition, a good conceptual framework of VGI-based IPM must 

emphasize the unique advantages or features of VGI in enhancing IPM. For example, 

it appears that public participation GIS (PPGIS), which is closely related to VGI 

(Cinnamon and Schuurman, 2013), is equally effective in enhancing IPM because it 

also engages public involvement and interactive data collection and dissemination. But 
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distinctions between VGI and PPGIS do exist and should be identified (e.g., whether 

the focus is on information or outcomes) (Tulloch, 2008; Cinnamon and Schuurman, 

2013; Brown et al., 2014). Therefore, stressing the uniqueness of VGI in enhancing 

IPM in the framework is necessary. 

An enhanced conceptual framework of VGI-based IPM can serves as a better 

framework of reference for guiding the research on VGI-based IPM, and thus the 

development of more comprehensive VGI-based IPM. This become the first issue this 

thesis aimed to address.  

2.3.2 Differences between VGI and conventional data as obstacles to 

VGI sense making 

In contrast to conventional data, VGI are generated, accessed, and adapted by the 

general public. The general public can be either authoritative or non-authoritative. 

They can be either skilled professionals or enthusiastic but unskilled amateurs. The 

various levels of expertise of VGI contributors lead to the diversity or heterogeneity 

of VGI (Foody et al., 2013). This is further complicated by the fact that VGI can be 

explicitly generated (with a specific purpose in mind) or implicitly generated 

(without a specific purpose in mind) and comes with non-uniform formats and 

semantic descriptions (Coleman et al., 2009; Craglia et al., 2012). Coote and 

Rackham (2008) introduced eight characteristics of conventional datasets, based on 

which a detailed comparison between conventional datasets and VGI datasets can 
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be provided (Table 2.2). As can be seen from Table 2.2, the differences between VGI 

datasets and the conventional datasets are manifold. Such differences may hinder 

the mining of data for discovering pest management knowledge, and thus poses a 

question as to whether VGI sense making can indeed generate meaningful outcomes 

for enhancing IPM. In other words, is it feasible to utilize VGI as a source of data 

for IPM knowledge discovery? 
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Table 2.2 A comparison between conventional datasets (adapted from Coote and 

Rackham (2008)) and VGI datasets. 

Characteristic Conventional datasets VGI datasets 

Purpose Created for a specific and defined set of 

requirements whether for legal, 

administrative, or commercial purposes. 

Created by VGI contributors for various 

personal purposes with different 

motivations (Coleman et al., 2009; Craglia 

et al., 2012). 

 

Cost Depending on the context, data may or may 

not be freely available, but usually there is 

at least some dissemination charge and, 

most likely, restrictions on access and use. 

Depending on different VGI platforms, 

VGI may be freely accessible (e.g., 

OpenStreetMap) or partially accessible 

(e.g., Twitter). However, VGI platforms 

encourage data sharing, cross-referencing 

and communication in cyberspaces, free 

information disseminations to some extent 

can motivate and sustain user participations 

(Goodchild, 2007b; Goodchild, 2008). 

 

Management Managed by organizations established for 

the purpose whether as public or 

commercial bodies. There may be 

collaboration between organizations but on 

the basis of legal agreements including 

commercial contracts. 

 

Managed either by people who established 

VGI communities (as gate-keepers) or by 

community members themselves 

(collective management) (Goodchild and 

Li, 2012). 

Source Collected by professional and certified 

people who are paid to do so. 

VGI not only is the product of authoritative 

agencies but also the product of the broader 

and amateur communities, often through 

contributions to collaborative activities, 

without monetary remuneration (Coleman 

et al., 2009; Foody et al., 2013). 

 

Collection Based on well-established methods, 

standards, specifications, and practices for 

focused data collection, can ensure the data 

completeness for targeted study site, 

through continuous observations over time 

or observations at a fixed temporal interval. 

Based on random, pervasive, offhand, and 

real-time observations from contributors 

equipped with their particular personal or 

local knowledge (Tulloch, 2008; 

Goodchild, 2009). May encounter 

appearing and disappearing coverage in 

observation, but could be ubiquitous in 

spatiotemporal coverage and rich in data 

volume (Kuhn, 2007; Mashhadi and Capra, 

2011). 

 

Quality Quality assured to varying degrees during 

the production of the data and supplied 

with some information, however basic, on 

the quality of the data. 

Lack of quality control in the data 

collection processes, more prone to be 

erroneous, even artificial (Girres and 

Touya, 2010). Often lack of explicit 

metadata regarding the data quality 

(Brando and Bucher, 2010). 

 

Licensing Protected by some forms of copyright and 

governed by formal agreements or licenses. 

VGI has higher shareability. (Ballatore and 

Bertolotto, 2011), but user privacy and 

security and the related legal issues are 

attracting attention (Song and Sun, 2010; 

Blatt, 2013; Scassa, 2013). 

 

Access Access limited, in many cases, to only 

certain organizations or individuals for 

reasons of security, data protection, or 

commercial advantage. 

Higher accessibility, in some cases (e.g., 

OpenStreetMap), users are free to copy, 

distribute, transmit, and adapt VGI data, as 

long as they credit the VGI community and 

its contributors (Goodchild, 2007b). 
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For tactical IPM, empirical statistics have been widely adopted for predicting crop 

pest emergencies. For example, Lam et al. (2001) adopted multiple regression model 

for predicting the population fluctuations of bean leaf beetle in soybean; Gumpertz 

et al. (2000) used logistic regression to predict southern pine beetle outbreaks. 

Artificial intelligence is another popular approach for predicting crop pest 

emergencies. For example, Yang et al. (2009) predicted the population dynamics of 

paddy stem borer based on artificial neural network; Tripathy et al. (2011) used 

Naïve Bayes to model Thrips pest population dynamics. However, these approaches 

suited to analyzing conventional pest surveillance data become less appropriate for 

analyzing VGI. Because they require regular and systematic data collections over 

very long periods of time (e.g., over years) to establish the correlations between 

population dynamics and environmental variables. Heat-driven phenology models 

such as degree-day model has also been used for pest emergency prediction (Herms, 

2004). For example, Jones et al. (2008) used degree-model to predict codling moth 

emergence. This approach may not need data collections over very long periods of 

time, as its focus is the mechanisms associated with the occurrence time of specific 

phenological events of pests rather than the correlation mentioned above. However, 

it is challenging for individual non-professional pest observers to correctly identify 

and report the occurrence time. Therefore, in order to make sense of VGI to possibly 

generate meaningful outcomes, special treatments, or interdisciplinary methods 

suited to the characteristics of VGI are needed.  
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For strategic IPM, two approaches are becoming popular for understanding potential 

pest distributions: physiological model (Pilkington and Hoddle, 2006; Hartley et al., 

2010) and ecological niche model (ENM) (Beddow et al., 2010; Wang et al., 2010; 

Aragón et al., 2013). Using a physiological model for such a purpose requires large 

amount of experimentation to accurately estimate various physiological parameters 

of pest developments, which are beyond the reach of VGI efforts (at least for so far). 

VGI seems fit the input requirement of ENM which simply needs location-based 

species occurrence records collected anytime and anywhere. As a spatially 

ubiquitous source of data, VGI can be valuable data for ENM, especially given that 

ENM for mega areas (e.g., globe) is often constrained by the scarcity of species 

occurrence records (Urbina-Cardona and Loyola, 2008). An empirical study is 

therefore needed to utilize VGI for large-area ecological niche modelling, 

demonstrating whether meaningful sense making outcomes can be generated. 

This thesis therefore aimed to generate insights into the sense making of such 

unconventional data for both tactical and strategic IPM. 

2.3.3 VGI quality assurance 

The differences between conventional datasets and VGI datasets summarized in Table 

2.2 also contribute to the concerns over VGI quality. How to assure VGI quality is also 

a major challenge in enhancing IPM through VGI. The following section will first 

review how the quality of VGI is assured by the approaches from existing work. It will 
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also illustrate the related shortcomings, which pointed out the direction of my research 

on developing a novel method for assuring the quality of volunteered pest surveillance 

data. 

2.3.3.1 Geospatial data quality and its assessment elements  

In GIS community, data quality has been studied for more than 20 years, but the 

meanings of the data quality remain context-dependent (Devillers et al., 2005; Stark et 

al., 2011). There are at least two kinds of quality of geospatial data (Devillers and 

Jeansoulin, 2010): (1) internal data quality, referring to the assessment of the difference 

between a dataset and the reality it represents; and (2) external data quality, referring to 

the fitness for use, or the extent to which a dataset can be a good fit for its different 

uses. External data quality can be considered complementary to internal data quality 

(Poser and Dransch, 2010).  

Indeed, the classification of geospatial data quality are typically perceived from the 

producer and the user perspectives (Devillers et al., 2005). The producer perspective 

focuses on internal quality while the user perspective focuses on both internal and 

external quality. For VGI, because the boundary between data providers and users is no 

longer clear-cut, the two perspectives of data quality are quickly converging. VGI 

should fit for a wide variety of purposes from different users (i.e., external data quality), 

but the data quality also requires to be assured prior to externalization (i.e., internal data 

quality) by the users themselves as they also play the role of data provider.  



 

31 
 

Unlike tangible products of which the quality can be measured through their physical 

properties (e.g., life span of a laptop screen), geospatial data have no such physical 

characteristics that allow quality to be easily assessed. Instead, its quality is a function 

of five intangible elements (i.e., completeness, logical consistency, positional accuracy, 

temporal accuracy, and thematic accuracy), and three overview elements (i.e., purpose, 

usage, and lineage) (ISO-19113, 2002). These elements form the standards of assessing 

both internal and external data qualities. 

2.3.3.2 Direct and indirect approaches of VGI quality assurance 

Based on the data quality elements mentioned above, several existing studies on VGI 

quality assurance have adopted a direct approach which compares a VGI dataset to an 

authoritative gold standard reference dataset. For example, Zielstra and Zipf (2010) 

examined the completeness of a German OpenStreetMap dataset in comparison to a 

TeleAtlas MultiNet dataset. Haklay (2010) compared a London OpenStreetMap dataset 

with an Ordnance Survey dataset based on positional accuracy and completeness. More 

comprehensively, Girres and Touya (2010) extended the work of Haklay (2010) by 

comparing a French OpenStreeMap dataset with a BD TOPO® IGN dataset based on a 

larger set of spatial data quality elements.  

Such a direct approach can be seen as an adoption of the traditional data quality 

assessment method that focuses on internal data quality (Devillers et al., 2005). It, 

however, has limited applicability for assuring the quality of VGI as there is generally 
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an absence of authoritative gold standard reference datasets for VGI applications 

(Bishr, 2007; Kuhn, 2007). For example, in the case of utilizing VGI for species 

surveillances (pest species in this thesis), voluntary observations are often conducted in 

sparsely populated, rural, or less explored areas of the world. In such a case the gold 

standard reference datasets are often lacking. In addition, VGI dataset is often more up-

to-date than authoritative dataset and thus may be more accurate than the so called gold 

standard reference dataset (Goodchild and Li, 2012). To cope with this issue, indirect 

approaches relying on surrogate criteria were proposed. Five mainstream indirect 

approaches are described as follows: 

(1) The user review approach (Maué and Schade, 2008; Goodchild and Li, 2012): 

This approach is user-driven and relies on Linus’ Law which assumes that “given 

enough eyes all bugs are shallow”. Based on Linus’ Law, user contributions converge 

on a truth through an iterative error correction process, either in terms of attributive 

error or positional error, or both. If one user commits an error, the error can be detected 

or corrected by the other users. Haklay et al. (2010) have applied this approach to 

OpenStreetMap and suggested its applicability to VGI in general. 

(2) Targeted recruitment (Seeger, 2008; Cinnamon and Schuurman, 2013): 

This approach relies on recruiting participants with the abilities that meet pre-defined 

criteria to contribute geospatial information within an established geographic extent, or 
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even relies on participant training to ensure high quality data can be volunteered (See 

Section 2.1.2 for more details). 

(3) The provenance approach (Trame and Keßler, 2011; Celino, 2013): 

This approach relies on the history of volunteered information. Requesting or tracing 

the history of a VGI dataset (e.g., who are the data providers?) is helpful in better 

understanding and assessing its quality.   

(4) The geographic approach (Goodchild and Li, 2012): 

This approach is based on Tobler's first law of geography, which assumes things that 

are closer are more related than things that are farther apart (Tobler, 1970). A VGI 

contribution should fit its geographic context, e.g., a report of a species occurrence is 

more likely to be true if many similar reports exist nearby. In addition, more credit can 

be given to a VGI if it is volunteered by a local resident who is physically close to the 

site of the VGI event and is familiar with the local environment (Seeger, 2008). 

(5) The trust approach (Bishr, 2007; Bishr and Mantelas, 2008; Bishr and Janowicz, 

2010): 

It uses trust as a proxy of quality to establish a link between VGI quality and VGI 

contributors’ authority based on subjective evaluations. It rests on the extent to which 

a VGI contributor has provided honest and accurate information. Trusted VGI 
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contributors tend to provide more trustworthy information compared to less trusted 

ones. The criteria for evaluating the trustworthiness of VGI replace traditional quality 

measures of geospatial information (e.g., completeness, logical consistency, and 

positional accuracy). Indeed, the information asymmetry and imperfection of a VGI 

environment can lead to social uncertainties in VGI consumptions (Sniezek and Van 

Swol, 2001). When high social uncertainties exist, trust appears to be particularly 

important as it reduces social uncertainties by confining the range of behavior expected 

from another (Sniezek and Van Swol, 2001). 

2.3.3.3 Challenges in using the indirect approaches for pest surveillance 

applications 

Among the indirect approaches, the user review approach works well for those VGI 

that are more traceable, such as those in Wikimapia and OpenStreetMap. However, it 

is problematic for pest surveillance applications because the objects being recorded are 

often highly mobile or persist for only a short period of time. It is hardly possible to go 

back to the reported locations to verify every user surveillance report and therefore it is 

not peer-reviewable. Goodchild and Li (2012) also pointed out that this approach works 

less well for obscure phenomena, including those short-lived ones. Conducting the 

review process for time-critical issues (e.g., pest outbreaks) is also impossible because 

the process is generally time-consuming. Additionally, Linus’ Law sometimes fails. In 

a crowdsourcing-based cropland capture game, Salk et al. (2015) demonstrated that the 
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majority agreement among volunteers cannot fully substitute the quality assessment by 

experts on crowdsourced tasks. In addition, the target recruitment approach only applies 

to projects based on facilitated VGI creations. For projects based on active VGI 

creations with unconfined geographic extents and more heterogeneous participants, this 

approach simply does not work (See Section 2.1.2 about active and facilitated VGI 

creation). 

The provenance approach, geographic approach, and trust approach appear to be more 

applicable. However, when used alone, all three approaches fall short in fully describing 

VGI data quality.  

The provenance approach considers VGI provenance, including data contributors’ 

expertise. What is challenging, though, is how to appropriately incorporate provenance 

of user expertise as the expertise level of a VGI contributor is difficult to collect (Keßler 

et al., 2009a). There are also resistances in providing such information due to the 

concerns on personal privacy and security (Song and Sun, 2010). According to 

Coleman et al. (2009), VGI contributors can be classified into five types: (1) neophyte, 

(2) interested amateur, (3) expert amateur, (4) expert professional, and (5) expert 

authority. Normally, people are inclined to trust contributors who are expert 

professional and expert authoritative. However, a contributor considered to be an expert 

may understand a project’s specification very well but lack the knowledge of local 

history or attributes. A contributor considered as either a neophyte or interested amateur 
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may know little about the professional part of a VGI project but is very familiar with 

the characteristics and details of his or her current location. In short, the boundary 

between non-expert amateur and expert professional is quickly blurring in VGI 

environments where the expertise of a contributor cannot be simply judged based on 

contributor type.  

As for the geographic approach, considering only fitness of geographic context tends 

to be less effective if a user report fits surrounding geographic context well but actually 

is a false observation.  

Regarding the trust approach, how trust as a proxy of quality can be effectively realized 

in VGI contexts is problematic. It demands appropriate methods to evaluate and 

quantify the trustworthiness of VGI. In Bishr and Mantelas (2008) an approach 

combining the trust approach and the geographic approach was proposed to assure VGI 

quality. Their work does provide valuable insights into the usage of the proxy. First, 

indeed, the four indirect approaches reviewed here are not mutually exclusive. For 

instance, some of the elements of trust fall under the geographic approach, i.e., the 

trustworthiness of VGI can be assessed based on geographic contexts. Second, their 

approach leverages crowd’s dual roles in VGI creation–contributing locational data and 

ascertaining the reliability of data (i.e., user trust rating). The second role can be helpful 

in evaluating the trustworthiness of VGI. Despite these insights, in the combined 

approach, fuzziness that is inherent in trust (Chang et al., 2005) is not well accounted 
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for. Assessing the quality of VGI based on trust requires special attentions to the fuzzy 

nature of trust. 

Novel approaches thus are called for to synthesize the advantages and minimize the 

disadvantages of the approaches mentioned above to assure the quality of VGI, with a 

better way to account for user expertise, geographic context, and fuzziness involved in 

trust judgment. 

2.3.4 The roles of volunteer participants and participation incentives 

Apart from the research gaps mentioned above, it is also important to learn what a 

volunteer participant can do in VGI-based IPM, as maximizing the value of 

volunteer participants by understanding their roles in management issues 

contributes to the realization of the corresponding management goals. Previous 

studies have investigated the roles of VGI in various application domains such as 

landscape planning and site design process (Seeger, 2008), urban management 

(Song and Sun, 2010), outdoor recreation planning (Parker et al., 2013), and 

emergency management (Li and Goodchild, 2012). However, the specific roles that 

volunteer participants can play in VGI-based IPM are seldom understood, which 

should differ from those in traditional participatory IPM (e.g., workshop 

participants, see Section 2.2.1). This necessitates an exploration of this study to 

understand the practical and potential roles of volunteer participants in VGI-based 

IPM.  
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With the understanding of the roles, motivating and sustaining volunteer participants to 

play such roles is also important. The success of a socially networked community 

depends on the degree to which members will stay and keep participating (Jin et al., 

2009), especially for those based on facilitated VGI (Seeger, 2008; Cinnamon and 

Schuurman, 2013). Coleman et al. (2009) studied the motivations of VGI 

contributors in general. Hall and Graham (2004) examined the user motivations to 

exchange knowledge in Yahoo! e-group online community. Gouveia and Fonseca 

(2008) explored the motivations of VGI creators for environmental monitoring 

issues. The motivations of OpenStreetMap data contributors have been even more 

thoroughly investigated (Budhathoki, 2010; Lin, 2011; Steinmann et al., 2013). The 

identified motivations may range from an individual agenda such as professional or 

personal interest, enjoyment, reputation, anticipated reciprocity, to more altruistic 

ones. Despite these previous studies trying to understand what reasons have initiated 

people to contribute their data, little research so far focused on exploring proper 

incentive strategies to motivate and sustain volunteer participation in VGI platforms. 

VGI contribution cannot simply be stimulated through strategies from traditional 

participatory projects (e.g., material or monetary incentives) given the volunteer 

nature of VGI. Indeed, without proper incentives, a large number of useful VGI 

contributions are usually made by a few enthusiastic individuals (Goodchild and Li, 

2012). Similar observation was reported for OpenStreetMap, merely 5% of all 

registered users productively contributed to the project; and 81% of registered users 
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contributed nothing or never returned after making only a few contributions with 

various fleeting motivations  (Neis and Zipf, 2012). Martella et al. (2015) proposed 

using gamification as a strategy to keep participant engaged. However, the 

applicability of this approach is limited. In the case of crop pest surveillance, for 

example, the crop fields in rural areas may not be ideal sites for gaming. This thesis 

thus aimed to explore incentive strategies to motivate and sustain the volunteer 

participation in VGI-based IPM.  

The current chapter has identified several research gaps related to achieving VGI-based 

IPM. The next chapter will address the first research gap, i.e., proposing an enhanced 

conceptual framework of VGI-based IPM.  
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3 An enhanced conceptual framework of VGI-based IPM 

The social element of GIS has long been implicated by one of its early definitions, 

namely GIS is “a system of hardware, software, data, people, organizations and 

institutional arrangements for collecting, storing, analyzing, and disseminating 

information about areas of the earth” (Dueker and Kjerne, 1989). Such social 

participation aspect of GIS has only become prominent since the advent of public 

participation GIS (PPGIS) in the 1990s (Frančula, 2011) and VGI in the 2000s 

(Goodchild, 2007a). 

Traditional GIS has often been argued as a contradictory technology that empowers the 

elite few while also marginalizes most people and communities (Stewart et al., 2008). 

It has been criticized for its exclusive characteristics due to its high accessing barriers, 

e.g., its high costs of hardware, proprietary software, high complexity, and high level 

of expertise required for implementation (Manuel, 1996; Harris and Weiner, 1998; 

Obermeyer, 1998; Ghose, 2001; Hoyt et al., 2005; Sieber, 2006). GIS experts are able 

to produce professional geospatial products and conduct complex spatial analyses 

whereas non-experts are only able to view the information from final GIS outputs 

produced by experts. Traditional GIS has thereby been seen as the “cartography for the 

few” (Cartwright, 2009), in which far less attention has been given to the use of GIS 

for grassroot groups, unprivileged communities, ordinary citizens, and activists alike to 
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benefit their everyday lives. These criticisms have sparked changes to traditional uses 

of GIS (Elwood, 2009); PPGIS and VGI have therefore featured prominently. 

As mentioned in Section 1.2, the VGI-based IPM framework from Deng and Chang 

(2012) is still primitive. A good conceptual framework of VGI-based IPM should 

emphasize the unique advantages or features of VGI in enhancing IPM. It appears that 

PPGIS, as a  close relative of VGI (Cinnamon and Schuurman, 2013), actually also can 

be adopted to enhance IPM because it also engages public involvement and interactive 

data collection and dissemination. But distinctions between VGI and PPGIS do exist 

and should be identified (Tulloch, 2008; Cinnamon and Schuurman, 2013; Brown et 

al., 2014). In addition, it is necessary to enhance the framework by incorporating 

components regarding the methods of VGI collection, quality assurance, and sense 

making into it. Therefore, this chapter aims to propose such an enhanced framework of 

VGI-based IPM for guiding the related research, and thus the development of more 

comprehensive VGI-based IPM.  

The following sections of this chapter will first discuss the characteristics of traditional 

GIS and the related critics that drive the development of PPGIS and VGI phenomena 

(Section 3.1). The characteristics of PPGIS and VGI will be discussed next, where a 

comparison and contrast between them from theoretical perspectives will follow 
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(Section 3.2 and Section 3.3). An enhanced VGI-based IPM framework will be 

proposed in the last section (Section 3.4). 

3.1 Traditional GIS 

It is often argued that traditional GIS rests on and amplifies an essentially positivist 

philosophical perspective (Warf and Sui, 2010). According to Kwan (2002), traditional 

GIS has been largely understood as a positivist or empiricist science, which is rooted in 

the quantitative revolution of geography and as such inherits the corresponding 

positivism or empiricism.  

Ontologically, positivism recognizes one reality that can be known with certain 

probability; there is a universal law independent from spatiotemporal contexts (Mertens, 

1999). Epistemologically, positivism is associated with subject-object dualism, in 

which the knower is thought to be value-free and separated from the reality (Mantoura 

and Potvin, 2013). Methodologically, positivism drives quantitative approaches. The 

research process is largely deductive in that it focuses on testing theories rather than 

developing theories (Cupchik, 2001; Higginbottom and Lauridsen, 2014). This 

privileges the quantitative and the observable which are context-free rather than issue-

driven. The qualitative and the non-observable are underprivileged. Space in traditional 

GIS is represented as a Cartesian coordinate system defined by Euclidean geometry. It 

follows Newton who views spatiality as absolute conceptualizations, representing space 
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as independent spatial features (e.g. discrete vector features or raster cells), rather than 

Einstein and Leibnitz who view space as relational (Sheppard, 2005).  

Therefore, traditional GIS has often been criticized for its inadequacy in representing 

relational spaces of social power and subjective differences amongst its analyzed 

objects (Kwan, 2002; Schuurman and Pratt, 2002). It lacks the power to enable 

researchers to understand neighborhood-level knowledge about lived experiences of 

local people, or social ties and attachments of local people to their communities 

(Pavlovskaya, 2009). Therefore, researchers and decision-makers alike lack well-

grounded, rich descriptive, communicative, and explanative local contexts for 

approaching realities so as to make the best decisions. 

3.2 PPGIS 

To address the critiques on traditional GIS, a range of qualitative GIS have thrived in 

the postmodern era (Warf and Sui, 2010), among which PPGIS is perhaps the most 

well-known (Pavlovskaya, 2009; Yeager and Steiger, 2013; Schoepfer and Rogers, 

2014). The development of qualitative GIS reveals that GIS can also be employed 

within a non-positivism paradigm. Many kinds of qualitative materials and situated 

perspectives (e.g., photographs, sketch maps, grounded visualizations, videos, personal 

experiences, preferences and perceptions, and narratives) can be incorporated into GIS. 
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PPGIS has risen since 1996 through the coalescing of GIS and participatory action 

research (Frančula, 2011). This occurred more than ten years earlier before the coining 

of VGI by Goodchild (2007a). PPGIS was originally defined as “a variety of 

approaches to make GIS and other spatial decision-making tools available and 

accessible to all those with a stake in official decisions” (Sieber, 2006). It is typically 

targeted at enhancing public participation in planning and policy issues (Brown and 

Kyttä, 2014). A growing number of projects have been implemented under the banner 

of PPGIS (Stewart et al., 2008), which supposedly reduced or dismantled the barriers 

of traditional GIS mentioned above. For example, Barnett et al. (2016) used a PPGIS 

approach that enabled fishermen to tell their perceptions of risk in marine debris 

mitigation in the Bay of Fundy, Canada. More comprehensively, Brown (2012) 

reviewed and discussed 15 empirical PPGIS research which allowed people to 

contribute their opinions, preferences, personal experiences to assist regional and 

environmental planning. 

Differing from traditional GIS, PPGIS is rooted in constructivist philosophy (Sieber, 

2006; Michanowicz et al., 2012). In this paradigm, people are motivated to produce 

their own GIS outputs based on public available GIS tools or settings. This denies the 

positivistic GIS’ reliance on the correspondence theory of truth which corresponds to 

objective realities and assumes that representation is not a social process (Warf and Sui, 

2010). Qualitative GIS in general and PPGIS in particular in this sense are closer to the 
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consensus theory of truth (Warf and Sui, 2010). In this theory, truth is constructed. 

Communications among individuals and communities of interest are central to the 

social process of truth construction.  

In constructivism, ontologically, there is no universal law or absolute truth, but there 

are multiple realities that are socially constructed; it embraces an absolute relativism, 

i.e., no  perspective  is  any  privileged than  any  other  perspective  (Pound et al., 2003; 

Dunn, 2007; Higginbottom and Lauridsen, 2014). Epistemologically, it is subjective 

and value-laden, but equal validity are granted to all personal values; social interaction  

is  thought  to  be essential for knowledge creation (Mertens, 1999; Cupchik, 2001). 

Methodologically, it is dominated by qualitative approaches and the research process is 

largely inductive that focuses on developing theories rather than testing theories 

(Cupchik, 2001; Higginbottom and Lauridsen, 2014).  

Based on constructivism, PPGIS projects are thus strongly influenced by and highly 

contingent on the social context in which the project are positioned and the related 

spatial decisions are made (Ghose and Elwood, 2003). In such a sense, GIS becomes 

more reflective, where people collaboratively construct knowledge and make decisions 

through social interactions.  
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3.3 VGI 

Unlike PPGIS, VGI is more diverse. VGI is not limited to planning and policy issues. 

It also has been observed that VGI interaction is neither limited to qualitative dominated 

approach nor to quantitative dominated approach. For example, OpenStreetMap mainly 

includes traditional quantitative map information; Flickr mainly involves qualitative 

information, i.e., spatial context-associated photographs; GeoCommons 

(http://geocommons.com/) includes both quantitative data such as the U.S. 

Unemployment Rate map (http://geocommons.com/maps/206016), and qualitative data 

such as Binders Full of Women which maps the geotagged Tweets responding to the 

U.S. presidential debate (http://geocommons.com/overlays/284513); and Wikimapia 

includes quantitative-qualitative-combined information, i.e., traditional quantitative 

map features added with people’s qualitative descriptions and comments about the 

mapped features. On the contrary, the information collected through PPGIS projects are 

generally qualitatively dominated (see Section 3.2). 

Therefore, I argue that one considerable relevance to VGI is the transformative 

paradigm (Mertens, 1999; Mertens, 2007; Mertens et al., 2009). Transformative 

paradigm can be seen as an “emerging paradigm”, which draws from and combines 

both the positivist and constructivist perspectives (Pound et al., 2003). Transformative 

paradigm values marginalized individuals, groups, and communities (Sweetman et al., 

http://geocommons.com/
http://geocommons.com/maps/206016
http://geocommons.com/overlays/284513


 

47 
 
 

 

2010). Ontologically speaking, transformative paradigm acknowledges that knowledge 

are influenced by human interests; there are multiple socially constructed realities, but 

it recognizes the influence of differences in personal values in determining what is real 

(Mertens et al., 2009). This is in contrast to the absolute relativism of constructivist 

point of view in which all perspectives have an equal legitimacy (Mertens, 1999). 

Indeed, determining the best or most trusted version of “reality” through data quality 

enhancement processes is among the core issues of any VGI program (Bishr and 

Mantelas, 2008; Goodchild and Li, 2012). From an epistemological angle, 

transformative paradigm seeks a balanced and complete view of a phenomenon to 

achieve accurate knowledge, which requires not only interactions but also in-depth 

interactions with the communities on which the program have impacts (Mertens, 1999). 

Lastly, in methodological terms, transformative paradigm may involve quantitative, 

qualitative, or combined methods (no single type of approach is always dominated). 

Knowers need not to prescribe a specific methodological orientation (Mertens, 1999). 

It might include the use of deduction, induction, abduction, or a combination of the 

aforementioned approaches. 

3.4 An enhanced conceptual framework 

To enhance IPM, utilizing VGI seems more appropriate than utilizing PPGIS, due to 

the diversity of VGI in comparison to PPGIS mentioned above. A more effective 
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participatory IPM needs to be more diverse to empower large amounts of heterogeneous 

participants from everywhere to exchange diverse information (e.g., quantitative pest 

surveillance information for pest risk predictions, qualitative perspectives from farmers 

for facilitating IPM planning and policy makings, or the combination of both). Based 

on such a diversity of VGI compared to PPGIS, an enhanced framework of VGI-based 

IPM is proposed here (Figure 3.1). The framework incorporates single or combined 

methods, suited in a transformative paradigm. It serves as a framework of reference for 

enhancing IPM based on VGI as an alternative to the positivist paradigm adopted in 

traditional IPM (Douthwaite et al., 2003), and for the development of more 

comprehensive VGI-based IPM. 

In the context of VGI, data collection and sense making can be conducted simultaneous 

(in a real-time manner). The VGI retrieval component and VGI sense making 

component are therefore combined in the enhanced framework, represented using a 

bigger circle. Due to the diversity of VGI, a variety of choices of ways for creating and 

analyzing VGI should be supported in a more comprehensive VGI-based IPM. The VGI 

creations can be in active or passive, or facilitated forms (See Section 2.1.2). VGI 

collection and sense making methods for tactical and strategic IPM (see Section 1.2) 

can be purely quantitative or qualitative, or can be the combination of quantitative and 

qualitative methods in sequential or interactive (or arbitrary) order through the process. 

When quantitative methods are used with qualitative methods, qualitative information 
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can provide contexts for the patterns generated by quantitative information, and vice 

versa (Johnson and Onwuegbuzie, 2004). Qualitative and quantitative methods can be 

utilized with equal weights or with different priorities. In addition, data quality 

assurance is highlighted in the VGI collection and sense making component, due to its 

importance in VGI uses. In Chapter 6, an expert system to assure the quality of 

quantitative VGI) will be presented. 

Regarding the information dissemination component, personalized information 

dissemination (i.e., the usefulness of information dissemination to individual 

participants) needs to be stressed. It has been shown that the usefulness of the 

information received from a virtual community positively affects the willingness for 

one to continue participating in the virtual community; and the usefulness is identified 

by the extent to which users think that information is relevant, timely, accurate, and 

complete (Chen, 2007; Jin et al., 2009). Enhancing the usefulness of information and 

information dissemination is therefore important to attracting participants at a broad 

geographic scale and to encouraging their continual contribution of VGI, thus the 

sustainability of VGI projects. Note that users from different regions may have different 

needs. An active participant who is satisfied by existing information disseminated may 

still discontinue his/her participation someday due to his/her varying needs 

(disenchantment discontinuance) or due to an availability of better alternatives 
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(replacement discontinuance) (Peshin et al., 2009b). Hence the usefulness enhancement 

mentioned above should also be adaptive. 

Based on this enhanced framework, the next chapter will introduce a case study 

conducted for this thesis to contribute to the filling of the research gaps pertaining to 

VGI sense making for tactical IPM, participant roles in tactical IPM, and participation 

incentive issue. As mentioned in Section 1.5, this thesis focused on quantitative 

approaches (quantitative pest surveillance data), the qualitative approaches (e.g., the 

cognitive ability of volunteer participants in pest management) are left for future 

research.  
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Figure 3.1 An enhanced framework of VGI-based IPM. In developing this framework, it was probably most influenced by Mertens (1999), 

Johnson and Onwuegbuzie (2004), Deng and Chang (2012), Peshin et al. (2009b), and Jin et al. (2009). Note. In the square boxes, "qual" stands 

for qualitative, "quan" stands for quantitative, "+" stands for simultaneous, "to" stands for sequential, capital letters denote high priority or 

weight, and lower case letters denote lower priority or weight. 
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4 Enhancing tactical IPM through facilitated VGI and the 

participation incentive for a VGI-based IPM 

The traditional linear, top-town, and non-interactive crop pest management approaches 

have resulted in the limited success of the past IPM (Douthwaite et al., 2003) (see 

Section 2.2.1 for the review). Therefore, this chapter explores a bottom-up IPM 

approach based on VGI, aiming to contribute to the filling of the research gap as to 

whether VGI sense making can indeed generate meaningful outcomes to enhance 

tactical IPM. It also aims to explore how to motivate and sustain the volunteer 

participation in VGI-based IPM. Meanwhile, it contributes to the understanding of the 

practical and potential roles of volunteer participants in tactical VGI-based IPM.  

To serve the stated aim, a case study was conducted at Shuibian town, Jiangxi province, 

China. Based on the enhanced framework of VGI-based IPM proposed in Chapter 3, in 

the case study the real-time surveillance information regarding crop pest infestations 

was collected, analyzed, and disseminated. The VGI collected in this case study is 

relatively short term, forecasting-oriented, timely, and regionalized, which fit the 

concept of tactical IPM. The case study adopted a facilitated VGI creation method (see 

Section 2.1.2 about facilitated VGI creation) to manage the overwintering infestations 

of striped rice stem borers (Chilo suppressalis) in the study area. As indicated by the 
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enhanced conceptual framework in Chapter 3, quality assurance is an important 

component of VGI-based IPM. Since VGI-based IPM is in its early developmental 

stage where lacks concrete VGI quality assurance techniques, utilizing facilitated VGI 

appeared to be more appropriate as the process of facilitated VGI collection would be 

more controllable. The VGI interaction in this case study was enabled through mobile 

phones and Web 2.0-based GeoWeb.  

The following sections of this chapter will first present the background, methods, and 

results of this case study (Section 4.1 to Section 4.4). Section 4.5 will discuss the results 

of the sense making, the participation incentive analysis, and the roles of volunteer 

participants in tactical IPM.  

4.1 Study area and background of the case study 

This case study was conducted in Shuibian town at Jiangxi province, China (Figure 4.1). 

In every spring of Shuibian town, there is an intensive overwintering occurrence 

(outbreak) of striped rice stem borers. This pest can cause severe economic losses to 

various crops such as corn, sugarcane, oilseed rape, and especially rice, the major crop 

planted in Shuibian town. Pest management experts from the local agricultural 

department has made great effort to reduce the infestations caused by this pest.  
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The pest management experts investigate the pest occurrences typically by deploying 

pest traps and conducting pest surveys. However, due to limited resources, crucial real-

time data for revealing the spatiotemporal characteristics of the infestations of the pest 

outbreak have barely been collected. On the one hand, the existing local expert-led pest 

surveillances have never discovered any spatial pattern of the pest outbreak across the 

whole town due to the limited areas of the pest surveillances they could conduct. On 

the other hand, the existing local expert-led pest surveillances could identify outbreak 

of adult emergence of the pest using pest traps, but are not able to identify any temporal 

pattern about the actual infestations of the pest across the whole town. The infestations 

are caused by larvae rather than adults of the pests, while the traditionally used pest 

traps can only trap adult pests. A systematic survey regarding infestations caused by 

the larvae across a large area was also time consuming, laborious, and costly. Therefore, 

such spatiotemporal information is lacking from the existing local expert-led pest 

surveillance outcomes. Accordingly, this case study investigated whether patterns of 

the infestations of the pest outbreak could be revealed through volunteer efforts. 

This case study facilitated the local farmers to conduct a collaborative pest surveillance 

from 15 April to 27 May 2015. They were asked to report the stem borer infestation 

incidents during their routine farming work in real-time. Since this collaborative pest 

surveillance involved real-time user participations and information disseminations, user 

participation incentive was also investigated. 
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Figure 4.1 Study area: Shuibian town of Xiajiang prefecture, Jiangxi province, China. 

4.2 Study setup: Participant recruitment and pest data collection 

A local agricultural extension worker was hired to recruit participants several months 

prior to the specified pest surveillance period. In order to facilitate the local farmers to 

participate and ensure that the surveillance was driven by the farmers’ own interests, 

the rationale, goals, and process of the project were explained. Brief negotiations were 

conducted by telling that, with their cooperation in the surveillance, they would receive 

personalized feedback for themselves to manage the pest infestations. Therefore, they 

would be willing to take time and effort to share accurate pest observation information. 

The farmers were neither paid nor given material compensation for their participations. 
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Farmers were randomly approached initially, and only the farmers with rice stem borer 

observation experiences and expressed willingness of participation were recruited. The 

strategy adopted here was referred to as targeted recruitment which is a participant 

recruitment strategy of facilitated VGI creation (Cinnamon and Schuurman, 2013). The 

crop fields of the recruited farmers randomly distributed across the study area. In the 

end, 233 participants were recruited. Table 4.1 shows the participant demographic 

characteristics. Note that most of the participants were aged between 26 and 40 (45.5%). 

This was because many elders showed less interest in the project than the relatively 

younger farmers, and many young people (25 or younger) in the study area have moved 

to big cities to make their livings. Hence the resulting analysis outcome may have 

certain bias towards the ages between 26 and 40. The participants’ crop fields were 

coded. The locations of the crop fields were pre-collected using the Trimble® GeoXT 

handheld GPS device, which delivered 50 cm positioning accuracy. 
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Table 4.1 Participant demographic characteristics. 

  

 

 

 

 

 

 

 

The participants could report pest infestation incidents through two ways: (1) using 

short message service (SMS), for those who had no smartphones and Internet access; 

(2) using a GeoWeb application for the crowdsourcing of pest infestation observations, 

built based on ArcGIS Online (https://www.arcgis.com/home/). Trainings were 

provided to ensure that the participants would generate the reports correctly. A report 

should include the code of the crop field in which a pest infestation incident is observed 

and name of the observer. The participants were only reimbursed for the SMS fees. 

Characteristic Percentage (%) 

Age  
25 or younger 18.5 

26 to 40 45.5 

41 to 55 24 

56 or older 12 

Gender   

Female 38.2 

Male 61.8 

Education   

Primary school or below 16.7 

Junior high school 58.5 

Senior High School 23.2 

Secondary technical school 10.7 

Diploma 0.9 

Bachelor's degree or above 0 

Farming experience  

5 years or less 18 

5 to10 years 20.6 

10 to 20 years 27.5 

20 to 30 years 15.9 

30 to 40 years 9.4 

40 years or more 8.6 

https://www.arcgis.com/home/
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4.3 Analysis 

4.3.1 Spatiotemporal analysis 

A total of 318 infestation incident reports were collected from the farmer participants. 

Among these reports, those with incomplete or invalid information (i.e., the reports 

which lacked crop field codes, or lacked observer names, or lacked both; the reports 

with invalid crop field codes or observer names) were removed. A total of 293 

infestation incident reports remained after the data cleansing, which distributed across 

the study area and were used as the inputs of the VGI sense making. 

To investigate the spatial characteristics of the pest outbreak, spatial distribution of the 

reported pest infestation incidents was examined using Getis-Ord Gi* statistic (Ord and 

Getis, 1995). Getis-Ord Gi* was adopted because of its ability to test the statistical 

significance of the results (Panteras et al., 2015). Following Bruce et al. (2014), a 

symmetric one/zero spatial weight matrix (i.e., the spatial weight between a given 

feature and each of its surrounding features is one if the distance between them is within 

an assigned distance band, and is zero if otherwise) was applied to generating the Gi* 

statistics using fixed distance band weighting. This ensured the same scale of analysis 

across the entire study area. A distance band of 2120 m was specified using incremental 

spatial autocorrelation (Global Moran’s I) tool of ArcGIS 10.1 (ESRI Products, 

Redlands, CA). It reflected the most pronounced spatial autocorrelation of the dataset. 
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A cluster of hot or cold spots detected by the statistic can be further highlighted using 

a one standard deviational ellipse polygon which encloses approximately 68% of the 

spots in the cluster. The ellipse can be used to measure the distribution of a cluster, 

exhibiting its orientation or spatial structure. The cluster geometric center can be 

calculated to exhibit the central location of a cluster.    

In addition, a change point analysis (Taylor, 2014) was conducted to explore the time 

series of the reported pest infestation incidents. This analysis method is capable of 

determining whether there is any significant change in the number of daily reports, and 

the time of change (if any). One thousand bootstrap samples were used in this analysis. 

A change point can indicate a phenological event of the pest (e.g., pest outbreak) 

(Herms, 2004). Once a change point was detected, the degree-days accumulated from 

1 January till the detected change point was calculated. The concept of degree-day is 

rooted in the theory that insect development is directly related to temperature and time 

(Zou et al., 2004). Single sine wave method with a horizontal cut-off was used to 

calculated the degree-days (Allen, 1976). In this study, the upper developmental 

temperature threshold (UDTT) and the lower developmental temperature threshold 

(LDTT) for the stem borer were 30 ℃ and 12.9 ℃ (Jiao et al., 2006). The daily 

temperature data used for the degree-day calculation was obtained from the local 

weather station. 
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Except for the Getis-Ord Gi* statistics computed for the entire dataset of the incidents 

reports collected during the whole pest surveillance period, Getis-Ord Gi* statistics 

were also computed for the incident reports collected until the change points, if detected. 

Moreover, the standard deviational ellipse polygon and geometric center location can 

be generated for a cluster to observe if there is any structural or locational change of 

the cluster over time.  

4.3.2 Information dissemination and participation incentive analysis 

Three types of information were disseminated to the participants via SMS: 

1. Type A: Whether a crop field was identified as a hot (cold) spot or non-hot (cold) 

spot after the pest surveillance.  

2. Type B: The change point analysis was conducted on a daily basis. If any change 

point was detected to indicate significant change in number of the daily reports, 

occurrence date of the detected change point was disseminated.  

3. Type C: Pesticide selection and how to correctly use pesticide (e.g., dosage).  

A questionnaire survey was conducted to understand the effects of the information 

dissemination on the enthusiasm of users’ participation. After the specified pest 

surveillance period when the participants had received the disseminated information, a 

questionnaire was handed out to each of the participants. The questionnaire first sought 

anonymous responses to three interrelated questions (or survey construct items) 
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regarding the perceived usefulness of the overall disseminated information (Table 4.2). 

The questionnaire then sought anonymous responses to two additional questions 

regarding to what extent a participant is willing to continue participating if the pest 

surveillance were to continue (Table 4.2). The questionnaire employed a nine-point 

Likert scale (1 = strongly disagree, 9 = strongly agree).  

Table 4.2 Survey constructs. 

Construct Item Wording Source 

Perceived 

usefulness 

(PU) 

PU1 The overall information 

dissemination is useful 

Adapted 

from (Chee 

Wei et al., 

2006) 

PU2 The overall information 

dissemination is beneficial 

PU3 The overall information 

dissemination is advantageous 

 

Intention to 

share (ITS) 

information  

 

ITS1 

 

If the collaborative pest 

surveillance were to continue, 

my willingness to keep sharing 

my pest observation information 

is high 

 

Adapted 

from (Kim 

et al., 2012) 

ITS2 If the collaborative pest 

surveillance were to continue, 

the likelihood that I will keep 

sharing my pest observation 

information is high 

In the participant recruitment stage, the farmers were told that they would receive 

personalized feedback to manage the pest infestations. This was related to the protection 

or enhancement of personal investments (Coleman et al., 2009). It was therefore 

hypothesized that: 



 

62 
 
 

 

H1: Participants’ perceived usefulness of the disseminated information has a positive 

effect on their intention to continue sharing their pest observation information. 

H1 was tested using partial least squares (PLS) regression technique with Smart PLS 

2.0.M3 (http://www.smartpls.de/). PLS regression is a component-based structural 

equation modelling. This method was selected because it analyzes measurement and 

structural models with multi-item constructs (which is the case of the questionnaire 

survey of this study) and works without requirement on large sample size and 

distributional assumptions  (Haenlein and Kaplan, 2004). Before testing H1, convergent 

and discriminant validity of the survey questions were assessed. Convergent validity 

was assessed based on standardized path loadings of all survey questions, composite 

reliability (CR), Cronbach’s alpha, and the average variance extracted (AVE) of 

constructs (Kim et al., 2012). Discriminant validity is supported when the square root 

of AVE of each construct is higher than its correlations with any other construct (Kim 

et al., 2012). Four additional factors (i.e., age, gender, education, and farming 

experience) were considered in the PLS regression as control variables related to the 

dependent variable. 

Moreover, the questionnaire sought a user rating regarding the usefulness of each of the 

three types of information dissemination, using three ordinal-scale scores (1 = least 

useful, 2 = medium useful, 3 = most useful). Based on the user ratings, the overall 

http://www.smartpls.de/
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usefulness of each of the three types of information dissemination was ranked. ANOVA 

(Larson, 2008) with post hoc Tukey’s HSD analysis (Tukey, 1953) was performed to 

test if the mean scores obtained by the three different types of information 

dissemination differed from each other significantly. 

4.4 Results 

4.4.1 Spatiotemporal analysis results 

The analysis revealed spatial patterns of the infestations of the pest outbreak that have 

never been discovered by the existing local expert-led pest surveillances. The results 

showed that the incident reports exhibited local clusters (Figure 4.2). A large hot spot 

cluster was detected in the east part of the study area, which exhibited a structure that 

showed slightly elongation in a roughly east–west direction. A large proportion of the 

hot spots were found having high statistical significance (z-score ≥2.58). The hot spots 

were far from the local agricultural department and closer to the main woodlands. A 

cold spot cluster was detected in the northwest part of the study area, which had a 

structure that extended roughly in a southwest–northeast direction. A large proportion 

of the cold spots were with 95% confidence level. No cold spot was observed at 99% 

confidence level. The cold spots were closer to the local agricultural department and 

the main residential areas. 
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Figure 4.2 (a) Pest infestation incidents reported by the participants. (b) The 

corresponding Getis-Ord Gi* statistics (z-scores) and the hot and cold spot clusters 

highlighted using standard deviational ellipses, with size capped at one standard 

deviation (1 SD). 

The change point analysis also revealed temporal patterns of the pest infestations that 

have never been recorded by the existing local expert-led pest surveillances. Three 

statistical significant (P < 0.01) change points were detected (Figure 4.3, Table 4.3). 

The first change point occurred on 1 May (350.85 DD). Prior to the first change point 

the average of the daily report amounts was 1.4 while after that it was 7.6. The second 

change point occurred on 6 May (397.35 DD). The average of the daily report amounts 

increased from 7.6 to 13.9 around the second change point. The third change point was 

observed on 20 May (551.61 DD) with the average of the daily report amounts 

decreased from 13.9 to 4.6. According to the local pest management experts and the 

past local experiences about the pest outbreak, the three change points may indicate 

three phenological events, i.e., the onset of the pest infestations outbreak, beginning of 

peak period of the outbreak, and end of the outbreak period, respectively.  
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Figure 4.3 Time series of the farmer reported pest infestation incidents, and the three 

detected change points. 

 

Table 4.3. A summary about the detected change points. 

Change 

point 

Date Accumulated degree-days 

(DD) 

Phenological event 

1 1/5/2015 350.85 Onset of the pest infestations 

outbreak 

2 6/5/2015 397.35 Beginning of the peak period of 

the outbreak  

3 20/5/2015 551.61 End of the outbreak period 

The analysis further revealed notable spatiotemporal patterns of the process of the pest 

infestations that are lacking from the existing local expert-led pest surveillances (Figure 

4.4). The Getis-Ord Gi* statistics were computed for two change points, i.e., 1 May 

2015 and 6 May 2015. Hot spot clusters and cold spot clusters were detected for both 

the change points. It was observed that the hot spot cluster was expanding eastward and 

the cold spot cluster was expanding southwestward, in terms of both their directional 

structures and locations of geometric centers. 
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Figure 4.4 Structural and locational changes of the hot spot cluster and cold spot 

cluster over time. “a” represents 1 May 2015; “b” represents 6 May 2015; “c”  

represents 27 May 2015 (the last day of the pest surveillance). 

4.4.2 Outcomes related to the information dissemination 

The standardized path loadings of all the survey questions were statistically significant 

(P < 0.01) and were higher than 0.7; the CR and Cronbach’s alpha for both of the survey 

constructs exceeded 0.7; the AVE for both of the survey constructs were greater than 

0.5 (Table 4.4). Each test result therefore met its threshold criterion, and the convergent 



 

67 
 
 

 

validity was supported (Kim et al., 2012). Discriminant validity was also supported 

(Table 4.5). 

Table 4.4 Results of convergent validity tests. 

Construct Item Standard path 

loading 

AVE CR Cronbach’s 

alpha 

Intention to 

share (ITS) 

ITS1 0.96** 0.93 0.97 0.93 

ITS2 0.97** 

Perceived 

usefulness 

(PU) 

PU1 0.97** 0.93 0.98 0.96 

PU2 0.96** 

PU3 0.97** 

Note. ** represents a statistical significance at 99% confidence level, i.e., P < 0.01. AVE 

is average variance extracted. CR is composite reliability. 

Table 4.5 Descriptive statistics and correlations. 

Construct Items Mean Standard 

deviation 

Intention to 

share (ITS) 

Perceived 

usefulness (PU) 

Intention to share (ITS) 2 7.76 1.06 0.96  

Perceived usefulness 

(PU) 

3 7.32 1.37 0.351 0.96 

Note. Leading diagonal shows the squared root of AVE of each construct (i.e., ITS and 

PU). The off-leading diagonal value (0.351) is the correlation between the two constructs. 

H1 was supported (Figure 4.5). None of the control variables was found to be significant 

(P > 0.1, Figure 4.5), meaning that H1 was robust across variation in the control 

variables. 
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Figure 4.5 Testing results of H1 and effects of the control variables. Note. ** 

represents a statistical significance at 99% confidence level. The numbers outside the 

brackets are the path coefficients, and the numbers inside the brackets are the 

corresponding t-values indicating significant levels. 

In addition, the user rating showed that type B information dissemination occupied the 

largest portion (63.9%) of score-3, type A information dissemination occupied the 

largest portion (57.5%) of score-2, and type C information dissemination occupied the 

largest portion (67.4%) of score-1 (Figure 4.6). Therefore, in general, type B was ranked 

as the most useful, type A was the medium useful, and type C was the least useful. This 

was supported by the significant different mean rating scores obtained by the three types 

of information dissemination according to the ANOVA (F = 135. 80, P < 0.01) and post 

hoc Tukey’s HSD analysis (P < 0.01), of which type B had the highest mean score at 

2.57 and type C had the lowest one at 1.52 (Table 4.6). 
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Figure 4.6 User-rated usefulness of the three types of information dissemination. 

Horizontal axis represents the three scores provided for the rating purpose. Vertical 

axis represents to what percentage each type of the information disseminations 

occupies a given score. 

 

Table 4.6. Means and standard deviations of the scores obtained by the three types of 

information dissemination. 

Type Mean Standard deviation 

A 1.93 0.65 

B 2.57 0.63 

C 1.52 0.79 

4.5 Discussion 

4.5.1 The outcomes and implications 

4.5.1.1 Spatiotemporal patterns of the pest outbreak 

This chapter is first concerned with whether VGI sense making can indeed generate 

meaningful outcomes for enhancing tactical IPM. Therefore, using the VGI collected 

in the case study, spatiotemporal sense making about the pest infestations was 
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conducted using interdisciplinary methods (GIS spatiotemporal data mining and 

phenology methods). The analysis revealed the occurrences of both hot and cold spot 

clusters of pest infestations and their directional structures. Specifically, the results 

showed that the detected hot spot cluster was located in an area with a high woodland 

coverage, a low coverage of residential area, and the area was relatively far away from 

the local agricultural department. On the contrary, the detected cold spot cluster was 

located in an area with a low woodland coverage, but a high coverage of residential 

area, and the area was relatively nearer to the local agricultural department. The 

analyses also found that the development of the hot spot had an eastward direction 

towards high woodland density areas, while the development of the cold spot had a 

southwestward direction towards the local agricultural department and the main 

residential areas.  

The abovementioned observations suggested that the woodland coverage, coverage of 

residential area, and distance to the local agricultural department may be related to the 

occurrences of the hot and cold spots, which has indeed been statistically supported by 

an additional analysis based on ordinary least squares (OLS) regression (Appendix 1). 

Further investigations are still needed to confirm what social or physical factors or 
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mediators (e.g., spatial differences in farmers’ tillage methods, microclimate effects) 

had led to such relations. Several possible preliminary explanations are:  

(1) an area with a high woodland coverage may provide a cozy microclimate and 

diverse overwintering sites for the stem borers, where the pest’s overwintering 

larvae was difficult to manage;  

(2) conducting straw burning after autumn harvest to kill overwintering larvae for 

preventing spring outbreak is easier in an area with a low woodland coverage;  

(3) closeness to residential area and the agricultural department implies higher 

accessibility to necessary pest management resources and information from the 

markets or government, and thus the pest can be better monitored and managed. 

Despite that the driven factors require further investigations, these discovered pest 

distributional patterns could still be beneficial to both the local farmers and pest 

management authorities. They would be able to know which areas should be tactically 

prioritized, in order for pest infestation reductions. In fact, spatial patterns discovered 

from the overwintering pest generation was important to the management of subsequent 

generations of the pest. For example, an area found with serious infestations caused by 
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the overwintering generation was also likely to have serious infestations from the 

subsequent generations. 

In addition, the change point analysis generated real-time information related to the pest 

infestations outbreak. Such information was also beneficial to the stakeholders’ 

decision-making, which provided timely alerts for controlling the infestations. The 

temporal analysis also offered a detection method to match past experiences and 

knowledge of experts (i.e., phenological event matching). The degree-day computations 

associated with the phenological events also provided an important basis for future 

predictions about the pest infestations. Degree-day modelling has a strong physiological 

basis. It reflects the mechanisms of pest growths, which are therefore robust at 

extrapolating to future years (Herms, 2004).  

Generalized from this case study, the above sense making results implicate that a proper 

use of VGI can reveal spatiotemporal patterns of pest infestations that are lacking from 

traditional pest surveillance means. Even with a limited amount of data from 

contributors (e.g., 293 reports in this case study), meaningful sense making results can 

be generated, with the premise that the contributors are properly facilitated, recruited, 

and trained. With the information discovered from VGI, stakeholders can target the 

allocation of limited pest management resources (e.g., pesticide) to narrowly defined 

geographic areas and directions (e.g., those areas with a high woodland coverage in the 
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case study, the direction where a hot spot cluster extends), and temporal points (e.g., 

those change points with significance increases in number of the daily infestation 

reports). Therefore, this case study showcased two merits of VGI in the enhancement 

of tactical IPM, the creation of previously unrecorded spatial data for the discovery of 

previously unknown knowledge, and the creation of critical pest management 

information in the timeliest manner. 

4.5.1.2 Participation incentive 

This chapter also sought to investigate how to motivate and sustain volunteer 

participation, which was concerned with the sustainability or long-term viability of 

VGI-based IPM. The results showed that the more the participants found the 

disseminated information of use to them, the more they were willing to participate 

further. Therefore, usefulness of information dissemination was identified as an 

important factor contributing to a continued and more engaged user participation, which 

echoes the proposed VGI-based IPM in Chapter 3. Indeed, as mentioned in Section 3.4, 

it has been shown that users’ need satisfaction with the information of a virtual 

community positively affects their intentions to continue their participation in the 

virtual community, which is influenced by the usefulness of the information (Chen, 

2007; Jin et al., 2009). 
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In this case study, three types of information were disseminated. It was found that type 

B was perceived by the farmer participants to be the most useful one. Type B 

information provided the participants with timely alerts for any significant increase in 

the number of daily pest infestation incident reports, meaning that farmers tend to 

concern temporal patterns of pest outbreaks most (i.e., specific timings of pest risk 

management). The farmers could combine such information with their own farming 

experiences to determine the best timing for pesticide spraying throughout the pest 

outbreak period. Therefore, in this case, enhancing type B information dissemination 

can be an incentive strategy to ensure farmer participations. In VGI-based IPM, such 

an incentive strategy is better than the one through gamification proposed by Martella 

et al. (2015) (see Section 2.3.4 for the review), because crop fields in rural areas 

may not be ideal sites for gaming (e.g., too hot during summer). In fact, farmers 

concern more about their cropping productivity, and hence providing information 

more useful for them to maximize their profits tends to be more encouraging.  

It is important to note that IPM information dissemination is not limited to the three 

types taken in this case study. For any other VGI-based IPM projects with different 

contexts, in order to retain or encourage continued user participation, probably the first 

step is to interact actively with participants to learn what kinds of information they need 

most. Also, as mentioned in Section 3.4, farmers from different regions may have 

different needs; and an active farmer participant who is satisfied by existing information 
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disseminated may still discontinue his/her participation someday due to his/her varying 

needs (disenchantment discontinuance) or due to an availability of better alternatives 

(replacement discontinuance) (Peshin et al., 2009b). Hence the usefulness enhancement 

mentioned above should also be a comprehensive and continuance process, meaning 

that researchers have to keep adjusting a project’s information dissemination to always 

meet its users’ needs which may vary over space and time.  

4.5.2 Potential improvement 

While this study explored VGI for tactical IPM, the participants’ role was limited to the 

provision of pest surveillance data. Haklay (2013) introduced four ascending levels 

(ladders) of participation and engagement in citizen science projects. This case study 

was based on the first level, i.e., crowdsourcing, in which cognitive engagement in IPM 

was minimal. A comprehensive VGI-based IPM should ascend to higher levels to fully 

utilize participants’ cognitive engagement in IPM, i.e., farmers’ knowledge, attitudes, 

and practices (Tait and Napompeth, 1987). Researchers can facilitate participants to 

also play the roles of problem definers, data analyzers, and knowledge interpreters. At 

the highest level, participants could actively involve themselves in the whole process 

of the project, and are encouraged to be inquisitive and innovative. Therefore, exploring 

high level VGI-based IPM approaches is suggested for future research. 
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Another point to be stressed is the quality of VGI. The quality of VGI in this case study 

was improved by using a targeted recruitment strategy suited to facilitated VGI creation. 

However, VGI-based IPM may not be limited to facilitated VGI creation in which the 

VGI collection process is relatively more manageable. In fact, diverse forms of VGI-

based IPM community can be established based on different types of VGI creation (e.g., 

active VGI creation, see Section 2.1.2 about the topology of VGI creation forms) and 

with more heterogeneous participants. More robust VGI quality assurance approaches 

are therefore needed to satisfy diverse scenarios of VGI-based IPM, and Chapter 6 will 

present such an approach. 

While this chapter mainly focuses on tactical IPM and participation incentive, in the 

next chapter, a second case study focusing on strategic IPM will be presented. 
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5  Exploring the potential distributional changes of invasive 

crop pest species associated with global climatic change: a 

VGI-based strategic IPM  

As mentioned in Section 2.2.2, strategic IPM deals with relatively long-term and 

planning-oriented issues which are also with broader geographic extents. This chapter 

presents a case study pertaining to strategic IPM, which explored potential future pest 

problems rather than pest problems in the near-term. Specifically, the potential 

distributional changes of invasive crop pest species associated with global climatic 

change were investigated using ecological niche model (ENM). It aims to explore 

whether VGI sense making can indeed generate meaningful outcomes to enhance 

strategic IPM. Meanwhile, it contributes to the understanding of the practical and 

potential roles of volunteer participants in strategic VGI-based IPM.  

VGI from citizens were adopted as an important source of data in this case study. 

Compared with the facilitated VGI used in Chapter 4, the VGI (including both active 

VGI and facilitated VGI) used in this chapter are with broader geographic extents, 

fitting the concept of strategic IPM in general and the need of large spatial-coverage 

studies using ENM in specific. The VGI can be valuable complements to traditional 
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spatial data. Without the VGI, the case study is not possible to be completed due to the 

lack of species occurrence records from traditional data collection means. 

The following sections of this chapter will first present the background, sense making 

methods and results of this case study (Section 5.1 to Section 5.3). Section 5.4 will 

discuss the sense making results and the roles of volunteer participants in strategic IPM.  

5.1 Background of the case study 

The world’s human population is estimated to increase by 70 million per annum (Popp 

et al., 2012). As the human population grows, so will the problem of the global food 

supply. Sustainable agricultural productions are therefore critical. However, agriculture 

in its diverse forms and large extent across the globe are highly sensitive to climate 

change (Howden et al., 2007). The Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC) has suggested that global mean surface temperature 

is expected to increase maximally 4.8℃ by the end of the 21th century (IPCC, 2013). 

Precipitation pattern will change, and extreme weather will become more frequent. 

Climate change can influence crop yields through effects mediated by changes in crop 

pest distributions, especially those invasive pest species (Estay et al., 2009; Ziska et al., 

2010; Bebber et al., 2013). Managing invasive species for securing cropping activities 

is challenging because such species can survive in diverse environments, mature 

quickly, and compete with local species for resources to affect ecosystem functioning 
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(Bradley, 2009; Hoddle, 2014). The dispersal of invasive crop pest species is also likely 

to be incremental due to global warming (Thomson et al., 2010; Ziska et al., 2010).  

Among the invasive crop pests, poikilothermic (cold-blooded) species are recognized 

for the large area of agricultural losses that they cause. Temperature has been 

considered as the most important abiotic limiting factor that governs their distributions 

(Pimentel et al., 2000; Ziska et al., 2010; Fand et al., 2014). Poikilothermic pest species 

can thrive in warmer environments, so climate warming can potentially enhance their 

overwintering survivability (Maxmen, 2013) and facilitate the accumulation of degree-

days required by their growths (Herms, 2004). However, when temperature exceeds the 

upper threshold of a species’ tolerance, it can result in a decreased growth and 

reproduction, thereby increasing the mortality for the species (Netherer and Schopf, 

2010). Precipitation can also influence the species distributions as it alters ambient 

humidity, affecting the moisture needed for pest growths. Furthermore, precipitation 

extremes can negatively impact on pest growths, such that the resulting floods can wash 

off eggs and larvae and drown young pests (Kobori and Amano, 2003).  

Climate change thus have both positive and negative effects on the pests. Numerous 

studies have examined the possible climate change effects on the distributions of 

various species at regional levels, such as plants (Garcia et al., 2013), mammals 

(Alamgir et al., 2015), birds (Tingley et al., 2009), reptiles (Araújo et al., 2006), 
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amphibians (Thomas et al., 2004), and insects (Hongoh et al., 2012). Prior work has 

suggested that many species are likely to move poleward in latitude or upward in 

elevation as the climate warms (Jepsen et al., 2008; Estay et al., 2009; Tingley et al., 

2009). Regarding crop pests, recent effort has described the patterns and trends in their 

global spread with a temporal focus on the second half of the 20th century (Bebber et 

al., 2014). Nevertheless, little is known if the overall global distributions of 

poikilothermic species of invasive crop pests will expand or contract as a result of future 

climate change, and to what extent will climate change influence the species richness 

across different regions. Research is thus needed to analyze the possible consequences 

of future climate change on the global distributions of the invasive crop pest species.   

To estimate potential range and direction of distributional changes for invasive species, 

ENM has been suggested as a useful tool (Jeschke and Strayer, 2008). ENMs fall into 

two classes: mechanistic (or process-based) approach assesses physiological aspects of 

species; and correlative approach considers correlations between observed species 

distributions and environmental variables (Morin and Thuiller, 2009). Although both 

approaches have demonstrated their predictive capabilities (Thuiller et al., 2005; 

Kriticos et al., 2013), correlative ENMs are frequently used in analyzing multiple 

species for at least three reasons. First, the lack of relevant knowledge on the 

physiological tolerance for all species of concern compromises the precision of 

mechanistic models (Wiens et al., 2009; Mokany and Ferrier, 2011). Second, species 
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presence data for correlative ENMs are widely available, while data based on which 

mechanistic ENMs can be parameterized are often lacking (Morin and Thuiller, 2009). 

Third, the complexity of mechanistic models is high, requiring a relatively long time to 

fit a mechanistic model with appropriate data (Elith, 2015).    

A correlative modelling program commonly applied to construct ENMs is maximum 

entropy modelling, or Maxent (Phillips et al., 2006). It is a presence-only machine 

learning algorithm that estimates the probability distribution of species based on 

occurrence records and randomly generated background points by finding the 

maximum entropy. Prior work has demonstrated its better performance than other 

modelling methods in predicting invasive species distributions outside their native 

ranges (Bidinger et al., 2012). This study thus uses species presence data to construct 

the correlative ENMs in Maxent in order to understand the impacts of climate change 

on the global distributions of poikilothermic invasive crop pest species. Specifically, 

this case study addresses three research questions. First, will the overall global 

distribution of the pest species expand or contract as a result of climate change? Second, 

what are the spatial patterns of distributional changes in pest species richness? Third, 

how will temperature and precipitation variations across different regions affect the 

distributional changes of the pest species? Insights into the possible direction and range 

of the distributional changes of invasive crop pests are essential for adapting the current 
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agricultural systems to climate change, so as to prevent world food insecurity and long-

term nutritional emergencies. 

5.2 Materials and methods 

5.2.1 Study area and species records 

This study focused on the current global cropland extent to examine the responses of 

the invasive crop pest species to climate change within the boundary of existing global 

cropping activities. The spatial extent of the global cropland (Figure 5.1) was obtained 

from Pittman et al. (2010) as the boundary of the study area. It is uncertain if the extent 

will increase or decrease for 2050 and 2070 (IPCC, 2013). This study hence focused on 

calibrating the ecological niche models and examining the responses of the pest species 

to climate change within this cropland extent so as to provide a reference for how 

decisions and planning can be made for adapting the existing agriculture systems within 

the current global cropland extent to climate change with regard to invasive crop pest 

risks. Future species distributional changes outside this extent was not taken into 

account in the analysis. 
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Figure 5.1 Study area. White color areas denote no cropland.  

Analyzing the complete cropping ecological system is almost impossible because of the 

large number of species. For example, just the arthropods in alfalfa alone consist of 

approximately 1500 species, although most of them do not cause economic loss to 

agriculture and can thus be ignored (Gutierrez et al., 2007). For the purpose of this 

study, invasive crop pest species were selected based on their economic importance or 

quarantine significance to major food and cash crops (CABI, 2016). This resulted in a 

total of 76 species covering all climatic zones across the globe (Appendix 2).  

The occurrence records of the 76 species were extracted from multiple data sources. 

These included field surveys, bibliographic information and a range of pest species 

repositories that involve large amounts of crowd sourced (i.e., VGI) and expert-

generated species occurrence records as follows: the Invasive Species Compendium 

and the Distribution Maps of Plant Pests of Centre for Agricultural Bioscience 

International (CABI) (http://www.cabi.org/), the Global Database of European and 
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Mediterranean Plant Protection Organization (EPPO) (https://gd.eppo.int/), Global 

Biodiversity Information Facility (GBIF) (http://www.gbif.org/), Lifemapper 

(http://lifemapper.org/), Invasive Species Specialist Group (ISSG) 

(http://www.issg.org/), and Village Tree (http://cosmic.nus.edu.sg/). Records in CABI 

and EPPO were compiled and validated by experts, and widely used by plant health 

organizations (Pasiecznik et al., 2005). GBIF, Lifemapper, ISSG and Village Tree were 

also valuable databases for invasive species studies (Gallien et al., 2012; Bellard et al., 

2013; Suen et al., 2014), garnering already validated pest occurrence records sourced 

from citizens (i.e., VGI, including both active VGI and facilitated VGI, see Section 

2.1.2 about the different forms of VGI creation), researchers and various institutions. 

The occurrence records of the 76 species extracted from these multiple data sources 

were cross-checked to remove redundancies. A total of 101,662 occurrence records 

were finally used to construct the ENMs, of which over 90% were VGI.   

5.2.2 Future climatic projections and environmental variables 

For future climatic projections, a conservative and a less conservative greenhouse gas 

emission scenario, i.e., RCP2.6 (BCC-CSM1-1) and RCP4.5 (BCC-CSM1-1), were 

used. The increases of global mean surface temperatures in these two scenarios will be 

rapid during the first half of the 21th century, but will slow down in the second half 

which estimate that the likely global mean surface temperature increases will be  
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maximally 1.6℃ and 2.0℃ till 2065, respectively; and will be 1.7℃ and 2.6℃ till 2100, 

respectively (IPCC, 2013). This tends to be more realistic since various mitigation 

strategies in response to global warming are expected to be taken (Houghton, 2005). 

Indeed, the 2015 United Nations Climate Change Conference negotiated the Paris 

Agreement (COP21, 2015), a global agreement on the reduction of climate change, 

which sets out a global action plan to avoid dangerous climate change by limiting global 

warming to well below 2℃. Because the trend of temperature increase will slow down 

after 2050 in these two greenhouse gas scenarios, the species distribution models were 

projected to the two scenarios for two future time periods, 2050 and 2070. Consequently, 

a total of four future climatic projections (i.e., 2050-RCP2.6, 2050-RCP4.5, 2070-

RCP2.6 and 2070-RCP4.5) were analyzed.  

To construct the ENMs, 19 bioclimatic variables (for 2050 and 2070) and three 

topographical variables (assumed to remain the same) were first derived from 

WorldClim database (http://www.worldclim.org/) as potential predictors (Table 5.1). 

All of the environmental variables had a spatial resolution of 2.5 arc-minutes, resulting 

in 2.1×106 pixels for the study area. Next, for each species, a pair-wise Pearson 

correlation matrix was calculated from all these variables based on the species 

occurrence locations. Then, following Bellard et al. (2013), only variables that were not 

collinear (r < 0.75) were kept in the subsequent analyses. 
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Table 5.1 Explanatory variables derived from WorldClim 

(http://www.worldclim.org/) for potential use in the ecological niche modelling. 

Variable Description 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly [maximum temperature – 

minimum temperature]) 

BIO3 Isothermality (BIO2/BIO7) (×100) 

BIO4 Temperature Seasonality (standard deviation×100) 

BIO5 Maximum Temperature of Warmest Month 

BIO6 Minimum Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 

 Elevation 

 Slope 

 Aspect 

5.2.3 Ecological niche modelling with Maxent 

Maxent version 3.3.3k (Phillips et al., 2006) was used to construct the ENMs. For each 

species, 75% of its occurrence records were randomly selected as the training dataset 

and the remaining 25% were set aside for validation (Moffett et al., 2007). The logistic 

output format was enabled in the modelling, which produced a predicted probability of 

species presence (between 0 and 1) on each pixel, indicating the degree to which the 

environmental conditions of the pixel were suitable for the species.  
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For model evaluation, two tests were performed. First, the area under the curve (AUC) 

was used, the curve here refers to receiver operating characteristic (ROC) curve. The 

ROC curve is a plot of the sensitivity against 1-specificity (commission error) at all 

possible threshold probabilities for a positive prediction that ranges from 0 to 1. A 

model with an AUC above 0.8 was considered having “good” discrimination abilities 

(Swets, 1988). Second, a binomial probability test of omission was conducted to 

determine the statistical significance of the prediction of each model (Moffett et al., 

2007). 

5.2.4 Examining impacts of climate change on species distributions 

5.2.4.1 Overall change in mean probability of presence 

With the 76 species distributions modelled under the current climate and the four future 

climatic projections, three analyses were conducted in ArcGIS 10.0 (ESRI Products, 

Redlands, CA). First, future changes in the mean probability of presence across all 

pixels of the study area were calculated for each species. Second, frequency 

distributions of species showing the projected future change in the mean probability of 

presence were analyzed. Third, future changes in the average of the mean probabilities 

of presence were computed.   
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Additionally, these 76 species were classified into three categories based on their main 

host plants/plants affected (Appendix 2). Category “A” species mainly causes high 

economic losses to major food grains, such as cereal crops and legumes. Category “B” 

species mainly causes high economic losses to major cash crops, such as sugar-yielding 

crops, oil-bearing crops and raw materials crops. Category “C” species can cause high 

economic losses to both major food grains and major cash crops. To evaluate whether 

climate change has different impacts on the global distributions of these three categories 

of pest species in terms of their changes in species mean probability of presence, 

Nonparametric Kruskal-Wallis tests were performed. 

5.2.4.2 Spatial patterns of species richness change 

Following Wiens et al. (2009), a pixel-level species richness index was obtained by 

summing the pixel-level species probabilities of presence of all 76 species. The species 

richness index of a pixel represents the overall occurrence risk of the pest species at 

that pixel. The changes of species richness under the four future climatic projections 

were calculated and mapped to assess the direction of the potential distributional 

changes of the species. 

As differences in distributional changes among species will change species co-

occurrence, increase or decrease in species richness does not reflect the change of 

species composition within a pixel. In this study the ENMs were constructed to predict 
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the responses of individual species, independently of one another, to climate change. 

Species that do not co-occur at certain pixels under the current climate may co-occur at 

those pixels in the future, or vice versa. Therefore, for each of the four future climatic 

projections, a modified Jaccard index (Ji) of community similarity (Wiens et al., 2009) 

was first computed for each pixel to characterize the potential change in community 

composition. The index was calculated for each pixel i of the output raster files (Eq. 

5.1): 
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where ai (Eq. 5.2) and bi (Eq. 5.3) are indices of current and future species richness, 

respectively, over 76 species at pixel i, and ci (Eq. 5.4) is an index of the species overlap 

between the current and future time periods at pixel i: 
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where bi,j is the predicted probability of presence for species j at pixel i in the future 

climate; and 
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Next, to highlight the patterns of community dissimilarity as opposed to similarity, (1-

Ji) was computed for each pixel. The value signified species turnover, and ranged from 

0 to 1. A high value represented a high community dissimilarity or high species turnover, 

indicating a high change in species composition. Lastly, to assess the uncertainty of the 

projected species turnovers, the coefficient of variation of the model projections was 

calculated (Wiens et al., 2009). This analysis calculated the coefficient of variation of 

model projections for species turnovers between the two climate change scenarios of 

the same year (i.e., 2050-RCP2.6 vs. 2050-RCP4.5; 2070-RCP2.6 vs. 2070-RCP4.5) 

for each pixel, so as to visualize areas of greater uncertainties in the predictions. 

5.2.4.3 Distributional change in relation to temperature and precipitation 

The pixels showing the projected changes in species richness were divided into two 

groups, i.e., increase in species richness and decrease in species richness, to examine 

the species richness distributional changes in relation to temperature and precipitation 

variations. To do so, frequency distributions of the two groups of pixels for the four 

future climatic projections were plotted against the current annual mean temperature 
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values (i.e., BIO1 variable in Table 5.1) and the current annual precipitation values (i.e., 

BIO12 variable in Table 5.1), respectively. This allowed the understanding of whether 

certain temperature and precipitation ranges might encounter higher increases or 

decreases in species richness. 

5.3 Results  

5.3.1 Model performance 

All the AUC values of the models for the 76 species were greater than 0.8 with a mean 

of 0.903. The highest AUC value was 0.994 and the lowest was 0.817. Additionally, all 

the binomial tests on the models for the 76 species yielded significant results at a 99% 

confidence interval. These values indicated very good model performances. 

5.3.2 Potential changes in species distributions 

5.3.2.1 Overall change in mean probability of presence 

Changes in species distributions quantified using the mean probability of presence 

revealed that the number of species predicted to increase (50, 42, 51, 49 species for 

2050-RCP2.6, 2050-RCP4.5, 2070-RCP2.6, 2070-RCP4.5, respectively) was greater 

than that predicted to decrease (26, 34, 25, 27 species for 2050-RCP2.6, 2050-RCP4.5, 

2070-RCP2.6, 2070-RCP4.5, respectively) under all four future climatic projections 
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(Figure 5.2a). Some species were predicted to increase their mean probabilities of 

presence as high as 0.20, while the largest decrease was at -0.06 (Figure 5.2a, Appendix 

2).  

Averages of the mean probabilities of presence of the 76 species were all predicted to 

increase, with the increases in mean and median respectively being 2.2% and 3.6% for 

2050-RCP2.6, 1.7% and 3.5% for 2050-RCP4.5, 2.4% and 3.9% for 2070-RCP2.6, and 

2.1% and 4.0% for 2070-RCP4.5 (Figure 5.2b). No statistically significant differences 

(P > 0.05) with regard to the predicted future changes in mean probability of presence 

were found for Categories A-C species classified based on their main host plants/plants 

affected. 

 

Figure 5.2 (a) Frequency distribution of species and (b) box plot showing projected 

changes in mean probability of species presence in the study area, based on four 

future climatic projections (2050-RCP2.6, 2050-RCP4.5, 2070-RCP2.6, and 2070-

RCP4.5). The squares insides the boxes and the horizontal lines dividing the boxes 

respectively represent the means and the medians of the datasets. 
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5.3.2.2 Spatial patterns of species richness change 

Assessment of species richness index for the current climate showed high species 

richness in Eastern and Southern India, Southwest China, Southeast Asia, Mexico and 

Eastern United States (Figure 5.3). The predicted future species richness change 

exhibited similar spatial patterns across the four climatic projections (Figure 5.4). Those 

regions currently with high species richness, along with some other tropical and 

subtropical regions (e.g., Central Africa, Florida and some areas in South America), 

were predicted to experience reductions in species richness as a result of climate change 

(Figure 5.4). Alternatively, low species richness under the current climate was mainly 

found in higher latitudes, such as Northern and Northeast Asia, Eastern Europe and the 

northern part of North America (Figure 5.3). Species richness for these regions were 

mostly predicted to increase based on future climatic projections (Figure 5.4). In 

addition, it was observed that many regions at relatively lower altitudes were predicted 

to experience decreases in species richness (e.g., North China Plain, European Plain, 

Indo-Gangetic Plain and the southeast coastal areas of the United States, Figure 5.4), 

while regions at relatively higher altitudes were predicted to have increases in species 

richness (e.g., Southwest China, Western United States, Northwest Ethiopia, Southeast 

Brazil, Pakistan and the northeast part of South Africa, Figure 5.4).
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Figure 5.3 Invasive crop pest species richness under the current climate. 



 

95 
 
 

 

 

Figure 5.4 Changes in the invasive crop pest species richness predicted based on future climatic projections: (a) 2050-RCP2.6; (b) 2050-RCP4.5; 

(c) 2070-RCP2.6; (d) 2070-RCP4.5.
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Quantification of community dissimilarity between the current and future climatic 

projections revealed that high species turnovers mainly occurred at the regions where 

their species richness were predicted to increase (e.g., Central United States, Northern 

and Northeast Asia and Northwest India, cf. Figure 5.4 and Figure 5.5). Conversely, 

low species turnovers were found in regions where their species richness were predicted 

to decrease (e.g., Eastern China, Central Europe, cf. Figure 5.4 and Figure 5.5). 

Additionally, the coefficients of variation of model projections for species turnovers in 

2050 and 2070 showed that the uncertainties related to the use of different climate 

change scenarios were relatively low in most parts of the study area (Figure 5.6). 

Greater uncertainties were observed in Canada, Eastern India, Eastern Europe, and 

northeast China, mostly associated with higher species turnovers. Furthermore, higher 

values of coefficients of variation were observed for 2070 than for 2050, suggesting 

greater uncertainties in the predictions.
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Figure 5.5 Community dissimilarity of invasive crop pest species between the current and future climatic projections: (a) 2050-RCP2.6; (b) 

2050-RCP4.5; (c) 2070-RCP2.6; (d) 2070-RCP4.5. Higher “1-Jaccard similarity” (species turnover) values represent greater community 

dissimilarities, indicating more changes in species composition.



 

98 
 
 

 

 

Figure 5.6 Uncertainties of model projections for future species turnovers, expressed 

as the pixel-level coefficients of variation, between the two climate change scenarios 

of the same year: (a) 2050-RCP2.6 vs. 2050-RCP4.5; (b) 2070-RCP2.6 vs. 2070-

RCP4.5. 

5.3.2.3 The distributional change in relation to temperature and precipitation 

Investigation of the relationship between species richness change and current annual 

mean temperature showed that areas with lower current annual mean temperatures 

below approximately 21℃ were predicted to have more pixels with increases in species 
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richness (Figure 5.7a). Pixels with increases in species richness were mainly distributed 

in areas with current annual mean temperatures between 0℃ and 10℃, with a peak at 

approximately 7.5℃. Alternatively, areas with higher current annual mean temperatures 

above approximately 22℃ were predicted to have more pixels with decreases in species 

richness. Pixels with decreases in species richness were mostly predicted to occur in 

areas with current annual mean temperatures between 21℃ and 28℃, with a peak at 

around 27℃. 

Analysis of the relationship between species richness change and current annual 

precipitation illustrated similar trends of the four future climatic projections (Figure 

5.7b). Areas with current annual precipitations below approximately 1100 mm were 

predicted to have more pixels with increases in species richness, with most changes 

predicted to occur in areas with current annual precipitation between 400 mm and 700 

mm. In contrast, in areas with current annual precipitations above 1100 mm, species 

richness decrease was predicted to occur more frequently than species richness 

increases. 
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Figure 5.7 The number of pixels with increases in species richness (+) and decreases 

in species richness (-), predicted based on four future climatic projections (i.e., 2050-

RCP2.6; 2050-RCP4.5; 2070-RCP2.6; 2070-RCP4.5), against (a) the current annual 

mean temperature values of the pixels and (b) the current annual precipitation values 

of the pixels. 

5.4 Discussion 

5.4.1 Potential distributional changes 

The predicted outcome for increases in averages of the mean probabilities of presence 

of the 76 invasive crop pest species (Figure 5.2) suggests that the overall global 

distribution of the pest species could be expanded by climate change. These changes 

have no significant differences among the three categories of pest species, indicating 

that major food grains and cash crops are likely to be all affected. Potential pest species 

distributional changes associated with climatic change thus pose a considerable threat 

to world food security. 
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The projected changes in species distributions vary across the globe. Regions of 

relatively higher latitudes or higher altitudes are projected to experience more increases 

in species richness (Figure 5.4). Such finding confirms Bebber et al. (2014) that climate 

change is likely to affect the future distributions of crop pests, and echoes previous 

studies (Jepsen et al., 2008; Estay et al., 2009; Tingley et al., 2009) that species are 

likely to spread poleward in latitude or upward in elevation as the climate warms. The 

findings of this study further reveals that areas with current annual mean temperatures 

at around 7.5℃ (Figure 5.7a) or with annual precipitations below 1100 mm (Figure 5.7b) 

could be the most vulnerable because of their predicted increases in invasive crop pest 

species richness.  

In contrast, most of the regions at the tropics, lower altitudes, or with current annual 

precipitation above approximately 1100 mm are predicted to experience decline in 

species richness (Figure 5.4 and Figure 5.7b). The largest decline in species richness is 

expected to occur in regions with high current annual mean temperatures at around 27℃ 

(Figure 5.7a). The declines in species richness are probably positive news for pest 

species control and eradication, as the overall pest occurrence risks and economic 

damages to cropping activities may be lessened. However, as the projected community 

dissimilarity in these regions are generally low (cf. Figure 5.4 and Figure 5.5) denoting 

small changes in species composition, it is unlikely that climate change can result in the 

removal of many of the existing pest species from these regions. 
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5.4.2 Physiological explanations 

Climate change can influence the pest physiology through a number of inter-related 

processes, subsequently affecting their distributions. Most of the regions projected to 

experience both increased species richness and high species turnovers are located at 

higher latitudes or higher altitudes, where the current annual mean temperatures are 

generally low (Figure 5.4 and Figure 5.5). Pest species in such regions are often living 

in environments that are presently much cooler than their physiological optima 

(Deutsch et al., 2008). Increases in temperature within their physiological optimum 

range can hence have at least two advantages in enhancing pest fitness.  

First, small increases in temperature can accumulate into a large number of degree-days 

in the physiological development times of the pest species. A pest needs to accumulate 

certain amount of degree-days to complete its life-cycle (Herms, 2004). As the globe 

warms, some regions currently do not provide sufficient degree-days within a calendar 

year for the development of some pest species may then be able to provide sufficient 

degree-days, and subsequently becoming habitable for those species. Regions currently 

already habitable for some pest species may provide even more degree-days for the 

development of additional generations of those species within a calendar year. Second, 

warming climate may also improve the overwintering survival of the pest species in 

regions currently with freezing winters. Freezing winter temperatures act as nature 
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barriers to the dispersal of crop pest species (Maxmen, 2013), but this situation may 

change with the warming climate. For example, low temperature of freezing winter is 

the dominant lethal factor for the overwintering aphids if it drops below the aphids’ 

cold tolerance. Increased winter temperatures improve their winter survival, make them 

more dangerous crop pests, and possibly lead to increased damages to agricultural 

activities (Cannon, 1998).   

A pest species’ adaptability to the climate regime of a region can be reduced if 

temperatures exceed its physiological optimum range (Netherer and Schopf, 2010). 

This may explain why most of the tropics and low altitude areas, of which their current 

annual mean temperatures are relatively high, are predicted to experience reductions in 

species richness (Figure 5.4). Further warming may result in that the temperatures 

exceed the physiological optima of the pest species in these regions, thereby affecting 

their physiological functions and resource competitiveness (Bellard et al., 2013). 

Similarly, changes in precipitation patterns can influence species distributions. In a 

warmer climate, average precipitation is expected to increase, and extreme weather will 

become more frequent (IPCC, 2013). Increased precipitation can wash off the eggs and 

drown the larvae of soil-dwelling insects (Kobori and Amano, 2003; Ziska et al., 2010), 

and potentially push pest species spreading into areas that are of lower precipitation. 

Drought, as a precipitation extreme, can increase plant carbohydrate concentrations, 
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making host plants more attractive to insects (Ziska et al., 2010). Nevertheless, 

compared to the relationship between species richness change and temperature (Figure 

5.7a), the relationship between species richness change and precipitation does not 

exhibit multiple distinguishable peaks (Figure 5.7b), implying that pest species 

distributions are less sensitive to precipitation variation than to temperature variation. 

Indeed, prior work has suggested a relatively lesser impact of precipitation on the pests 

than temperature change (Herms, 2004). 

5.4.3 Limitations 

Although the coefficient of variation regarding the model projections for species 

turnover revealed small uncertainties in most parts of the study area (Figure 5.6), large 

uncertainties were estimated in areas with higher species turnovers (Figure 5.5 and 

Figure 5.6). This indicates that the models are less certain in predicting the extent to 

which high species turnovers will occur. The predictions for 2070 also showed greater 

uncertainties than those for 2050 (Figure 5.6), signifying a less confidence for the 

predicted species turnovers for the “far” future than for the “near” future. The lower 

agreements between climate change scenarios in the predictions may be because the 

differences between the extents to which climate will change estimated from different 

greenhouse gas emission scenarios will increase with time (IPCC, 2013). Uncertainties 

associated with the modelling analysis remain with regard to the different future climate 
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change scenarios being considered. Despite these uncertainties, the findings of this 

study offer insights into the potential influences of climate change on the crop pest 

species distributions, at a global scale. 

Concerning the species occurrence records used in the ENMs, this study has focused 

on common, highly harmful, widespread, and easily detected species because they are 

of economic importance to major food and cash crops, frequently spotted and reported, 

and capable of establishing and spreading into new ecosystems (CABI, 2016). Rare 

species were not included in this study due to the potential accuracy issues involved in 

the observations of such pests. Nonetheless, certain secondary pests may become 

primary pests and expand their distributions when, for example, the environmental 

conditions become suitable (Heinrichs and Mochida, 1984; Kogan, 1998); the impacts 

of these crop pest species on future agricultural systems should hence not be overlooked. 

Future research on the influences of climate change on the distribution of such species 

would be desirable.  

It should be noted that this study has assumed species evolutionary stasis based on the 

concept of evolutionary conservatism of ecological niches (Wiens et al., 2009), 

although recent work has found that species, such as the red-legged earth mite in 

Australia, would develop higher thermal resistance to respond to novel climate (Hill et 

al., 2013). Also, this study has not considered the effects of biotic interactions for the 



 

106 
 
 

 

correlative ENMs used and the global extent examined. Prior work has suggested that 

climate tends to have a dominant control over species distributions, while the effects of 

biotic interactions appear to be less important in coarse-resolution, broad spatial extent 

analyses (Pearson and Dawson, 2003). However, the assumption of evolutionary stasis 

and the exclusion of biotic interactions may affect the estimates of species distributional 

changes (Araújo and Luoto, 2007). Fusing correlative and mechanistic ENMs, which 

can take more ecological interactions and evolutionary assumptions into consideration 

(Mokany and Ferrier, 2011), is likely to address these issues of uncertainty. 

Lastly, this study held a relatively conservative view about climatic change. Despite of 

Paris Agreement, it might be problematic to assume that global warming is limited to 

well below 2℃ due to the voluntary nature of the international cooperation. It will be 

necessary to explore the two relatively extreme climatic change scenarios (i.e., RCP6.0 

and RCP8.5), so as to better understand the potential consequences to the pest species 

in extreme climatic change scenarios. For example, this study found that the relatively 

conservative climatic changes will expand the overall global distribution of the pest 

species. However, it is questionable whether stronger climatic change will diminish the 

overall global distribution of the pest species, as overheated climate tends to surpasses 

the heat tolerances of many species (see Section 5.4.2). 
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5.4.4 Recommendations 

The results of this study reinforce the prior suggestions that renewed efforts to monitor 

the occurrence of the crop-destroying organisms are important (Estay et al., 2009; Ziska 

et al., 2010; Bebber et al., 2013). Controlling crop pest species invasions associated 

with climate change will be critical in alleviating the potential threats to global food 

security that may lead to long-term nutritional emergencies and food crisis (Flood, 

2010). Measures to early detect and restrain the invasive crop pest species are crucial 

to prevent colonization, naturalization and further spreading of the pests (Walther et al., 

2009), because once the species become established, they are often extremely difficult 

to eradicate (Gallien et al., 2012).  

Regions predicted to experience both increases in species richness and high species 

turnovers should be focused. This includes high latitude countries such as the United 

States and Europe where agricultural productivity per unit land area is highest (Bebber 

et al., 2013). Prior work suggests that climate change is possibly beneficial to 

agricultural systems of high latitudes as present agriculture at those regions is largely 

constrained by low temperatures (Cannon, 1998). It is, however, crucial to take into 

account the influence of pest distributional change because, as demonstrated in this 

study, climate change can pose negative effects of pest invasions to those regions. The 
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threats of potential crop pest invasions to food security may therefore be further 

complicated, presenting a challenge to invasive pest species management.  

Likewise, for regions with predicted species richness reductions, their generally low 

species turnovers suggest that crop pest to food security will still be an issue of concern. 

Many less developed countries are at low latitudes and they are less able to monitor and 

manage the pests. Consequently, continuous strengthening pest control, management, 

quarantine, and eradication in these regions remains important. 

Detecting pest species invasions and monitoring their diversities at the early stage of 

their invasions are difficult. Conventional approaches of biological control, chemical 

control, and quarantine and monitoring programs have to be enhanced to reduce the 

potential invasion risks. Additionally, considering the limited financial and human 

resources, particularly in many remote rural areas, approaches to leverage on 

observations from citizen scientists (e.g., amateur entomologist, experienced farmers 

who possess useful local and indigenous pest knowledge) are desirable. VGI not only 

is a valuable data source for strategic IPM sense making, as the study of this chapter 

showcased, VGI can also be adopted in ubiquitous pest invasion surveillance for 

strategic pest control. The involvement of non-professional observers on the ground 

allows early detection and reporting of incidents of pest species invasions or anomalies 

in a real-time manner. Image recognition technology carried on smartphone application 
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can help non-professional observers accurately identify pest species through photo 

taking (Suen et al., 2014). Better information communication and interaction among 

citizen scientists, pest experts, and policy makers will be useful for monitoring and 

managing the risks from pest species distributional changes. 

Two case studies pertaining to tactical IPM, user participation incentive analysis 

(Chapter 4), and strategic IPM (the current chapter) have been presented so far. In the 

next chapter, another study specifically about VGI quality assurance will be presented, 

which will involve the development of a novel fuzzy expert system to systematically 

assure the quality of VGI.



 

110 
 
 

 

6 Utilizing fuzzy set theory to assure the quality of VGI 

As mentioned in Chapter 1 and Chapter 2, it remains challenging to assure the quality 

of VGI to ensure that valuable intelligence for managing pest risks can be derived. In 

the case studies of the previous chapters, tactical and strategic VGI sense making were 

conducted (see Chapter 4 and Chapter 5), in which the VGI were used with caution with 

regards to their quality. VGI (facilitated VGI) quality in Chapter 4 was mainly assured 

through targeted recruitment (for details see Chapter 4) and VGI quality in the case 

study of Chapter 5 was mainly assured by only collecting already validated historical 

VGI from citizens (for details refer to Chapter 5). However, on the one hand, the 

targeted recruitment approach only applies to projects based on facilitated VGI 

creations. On the other hand, already validated historical VGI data do not work for time-

critical issues at present (e.g., pest outbreaks), which need real-time quality assurance. 

Therefore, more robust VGI quality assurance approaches are needed to satisfy diverse 

scenarios of VGI-based IPM, which is the research gap that this chapter aims to fill. 

Meanwhile, this chapter aims to contribute to the understanding of the practical and 

potential roles of volunteer participants in VGI quality assurance. 

Specifically, in this chapter a fuzzy expert system for assuring VGI quality for the 

purposes pest surveillances is proposed. The system takes advantage of fuzzy set theory 

to handle data uncertainty and ambiguity inherent in VGI contributions, incorporating 
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explicitly the unique property of VGI–trust. To demonstrate the usefulness of the fuzzy 

system in handling VGI quality, the system was adopted to measure the quality of a set 

of volunteered crop pest surveillance reports collected in Xiajiang prefecture of Jiangxi 

province, China.  

The following sections of this chapter will introduce the fuzzy system first (Section 6.1 

and Section 6.2), followed by a discussion on the features of the fuzzy system, the roles 

of VGI providers in the system, and the future directions of this line of research (Section 

6.3). 

6.1 A fuzzy system 

Section 2.3.3 has reviewed how the quality of VGI is assured by the approaches from 

existing work. It also illustrated the related shortcomings. The rule-based fuzzy system 

to be presented in this section for assuring the quality of user-generated species (pest) 

surveillance reports has been informed by the literature review. The system uses trust 

as a proxy of quality, considering both the track record of the VGI contributors (i.e., 

provenance of user expertise) and the fitness of geographic context as defining factors 

of the trust. 
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6.1.1 Fuzziness in geospatial data quality 

As mentioned in Section 2.3.3.1, traditionally, geospatial data quality is categorized 

into internal quality or external quality (Devillers et al., 2005). Evaluating geospatial 

data quality of both kinds involves using realities or fitness as the baseline for 

comparison. The result of the comparison is clear-cut, or “crisp”, as they can either be 

meeting or failing to meet the standard.  

From a user perspective, VGI quality may be considered by users to be meeting the 

standard or slightly below standard, implying a transition between all levels of quality. 

It is extremely limiting to treat a VGI that is slightly below the standard in the same 

way as another VGI that virtually fails to meet the standard. Yongting (1996) proposed 

the concept of fuzzy quality to account for such a transition by expressing the quality 

with a fuzzy set instead of Boolean logic. In addition, given the role of trust in 

evaluating VGI data quality and the nature of trust being inherently fuzzy (Chang et al., 

2005), adopting fuzzy set theory to assess the quality of VGI is likely to capture more 

accurately the whole assessment process. 

6.1.2 Fuzzy set theory 

Fuzzy set was first introduced by Zadeh (1965) to model continuous phenomena. It 

generalizes conventional crisp sets by allowing their elements to have degrees of 
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membership. The membership is defined by mapping every element x from a universe 

of discourse X to an interval [0, 1], representing the degree to which x is an element of 

a fuzzy set, expressed as Eq. 6.1. 

( ) : [0,1],A x X   where 

( ) 1 A x  if x is totally in the fuzzy set; 

( ) 0 A x  if x is not in the fuzzy set; 

0 ( ) 1 A x  if x is partly in the fuzzy set.                 (6.1) 

Fuzzy set is often used for modelling subjective human reasoning using natural 

languages in which many expressions have vague or imprecise meanings (Caha et al., 

2012). It is therefore a prominent alternative to more traditional modelling paradigms 

for addressing complex, ill-defined, and less tractable systems (Manca and Curtin, 

2012). In geography, fuzzy set has been applied to modelling the uncertainty inherent 

in spatial datasets (Al-kheder et al., 2008; Zhang et al., 2014). 

6.1.3 System development 

To introduce the system development based on fuzzy set theory, the following sections 

will first describe its core fuzzy inference method. Then the two input variables (i.e., 

provenance of user expertise and fitness of geographic context), one output variable 
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(i.e., the trustworthiness of user reports), and fuzzy rules of the system will be defined. 

Lastly, the system usage will be introduced. 

6.1.3.1 Fuzzy inference 

Mamdani-style fuzzy inference is adopted in the system as it is better suited to handling 

fuzziness and data uncertainty and it works better with human inputs (Power et al., 

2001). The inference requires the developer to create both input and output membership 

functions from linguistic interpretations of a subject. It generates output values through 

compositional inference rules and a defuzzification algorithm. Details about Mamdani-

style fuzzy inference can be found in Mamdani (1974) and Negnevitsky (2005). A brief 

workflow showing how my fuzzy system derives the quality (trustworthiness) of a user 

report based on Mamdani-style is given in Figure 6.1, which has four steps as follows:  

Step 1. Fuzzification: Fuzzifying the crisp inputs of the system against appropriate 

linguistic fuzzy sets and generating membership degrees based on given 

membership functions.  

Step 2. Rule evaluation: Applying a fuzzy rule set to infer fuzzy trustworthiness outputs.  

Step 3. Aggregation of the rule outputs: Aggregating the output of each rule into a single 

fuzzy set for the overall fuzzy output.  

Step 4. Defuzzification: Defuzzifying the aggregate output fuzzy set into a final crisp 

trustworthiness score using the center of gravity (COG) algorithm. The 
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algorithm finds the point (COG) where a vertical line would slice the aggregate 

set, on the interval [a, b], into two equal masses using Eq. (6.2). 

                                            
( )

= .

( )

b

aggregate

aggregate

x a

b

x a

y y
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











   (6.2) 

 

 

Figure 6.1 Workflow of the Mamdani-style trustworthiness score inference. 

6.1.3.2 Input variable one: Provenance of user expertise 

The proposed system adopts user confidence, the strength to which a person believes 

that a piece of information is the best available (Peterson and Pitz, 1988), as a surrogate 

to represent provenance of user expertise because it has been shown that confidence 

can be a valid cue to information accuracy (Sniezek and Van Swol, 2001). This piece 

of information, specifically the level of confidence about the correctness of a user report, 

is provided by the user who has generated the report. It contributes to the willingness 

to accept a piece of information, especially when other materials about the information 

providers are unavailable (Sniezek and Buckley, 1995; Cofta, 2007). Indeed, 
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confidence has been utilized to automatically evaluate the expertise of the volunteers 

in performing tasks such as land cover map validation (Foody et al., 2013) and galaxy 

classification (Bordogna et al., 2014b).  

My fuzzy system requires users to choose a value from a ten-point Likert scale to report 

their confidence levels. The value provides a measure of self-evaluation to VGI quality. 

Following the four-level fuzzy confidence adopted in Yu and Tsai (2006), four 

linguistic fuzzy sets–Not Confident (NC), Somewhat Confident (SC), Confident (C), 

and Very Confident (VC)–are defined for the input user confidence levels, using 

standard triangular and left/right trapezoidal shapes. The corresponding membership 

functions are defined by Eq. 6.3 and illustrated in Figure. 6.2a. Note that the four fuzzy 

sets are not symmetric around the median value of the universe of discourse (i.e., five) 

(Figure. 6.2a) for the following reason. As the confidence declared by non-expert VGI 

contributors tend to be less reliable as the confidence declared by experts because some 

contributors may be somewhat overconfident about their expertise (Pulford, 1996), the 

membership functions representing moderate to relatively high levels of user 

confidence (i.e., SC, C, and VC) are shifted closer to the right end of the universe of 

discourse to compensate for over-confidence. The left starting point of VC is kept at 

7.5, allowing the values between 7.5 and 8 to have certain low degrees of membership 

to VC. 
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Figure. 6.2 Membership functions of (a) contributor confidence level, (b) fitness of 

geographic context, and (c) trustworthiness. 
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6.1.3.3 Input variable two: Fitness of geographic context 

Species (pest) occurrences usually form clusters. Therefore, fitness of geographic 

context is evaluated using spatial clustering analysis. According to Tobler’s Law, it is 

highly possible that a species (pest) can be observed at its habitat center (i.e., cluster 

center) and the possibility decreases with increasing distance away from the habitat 

center. Therefore, if a cluster of species (pest) surveillance reports is contributed by 

users, its fitness of geographic context is evaluated using its spatial proximity to the 

center of the cluster.  

The fuzzy system uses DBSCAN clustering algorithm (Ester et al., 1996) to locate VGI 

clusters. DBSCAN can effectively distinguish noise points (i.e., outliers) and discover 
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clusters with arbitrary shapes. Fitness of geographic context is quantified based on an 

inverse hyperbolic sine function (Eq. 6.4). The equation captures precisely the 

characteristics of the fitness of geographic context–it decays with the distance departing 

from the center of a VGI cluster (i.e., inverse relation with distance) by generating a 

value between 0 (zero fitness of geographic context) to 10 (perfect fitness of geographic 

context). Outliers identified by DBSCAN are assigned zero fitness of geographic 

context. 

2

1 ln 1 10,
rtc rtc

max max

Dist Dist
Fitness of geographic context

Dist Dist

  
  

       
     

               (6.4)                           

where Distrtc is the distance from a user report to its corresponding cluster center, Distmax 

is the distance between the cluster’s outermost user report and the cluster’s center. 

Following the three-level fuzzy proximity adopted in Al-kheder et al. (2008), three 

linguistic fuzzy sets–Relatively Low (RL), Medium (M), and Relatively High (RH)–are 

defined for the input fitness of geographic context, using standard triangular and 

left/right trapezoidal shapes. The corresponding membership functions are defined by 

Eq. 6.5 and illustrated in Figure. 6.2b. The fuzzy sets are symmetric around the median 

value of the universe of discourse (i.e., five) (Figure. 6.2b). 
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6.1.3.4 Output variable: Trustworthiness 

Following the five-level fuzzy trustworthiness in Song et al. (2004), five linguistic 

fuzzy sets–Very Low (VL), Low (L), Medium (M), High (H), and Very High (VH)–are 

defined for the output trustworthiness using standard triangular and left/right 

trapezoidal shapes. The corresponding membership functions with a universe of 

discourse from 0 to 10 are defined by Eq. 6.6 and illustrated in Figure. 6.2c. The five 

fuzzy sets are asymmetric around the median value (i.e., five) (Figure. 6.2c) for the 

following reasons. Goodchild and Li (2012) suggested that greater weights can be 

assigned to similar reports that are spatially clustered than to a single report. This 

system assesses clustered reports which already have relatively greater weights. 

Therefore, the fuzzy sets representing relatively poor data quality (i.e., VL and L) are 

placed closer to the left end of the universe of discourse, meaning that a trustworthiness 

can be linguistically interpreted as low or very low only when it is associated with a 
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sufficiently low value. The peak of VL is not placed at zero to ensure that the peak 

value stays the same over a certain range (Zhang et al., 2014). Additionally, the wider 

range of M can maintain sufficient overlap in adjacent fuzzy sets (especially L and M) 

for the system to respond smoothly (Negnevitsky, 2005). 
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6.1.3.5 Fuzzy rules 

The full IF-THEN fuzzy rule set defined for this system is shown in Figure 6.3, using 

a conjunction, AND, for all the rules (e.g., IF confidence level is SC AND fitness of 

geographic context is RL THEN trustworthiness is VL). The conjunctions in the fuzzy 
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rules are evaluated using the fuzzy operation intersection (Negnevitsky, 2005). 

Assuming that A and B are two fuzzy sets membership functions A  and B , 

respectively, the fuzzy operation intersection for creating the intersection of the two 

fuzzy sets is expressed as Eq. 6.7. 

 

Figure 6.3 Fuzzy rule set defined for the system, using a conjunction, AND, for all the 

rules. 

( ) [ ( ), ( )].A B A Bx min x x                (6.7) 

6.1.3.6 System output surface 

To evaluate the performance of a Mamdani-style fuzzy system, I used its three-

dimensional output surface following the suggestion by Negnevitsky (2005). A 

satisfactory system building is achieved through empirical tunings until the system 

generates a gradual changing surface which appropriately emulates subjective human 

reasoning regarding how the interactions of the system’s inputs influence its output in 

the context the problem is viewed.  
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The output surface of my system is shown in Figure 6.4. The membership functions 

and the fuzzy rules mentioned above are decided based by assessing this surface. The 

general trend should be that higher user confidence levels and higher fitness of 

geographic context lead to higher trustworthiness, while certain special considerations 

should be appropriately reflected on the surface. For example, if a report has an 

extremely low user confidence level (meaning a very low user expertise), its 

trustworthiness should be very low even if its fitness of geographic context is high. 

Conversely, even if a report has an extremely low fitness of geographic context, its 

trustworthiness should be moderate if its user confidence level is very high.    

 

Figure 6.4 Output surface of the fuzzy system. 
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6.1.3.7 System usage with a running example 

Figure 6.5 shows an example of generating trustworthiness of a reporting (7.68) with 

two crisp inputs of confidence level (8) and fitness of geographic context (6.5). The red 

vertical line through the aggregate output fuzzy set depicts location of the COG. 

 
Figure 6.5 Fuzzy inference process for an assumed user report. 

Once the system generated the trustworthiness scores for a VGI dataset, a user-preferred 

threshold is used to reject or accept the reports. Non-outlier reports with trustworthiness 

scores lower than the threshold will be rejected and will be accepted if otherwise. 

Outlier reports should be specially treated. Outlier reports with trustworthiness scores 

lower than an assigned threshold can be simply discarded. However, outlier reports 

above the threshold should be treated with caution. It should be reserved or held for 

further observations, i.e., to see whether or not similar reports will be reported nearby 

to confirm it.  
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The selection of threshold is context-dependent and subject to the accuracy 

requirements of specific projects. Setting a higher threshold can reduce the number of 

false positives (FP), but it will inevitably increase the number of false negatives (FN). 

Setting a lower threshold can reduce the number of FN, while it will increase the 

number of FP. In the context of VGI, FN is actually better than FP. Because rejecting 

good quality VGI incorrectly is actually better than accepting poor quality VGI 

incorrectly. Certainly one can choose a very high threshold to only collect VGI with 

extremely high trustworthiness scores, and ignoring FN.  

This system has been implemented using the following tools. DBSCAN algorithm was 

integrated to ArcGIS (ESRI Products, Redlands, CA) as an extension through Python. 

The fuzzy logic toolbox of MATLAB was used for performing the fuzzy inference. 

Figure 6.6 illustrates the architecture of the implemented system.   

 

Figure 6.6 Architecture of the system implementation. 



 

126 
 
 

 

6.2 Case study: A VGI-based crop pest surveillance 

In order to demonstrate the usefulness of the fuzzy system in handling VGI quality, the 

system was adopted to measure the quality of a set of crop pest surveillance reports 

collected in Xiajiang prefecture of Jiangxi province, China. 

6.2.1 Study design and data analysis 

6.2.1.1 VGI collection and quality assessment using the fuzzy system 

The major crop type cultivated in Xiajiang prefecture was rice which accounted for 

around 90% of the total cropland of the prefecture (216km2). Two hundred local rice 

farmers distributed across the prefecture were recruited to conduct a rice pest 

surveillance. 

The pest surveillance was conducted by the farmers from 15 to 25 August, 2014. They 

reported rice pest incidents (pest occurrences, damages, or both) observed during their 

daily farming activities. To report an observed pest incident, the observer inserted a flat 

bamboo chip firmly into the soil of the rice paddy where the pest incident was observed. 

The observer also recorded the species name, observation time, and confidence level 

on the bamboo chip. No other coaching to the farmers was conducted to ensure a 

minimum intervention to the user contributions. Hence the volunteered crop pest 

surveillance data can be considered as active VGI (see Section 2.1.2 about the forms of 
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VGI creation). There was no pre-defined criteria confining the participant recruitment. 

That is, differing from those participants recruited for the study in Chapter 4, here the 

abilities of the participants in pest recognition were not known beforehand. After the 

pest surveillance, I collected the geographic coordinates of the inserted bamboo chips 

using Trimble® GeoXT handheld GPS devices which delivered a 50 cm positioning 

accuracy. 

Various rice pest incidents were reported, the species included mainly rice stem borers, 

rice leaf rollers, rice plant hoppers, rice water weevils, and mole cricket. Of the species, 

the rice stem borers’ scope of activity was relatively fixed over time. It thus would be 

easier to conduct post-surveys to verify the actual presences of the reported rice stem 

borer incidents. Rice stem borer incident reports were therefore used to evaluate the 

usefulness of the system. During the pest surveillance period, 209 rice stem borer 

incident reports were collected. 

The quality of the 209 incident reports were assessed using the fuzzy system. A 

threshold should be assigned to the generated trustworthiness scores of the reports to 

determine whether or not a report should be accepted. As mentioned above, one can set 

a high threshold to only collect VGI with extremely high trustworthiness scores and 

ignore FN. In this case study, however, I intended to preserve as many reports as 

possible. Thus, a moderate threshold is more appropriate. I used a range of thresholds, 
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from 4 to 6 with an increment of 0.2, to evaluate the performance differences. Outliers, 

if any, were specially treated according to the method stated in Section 6.1.3.7. The 

system generated categorical results, i.e., accepted, rejected, and withheld. 

6.2.1.2 Ground truth data collection 

From 26 August to 1 September, 2014 (immediately after the pest surveillance 

conducted by the farmers), a field pest survey was conducted by the pest management 

experts from the local agricultural department to verify the actual presences of the 209 

reported rice stem borer incidents. The experts scrutinized the evidences including 

feeding wounds or holes, larval frass, egg masses, damage symptoms, and pupas of the 

stem borers within a two-meter buffer zone (considering the mobility of the borers) 

surrounding each bamboo chip. If none of these evidences could be detected within the 

buffer zone of a report, the report was rejected by the experts; and was accepted if 

otherwise. The pest survey thus generated categorical results, i.e., reports being 

accepted and reports being rejected. Since the survey was conducted by experienced 

experts, the results of which were considered as accurate ground truth data. 

6.2.1.3 Conformity tests 

Subsequently, conformity tests were conducted. For each threshold within the interval 

[4, 6], a Cohen's kappa statistic (Viera and Garrett, 2005) showing the degree of 
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agreement between the fuzzy system-generated results and the pest survey results was 

calculated. The sensitivity (Eq. 6.8) and specificity (Eq. 6.9) were also calculated, 

respectively. Note that the reports in withheld status were not included in the 

calculations. The system-generated results corresponding to the highest kappa value 

were mapped for visualization, for which a confusion matrix was provided to show the 

details about the degree of agreement. 

                                             
/ ( ),Sensitivity TP TP FN 

                                            (6.8) 

                                             
/ ( ),Specificity TN TN FP 

                                           (6.9) 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and 

false negative, respectively. 

To evaluate the impacts of sample sizes on the system performance, randomization tests 

were performed. Using the threshold that corresponded to the highest kappa value and 

following the method mentioned above, 30 rounds of conformity test using 30 groups 

of different subsets from the whole sample set were conducted. That is, ten groups of 

90%-subset, ten groups of 60%-subset, and ten groups of 30%-subset were randomly 

extracted from the whole dataset to conduct the conformity tests. Cohen's kappa statistic 

was calculated for each run of the tests. Mean and standard deviation were calculated 

for the Cohen's kappa statistics from each of the same percentile subsets. 



 

130 
 
 

 

6.2.2 Results 

The fuzzy system identified from the 209 rice stem borer incident reports eight clusters 

and 16 outliers (Figure 6.7a) and trustworthiness scores from 0.51 to 9.10 (Figure 6.7b).  

 

Figure 6.7 Maps showing the VGI quality assessment results generated by the fuzzy 

system. Background map is the road map of Bing Maps. Thumbnail on the lower right 

corner shows the relative location of Xiajiang prefecture in China. (a to c) Grey 

polyline represents boundary of Xiajiang prefecture. (a) 209 reported rice stem borer 

incidents. (b) Inferred trustworthiness scores of the reports. (c) Final statuses of the 

reports based on a threshold five. 

The results of the conformity tests using different thresholds are shown in Table 6.1. 

The sensitivity and specificity values confirm that elevating and lowering the thresholds 

can increase the numbers of FN and FP, respectively, leading to lower kappa values. 

The highest kappa value (0.67) corresponds to the thresholds 4.8 and five. Therefore, 

for the purpose of this case study, the integer five was adopted as the threshold for 
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further analyses, although the threshold 4.8 obtained a same kappa value as the 

threshold five did.  

Table 6.1 Results of the conformity tests using different thresholds. 

Threshold 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 

Kappa value 0.59 0.59 0.64 0.62 0.67 0.67 0.37 0.35 0.34 0.34 0.29 

Sensitivity 0.98 0.98 0.98 0.96 0.96 0.96 0.76 0.73 0.70 0.69 0.65 

Specificity 0.53 0.53 0.59 0.60 0.66 0.66 0.73 0.76 0.81 0.81 0.81 

With a threshold five, see Figure 6.7c, the fuzzy system rejected 29 reports, including 

six outliers with trustworthiness scores lower than five (red circles), and accepted 170 

reports (green circles). Ten outlier reports were held (blue circles) due to their relatively 

high user confidence levels associated. The conformity test showed that around 91% of 

the fuzzy system-generated results agreed to the survey results with a corresponding 

kappa value 0.67. Details are visualized by the confusion matrix shown in Figure 6.8. 

Regarding the ten pest incident reports that were held, eight of which had in fact 

suffered infestations according to the survey results. 

 

Figure 6.8 Confusion matrix visualizing the degree of agreement. 

Lastly, using the threshold five, it was observed that the system performed better with 

larger sample sizes, as the mean kappa values increased with the increase of sample 



 

132 
 
 

 

size (Figure 6.9). The standard deviations also decreased with the increase of sample 

size (Figure 6.9). 

 

Figure 6.9 Means and standard deviations (shown as whiskers) calculated for the 

Cohen's kappa statistics from the three groups of percentile subsets extracted for 

testing the impacts of sample sizes. 

6.3 Discussion 

6.3.1 Features of the system 

Using the pest surveillance data, it is demonstrated that fuzzy set theory can lead to 

desired VGI quality assurance results in a near real-time manner. The fuzzy system was 

developed based on the idea that the quality of VGI can be assured based on its 

geographic context and provenance of user expertise, and trust can be used as a proxy 

of quality. Fuzziness involved in trust judgement requires special attentions, and quality 

itself is also inherently fuzzy. Therefore, fuzzy set theory was adopted as the key to the 



 

133 
 
 

 

system design, which easily incorporates semantic knowledge into the quality 

assessment. Bordogna et al. (2014a) promote a linguistic decision-making approach to 

assess the quality of VGI. The system developed here extends their work by 

demonstrating the utility of fuzzy set theory in assessing the quality of user-contributed 

species (pest) surveillance reports in particular. 

The system design echoes the view of Van Exel et al. (2010) that assessing VGI quality 

must consider not only feature quality and user quality but also the interdependency 

between them. To account for fitness of geographic context (feature quality), DBSCAN 

clustering was used for identifying VGI clusters. As pointed out by Goodchild and Li 

(2012), quality measures of VGI can arise from the data themselves. More credit can 

be given to a clustering of similar reports than to a single report, in which case one can 

develop metrics of quality based on the clustered reports. In the current system, the 

metric is based on the proximities of user reports to their corresponding cluster centers. 

It resembles Gao et al. (in press) in which a distance-decay function is used to measure 

the memberships of a cluster of VGI points assigned to Harvard University campus. 

The closer a point was to the campus core area, the higher membership the point 

obtained. Similarly, Liu et al. (2010) used an interpolation procedure to measure the 

weights of candidate point locations assigned to South China region. The closer a 

location was to the core area of South China region, the higher weight the point obtained. 

In addition, confidence was used as a surrogate to represent provenance of user 
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expertise (user quality). The case study confirmed that requesting the volunteers to self-

evaluate the correctness of their observations was useful for assessing the quality of the 

generated information (i.e., the role in VGI metadata creation). By considering the 

interdependency between the feature quality and user quality, the fuzzy system could 

detect those VGI which seemed to fit geographic context well but virtually were of high 

uncertainty. Note that this system satisfies both active VGI (participant capability is 

unknown beforehand) and facilitated VGI creation (participant capability is known 

beforehand). For active VGI creation, fitness of geographic context and a participant’ 

confidence level provide indicators for the post-assessment of VGI quality; while for 

facilitated VGI creation, assessing fitness of geographic context and the confidence 

level helps enhance the quality of VGI further. 

Through the compositional inference rules (Figure 6.3), the system can appropriately 

emulate human reasoning about how the interactions of the two system input variables 

influence the system output (Figure 6.4). Using a simple linear method, for example, 

combining the values of the two variables by summation does not have the same 

capability, which will be demonstrated by three exemplar input-output combinations in 

Table 6.2. For Combinations 1 and 2, the simple linear method obtains two identical 

values (i.e., 12), while the fuzzy system generates two different values (i.e., 3.6 and 5). 

This is an advantage of using rule-based fuzzy system. In Combination 1, although the 

fitness of geographic context is perfect, the fuzzy system treats the report as being less 
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trustworthy than that of Combination 2 due to its overly low user confidence. In 

Combination 2, although the fitness of geographic context is relatively low, the system 

ranks the report with higher credibility as the user confidence is very high. In 

Combinations 1 and 3, using the simple linear method obtains two different values (i.e., 

12 and 7.9), while the fuzzy system generates two identical values (i.e., 3.6). The former 

method gives more credit to Combination 1. However, for human judgement, it appears 

to be less appropriate due to its overly low user confidence level. Therefore, a fuzzy 

system with appropriately defined system parameters (e.g., membership functions) can 

deal with such complicated non-linear cases through mimicking human thinking. 

Table 6.2 Three different input-output combinations.  

Combination C F T Sum 

1 2 10 3.6 12 

2 10 2 5 12 

3 5 2.9 3.6 7.9 

C, F, and T denote user confidence level, fitness of geographic context, and system-

derived trustworthiness, respectively. 

Furthermore, VGI datasets are often large in volume as VGI contributors on the ground 

are ubiquitous. In the case study, although the entire dataset was not large, a trend was 

observed that the system’s performance improved with increasing sample size, rather 

than the opposite (Figure 6.9). The system is also robust at handling non-clustered VGI 

(i.e., outlier VGI detected by DBSCAN). Such VGI can be processed with two options, 

i.e., discarding (for reports with low user confidence levels) and holding (for reports 

with high user confidence levels), than simply being rejected as poor quality VGI. In 
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the case study, the survey results showed that eight of the ten outlier reports with 

holding statuses had in fact suffered pest infestations. This supports my thought that 

outlier VGI should not be simply discarded. 

Lastly, since user histories (provenance) can be harvested from VGI and fitness of 

geographic context can be determined from VGI, the approach also has a potential to 

be adapted and applied to similar VGI applications in different contexts, e.g., VGI-

based earthquake casualty surveillances.  

6.3.2 Potential future improvement 

The fuzzy system should be extended in ways that generalize its applicability. Fuzzy 

logic enables tools to model the inherent fuzziness that would otherwise be neglected 

by traditional crisp logic, while it also introduces subjectivity into the modelling process. 

Imprecision related to subjectivity has often been cited as a limitation in conventional 

fuzzy systems (Al-kheder et al., 2008; Adhikari and Li, 2013). In this study, although 

the selection and turnings of the system parameters are justified, they are still the results 

of a subjective process. Therefore, optimizing system parameters is perhaps the most 

important.  

Taking the case study for example, the highest kappa value obtained was 0.67 on a 91% 

agreement. Although 0.67 is considered a substantial agreement (Viera and Garrett, 
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2005), the specificity (0.66) was not as good as the sensitivity (0.96) (Table 6.1). In 

order to preserve as many reports as possible while reducing false positive value, one 

solution is to further improve the system through parameter calibrations (e.g., 

membership function calibrations) based on sensitivity analyses using the pest survey 

data (ground truth data) collected in the case study. After the calibrations, the system 

can be generalized to larger spatiotemporal extents with greater reliability. Another 

solution is to use the consensus approach in which system parameters are optimized 

based on the subjective opinions of multiple decision-makers (Zhang et al., 2014). 

However, both solutions are often laborious and time-consuming. To remediate this 

problem, a machine learning approach, which involves the use of artificial neural 

network to determine the appropriate system parameters automatically, seems more 

promising as demonstrated in studies using the combined neuro-fuzzy systems for 

understanding environmental quality issues, such as Carnevale et al. (2009) and Yan et 

al. (2010). It will be interesting to investigate how such systems can be utilized to better 

assure VGI quality.  

Moreover, in calculating fitness of geographic context, the spatial extent of a cluster is 

subject to the VGI points within the cluster. A small number of false contributions in a 

VGI cluster would not significantly affect the cluster’s spatial extent (the spatial extent 

affects the memberships of the points within the cluster), especially not when point 

density of the clusters is high. However, if the majority of the contributions in a VGI 
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cluster are false contributions, my approach will be less effective because the 

uncertainty about the spatial extent of the cluster is high. This problem points to the 

need to incorporate a user reputation database to my fuzzy system to exclude 

contributions from contributors with lower reputation before my system performs a 

refined data quality assurance work. The idea is similar to that in a facilitated VGI 

creation system suggested in Cinnamon and Schuurman (2013). 

This thesis so far has proposed an enhanced conceptual framework of VGI-based IPM 

(Chapter 3), conducted VGI sense making (Chapter 4 and 5) and developed this novel 

VGI quality assurance (the current Chapter). The next chapter will draw the conclusions 

of this thesis. 
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7 Concluding remarks 

The studies introduced in the preceding chapters explored VGI for the enhancement of 

IPM. Four specific research objectives were aimed to be achieved: (1) proposing an 

enhanced conceptual framework of VGI-based IPM; (2) exploring VGI sense making 

to enhance IPM; (3) developing an approach to assure the quality of VGI; and (4) 

exploring the roles of volunteer participants in VGI-based IPM, and by extension, how 

to motivate and sustain the volunteer participation. This chapter will draw the 

conclusions for this thesis in response to these research objectives. It will first 

summarize the major findings (Section 7.1). The related implications of the research 

will be discussed next (Section 7.2). Lastly, several recommendations for future work 

will be given (Section 7.3).  

7.1 Major findings 

In the following four sub-sections, the major findings of this research will be 

summarized by following the order of the research objectives listed in Section 1.3. 

7.1.1 Objective one: Enhanced VGI-based IPM framework 

In response to the first research objective, which was to propose an enhanced conceptual 

framework of VGI-based IPM, I proposed such a framework that incorporates single or 

combined methods, suited to the transformative paradigm. The framework also 
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incorporates several new elements, including the typology of VGI creation forms, the 

typology of IPM sense making, the quality assurance of VGI, and the participation 

incentive of VGI interaction. It serves as a framework of reference for enhancing IPM 

based on VGI as an alternative to the positivist paradigm adopted in traditional IPM, 

and for the development of more comprehensive VGI-based IPM. 

7.1.2 Objective two: VGI sense making for VGI-based IPM 

In response to the second research objective, which was to explore VGI sense making 

to enhance IPM, studies were conducted with regard to both tactical and strategic IPM.  

First, VGI was integrated to tactical IPM in a real case, namely the surveillance of 

overwintering striped rice stem borers by volunteer farmers (Chapter 4). Valuable 

spatiotemporal characteristics of the overwintering pest outbreak were indeed 

discovered from VGI provided by volunteer farmers, including the hot and cold spot 

clusters and their structural and locational changes over time, and the detected 

phenological events. Regarding strategic IPM, a case study was conducted to 

investigate the potential global distributional shifts of poikilothermic invasive crop pest 

species associated with climate change (see Chapter 5). The sense making results 

through ecological niche modellings provided valuable strategic insights into the 

possible direction and range of the distributional changes of invasive crop pests. 
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Note that using methods that can handle the characteristics of VGI is an important step 

of VGI sense making. The sense making methods used in the case studies have been 

shown to be quite suited to doing so. The hot spot analysis (Getis-Ord Gi* statistic) 

(Chapter 4) and the ecological niche modelling (Chapter 5) simply need random, 

offhand species occurrence observation data. In other words, generating data on a 

regular basis is unnecessary. In addition, the degree-day model used in the phenological 

analysis (Chapter 4) does not need continuous data collection over very long periods of 

time as needed by other pest analysis models such as regression and artificial neural 

network (Yan et al., 2015). Although it is challenging for individual non-professional 

pest observers to correctly identify and report the occurrence time of phenological 

events (see Section 2.3.3.2), collectively, phenological information may be derived 

(through change point analysis) as long as pest incidents are intensively reported during 

a certain period of time (e.g., pest outbreak period).  

7.1.3 Objective three: VGI quality assurance for VGI-based IPM 

To achieve the third research objective of this thesis, which was to develop an approach 

to assure the quality of VGI, Chapter 6 presented an expert system developed for 

assuring the quality of VGI based on fuzzy set theory. It was found that the degree to 

which the quality measurement results generated by the expert system conformed to 

our actual field survey results was satisfactory. In addition, qualitatively speaking, 
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various features of the system have been shown in the study of Chapter 6, including 

mainly its advantages in terms of linguistic fuzziness handling, geographic context 

measuring, provenance acquiring, and outlier treating. Note that the results further 

found that the measurement results are threshold-dependent, selecting an appropriate 

threshold for different contexts is essential for achieving the best quality assurance 

results. 

7.1.4 Objective four: Participant roles and incentives in VGI-based 

IPM 

The last research objective of this study was to investigate the roles that volunteer 

participants can play in VGI-based IPM, and the ways of motivating and sustaining 

volunteer participation. 

From this study, three types of roles for volunteer participants were identified. The first 

type of roles showcased in this study is to do with the basic geospatial data that 

volunteer participants can contribute for knowledge discovery and decision-making 

(see Table 7.1, and also Chapter 4 and 5). For this type of roles, participants play an 

active role in the surveillances of domestic and exotic pests in the field. They provide 

their real-time and ubiquitous pest surveillance information for the updating of pest 

databases, knowledge, and maps, and for facilitating farmer-to-farmer or farmer-to-

researcher communications regarding pest risks. Note that the geospatial information 



 

143 
 
 

 

provided by the participants for tactical IPM can be reused or repurposed for strategic 

IPM, and vice versa. For instance, the VGI collected for managing the overwintering 

outbreak of the striped rice stem borers in Shuibian town of China (Chapter 4) can be 

reutilized as species occurrence locality records for the ecological niche modelling of 

Chapter 5; alien species occurrences provided for strategic IPM can also be reutilized 

for immediate responses for tactical IPM on eradication of the alien species invasions. 

However, this type of roles, is limited to the provision of pest surveillance data. 

The second type of participant roles showcased in this study involves participants in the 

creation of metadata (see Table 7.1, and also Chapter 6). Chapter 6 revealed the crowd’s 

dual roles in geospatial data collection and in ascertaining the reliability of data. 

Metadata data such as provenance of users’ expertise is an important source of 

information for evaluating the quality of VGI, which can be obtained from VGI 

contributors directly. 

The third type of roles is to do with the even higher level contributions that volunteer 

participants may make in VGI-based IPM. This involves cognitive engagements of 

volunteer participants in VGI-based IPM. These high level participant roles have been 

conceptualized and discussed in this study as a potentiality for achieving even better 

VGI-based IPM (see Table 7.1, and also Section 4.5.2 and Section 3.4). 

 



 

144 
 
 

 

Table 7.1 The roles of volunteer participants in VGI-based IPM. 

Participants’ practical and 

potential role 

Description Example 

1 Basic geospatial data 

contributions for 

knowledge discovery and 

decision-making 

(Explored) 

Identifying and 

collecting real-time and 

ubiquitous data. 

Geo-referencing data.  

Reporting data. 

Commitments of 

individual volunteers 

may vary from random 

involvements to 

continuous 

involvements.  

Cognitive engagement is 

minimal. 

 

Observing and 

identifying pest 

occurrences; collecting, 

geo-referencing, and 

reporting pest 

occurrence incidents.  

Invasive pest species 

surveillances and 

reporting. 

2 Metadata creations 

(Explored) 

Creating historical 

information about data. 

A data provider’s 

expertise, time, 

location, purpose of 

data creation. 

3 Higher level contributions 

(Conceptualized) 

Cognitive abilities of 

participants are to be 

utilized.  

Defining problems. 

Generating quantitative, 

qualitative, or 

quantitative-qualitative-

combined information. 

Processing and 

analysing data. 

Disseminating and 

exchanging information. 

Participants are even 

expected to conduct the 

whole process. 

 

Sharing pest 

surveillance 

information.  

Sharing views and 

experiences among 

stakeholders. 

Communication among 

participants and the 

authoritative 

communities. 

Social networking. 

Promotion of 

teamwork.  

Field experimenting 

and data analyses. 

In terms of the second aspect of this research objective, which is to suggest ways to 

motivate and sustain volunteer participation in VGI-based IPM, results of this study 

showed that the dissemination of appropriate information to participants can motivate 
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their participation (see Chapter 4). An important factor that was identified contributing 

to a continued and more engaged user participation was the usefulness of information 

disseminated to individual participants. The more the individual participants found the 

information of use to them, the more willing they were to contribute VGI. In the case 

study of Chapter 4, the questionnaire survey results showed that, for the farmer 

participants, information dissemination regarding temporal patterns of pest outbreaks 

(i.e., specific timings of pest risk management) tends to be more useful than spatial 

patterns (i.e., specific areas of pest risk management), so that temporal information 

dissemination should be enhanced to better satisfy user needs so as to keep them 

engaged. 

7.2 Implications 

In the following two sub-sections, the implications of this research pertaining to VGI-

based IPM will be discussed. The implications will be divided into two parts, namely 

the research implications and the practical implications. 

7.2.1 Research implications 

Before the explorations of this thesis, VGI-based IPM was only a concept, being limited 

to the primitive conceptual framework proposed by Deng and Chang (2012). This study 

proposes an enhanced framework for developing VGI-based IPM using single or 
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combined methodology under the transformative paradigm. The thesis has also 

demonstrated the value of VGI sense making for IPM enhancement, and identified 

several appropriate sense making methods. The results obtained and the experience 

shared here can increase the confidence of researchers on VGI-based IPM and enable 

them to develop and explore VGI-based IPM further. This thesis has also pinpointed 

and conceptualized the roles of volunteer participants in VGI-based IPM; it has 

explored participants’ participation incentives (see Chapter 3 to Chapter 6). These 

research outcomes provide theoretical support for the establishment and further 

development of VGI-based IPM, and methodologically enhance the existing 

participatory IPM.  

In addition to the implications for the establishment and development of VGI-based 

IPM, the specific sense making results of this research contribute to a better 

understanding of the characteristics of crop pests. With regard to the VGI sense making 

conducted for tactical IPM (Chapter 4), the knowledge discovered from the collected 

VGI are informative about the spatiotemporal distributions and phenological 

characteristics of the local rice pests. As for the VGI sense making conducted for 

strategic IPM (Chapter 5), the knowledge reflected from the collected VGI provides a 

theoretical basis for an enhanced understanding of the impacts of climatic change on 

the distributions of invasive crop pest species.  
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Furthermore, by developing a novel approach for assuring the quality of farmers’ pest 

surveillance reports in the form of the fuzzy system (Chapter 6), this study has made a 

significant contribution to the research on VGI quality assurance. An interpretative 

insight pertaining to this contribution is that it is important to account for the fuzziness 

of trust judgement if trust is used as a proxy of quality. Data quality itself is also 

inherently fuzzy. Fuzzy logic provides a promising solution for addressing fuzziness, 

which is therefore adopted as a key to the system design. The fuzzy system can generate 

satisfactory VGI quality assessment results, which demonstrate that the use of fuzzy set 

theory is indeed appropriate. Additionally, data contributor’s expertise is accounted for 

by the fuzzy system based on user self-evaluation, which has been demonstrated to be 

useful for VGI quality assessment through the case study conducted in Chapter 6. Since 

individuals can provide VGI with varying levels of accuracy, it is important to take into 

account their strengths and weaknesses when assessing VGI quality. 

7.2.2 Practical implications 

When it comes to its practical value, the implications that can be drawn from this study 

are manifold. As discussed in the previous chapters, this study has implications for the 

enhancement of IPM’s effectiveness, for preventing both short-term and long-term risks 

in agricultural productions, and by extension, for securing world food security (see 

Chapter 3 to Chapter 6). The ultimate goal of developing VGI-based IPM is to 
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revolutionize the traditional landscapes of IPM in order to maximize agricultural 

productivities. In VGI-based IPM, traditional information consumers are enabled to 

become information producers as well; experts are alleviated from data collection to 

focus on data analyses. A successfully implemented VGI-based IPM allows for the 

seamless integration of people’s daily experiences with virtual services, communities, 

and databases. 

In addition, this research provides empirical guidelines for the design of tools for the 

implementation of VGI-based IPM. For example, to assure more accurate data 

collections, incorporating a component into the tools that collects user confidence levels 

will be very helpful, as user confidence levels can account for their expertise (see 

Chapter 6). Change point analysis algorithm and hot spot analysis algorithm also can 

be easily integrated into the tools in order to achieve near-real time VGI sense making 

(see Chapter 4). For high level VGI-based IPM, enabling the tools to collect both 

quantitative and qualitative information is important, as this will stimulate users’ 

cognitive abilities in pest management (see Section 4.5.2, and Section 7.1.4). In terms 

of information dissemination, this study suggests that information disseminators should 

put more effort on disseminating information useful to individual users, so as to attract 

more contributions from them (see Chapter 4). 



 

149 
 
 

 

In addition to the implications for the tool design, the specific sense making results of 

this research also have benefits for pest managerial investments. For both the tactical 

and strategic IPM, the sense making results provide guidelines for the allocations of 

limited pest managerial resources (see Chapter 4 and Chapter 5). This can make the 

pest managerial investment more economic, efficient, and effective. 

Lastly, the VGI data quality assurance approach developed in this study may be 

generalizable. It has a potential to be adapted and applied to other VGI applications 

with similar structures but different contexts, e.g., VGI-based earthquake casualty 

surveillances (see Chapter 6). Therefore, this research also has practical implications 

for designing tools or methods for assuring the quality of VGI collected in different 

contexts. 

7.3 Recommendations for future work 

This research does not merely make significant contributions to the existing research 

and practices but also points to the directions for future studies to enhance VGI-based 

IPM further. Given the topic specificity of the key chapter of this study (Chapter 4, 

Chapter 5, and Chapter 6), limitations and recommendations for future research that 

emerged from the individual studies of those chapters have already been discussed 

earlier. The purpose of this section is to make recommendations for future research that 

are common to the overall research of this thesis. These concerns are related to: (1) the 



 

150 
 
 

 

limited use of VGI; (2) cognitive abilities of participants in IPM; and (3) user privacy 

in data sharing. 

7.3.1 The limited use of VGI 

Due to the constrains from the current developmental status of VGI-based IPM, this 

study suffers from the limited uses of VGI. In Chapter 4, a facilitated VGI approach 

was used, where the participants participated with their own interest in crop protection 

without obtaining any monetary remuneration or material compensation. However, as 

mentioned in Section 2.1.2, facilitated VGI creation approach may have limited ability 

to truly foster the empowerment of marginalized communities, compared to active and 

passive VGI creations, due to its inherent constrains on participant abilities, data 

contribution freedom, and geographic extents. In Chapter 5, the study depicted that 

ecological niche modelling can be used to make sense of the VGI to manage pests 

strategically. The study was with a global scale, partially due to the sparseness of the 

existing pest occurrence records. If unlimited species occurrence records can be 

contributed, finer resolution (e.g., continental level, country level, or state level) 

ecological niche analyses can be conducted so as to better manage pests. Therefore, 

strengthening VGI-based IPM platforms (e.g., mobile phone platforms) to encourage 

drastic VGI creations is suggested as a future work, and hence big VGI data related to 

IPM are expected in the future. It has been revealed by this thesis that VGI sense making 
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can indeed general beneficial knowledge for IPM, but more interesting and meaningful 

knowledge may be discovered through big data analyses. To handle big VGI data, the 

sense making methods adopted in this thesis can still be explored. However, a variety 

of big data sense making methods can also be explored with big data. For example, 

Steiger et al. (2016) proposed a geographic, hierarchical self-organizing map to analyze 

the spatial, temporal, and semantic characteristics of georeferenced tweet data. Zheng 

et al. (2012) exploited the concept of mobility entropy and Markov chain model to mine 

travel patterns from geotagged Flickr photos. Hagenauer and Helbich (2012) mined 

urban land-use patterns from OpenStreetMap using artificial neural networks and 

genetic algorithms. Although these VGI sense makings were not in the context of IPM, 

the data mining methods adopted in these studies could be insightful for the VGI sense 

making for enhancing IPM. In addition, for the fuzzy system of VGI quality assurance 

developed in Chapter 6, it will be necessary to test the system with big data as inputs to 

examine its performance. Therefore, collecting, storing, analyzing, and disseminating 

big VGI data will be an important future task.   

7.3.2 Cognitive abilities of participants 

Although this study explored VGI-based IPM, the information that the participants 

provided was only limited to location-based quantitative pest observation information 
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and the related metadata. i.e., simple crowdsourcing in which cognitive ability is 

minimal.  

In the future research, it will be necessary to explore the cognitive abilities of 

participants for VGI-based IPM based on the enhanced framework of VGI-based IPM 

proposed in Section 3.4. Higher level user participations require more effective 

consultations, deeper involvements and engagements, and closer collaborations in VGI-

based IPM, in which participants’ knowledge, perceptions, constraints, objectives, and 

their complex demands can be fully dealt with. Additionally, cognitive abilities can also 

be utilized to assure the quality of VGI. For example, discussion forums can be built to 

discuss the quality of various information contributed by others. Furthermore, referring 

back to Chapter 3, since VGI is diverse, various methodologies can be employed in 

VGI research, involving collection and analysis of either quantitative data, or 

qualitative data, quantitative-qualitative-combined data. Therefore, corresponding 

supporting methods, protocols, infrastructures, and strong guidance should be 

developed to fulfill VGI-based IPM that have more profound impacts than simple 

crowdsourcing of pest surveillances. Perhaps, learning the valuable experiences gained 

from farmer-field-school (see Section 2.2.1), or incorporating certain successful 

components of farmer-field-school into VGI-based IPM would be promising. 
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7.3.3 User privacy 

A commonality shared among various VGI application domains is that participants’ 

data are prepared for others’ uses. This, of course, as all data on human subjects 

“inevitably raises privacy and security issues, and the real risks of abusing such data 

are difficult to quantify” (Boyd and Crawford, 2012). Roick and Heuser (2013) 

identified four specific categories of privacy threats: identity privacy; location privacy; 

absence privacy (e.g., not at home); and co-location privacy (e.g., inferring the location 

of a user according to the locations of the other users). The fuzzy system developed in 

Chapter 6 does not need to collect user particulars to assess user expertise, which 

reduces the concern with user identity privacy. However, the overall research in this 

thesis does not have any component to reduce the potential infringements of location 

privacy, absence privacy, and co-location privacy.  

Privacy and security are always top issues in technology communities (Goranson et al., 

2013), and they are even amplified in VGI environments (Ricker et al., 2014). Since 

there is no explicit data manager in VGI environments, individual information uploaded 

to a virtual space mostly become available to anyone and can be used for any purpose. 

The vast amount of information about individuals could even be leveraged by ill-

disposed attempts. Although a VGI author can request administrators to delete his/her 
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information permanently for preventing potential infringing acts, his/her personal 

information may have already been transmitted by other users before the deletion.  

Considering the potential surveillance capability and intrusiveness of VGI, many 

people are reluctant to make their information available to the general public, as well 

as to governments (Goodchild, 2007a). For instance, some farmers may not be willing 

to reveal that their farms suffer more pest infestations than other farms do, due to certain 

commercial considerations. In this case, perhaps developing a VGI visualization 

method using relative relationships based on topological maps rather than absolute 

relations will reduce such concerns. Facilitated approaches to VGI may be able to avoid 

these concerns, because such approaches may not produce geospatial information that 

are accessible to the general public (Cinnamon and Schuurman, 2013). But when using 

facilitated VGI, one also needs to be cautious about potential risks of user information 

leakages. There is therefore a necessity to explore more robust ways to protect user 

privacy during data collection, analysis, and dissemination. 
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Appendices 

Appendix 1 An additional analysis about the spatial distribution of the detected hot 

and cold spots. 

Based on Getis-Ord Gi*, it was observed that the pest hot spot discovered based on the 

entire VGI dataset was located in an area with a high woodland coverage, a low 

coverage of residential area, and the area was relatively far away from the local 

agricultural department. On the contrary, the cold spot was located in an area with a 

low woodland coverage, a high coverage of residential area, and the area was relatively 

nearer to the local agricultural department. Several possible explanations for these 

observations have been given in Section 4.5.1. Therefore, I hypothesized that the 

woodland coverage and distance to the local agricultural department were positively 

related to the occurrences of the hot spots (i.e., the occurrences of higher z-scores). On 

the contrary, the coverage of residential area was hypothesized to be negatively related 

to the occurrences of the hot spots. 

In order to seek statistical supports, the land use/land cover of the study area was first 

digitized based on Google Earth using satellite imagery @ 2015 CNES/Astrium. An 

ordinary least squares (OLS) multiple linear regression was conducted using ArcGIS 

10.0 (ESRI Products, Redlands, CA) by following the procedures as follows: 
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Step 1. Interpolating the Getis-Ord Gi* statistics or z-scores over the study area to 

generate a raster surface with 250 m cell size (970 cells in total). The 250 m cell size 

was determined based on average nearest neighbor distance (Bruce et al., 2014). 

Step 2. A fishnet vector layer containing 970 polygons (250 m by 250 m) was generated 

from the raster surface. Each polygon has a normalized z-score attribute (from 0 to 1) 

as the dependent variable (Appendix 1.1a), using linear normalization (Eq. A1): 

    ( ) i min
i

max min

y y
Linear normalized y

y y
 ，

-

-
            (A1)        

where ymin is the minimum value of the dependent variable, ymax is the maximum value 

of dependent variable.  

Step 3. The percent coverage of residential area in each polygon was calculated as one 

of the independent variables (Appendix 1.1b). 

Step 4. The percent coverage of woodlands in each polygon was calculated as the 

second independent variable (Appendix 1.1c). 

Step 5. The distance from each cell center to location of the local agricultural 

department was calculated as the third independent variable (Appendix 1.1d). 
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Step 6. Possible mathematical transformation was conducted if any assumption of the 

regression was violated. 

The following regression equation (Eq. A2) was the result obtained from the OLS 

regression analysis: 

          z-score = -0.087RESI** + 0.423WOOD** + 0.042DIST** + 0.141**,              (A2) 

where RESI denotes the percent coverage of residential area, WOOD denotes the 

percent coverage of woodlands, DIST denotes the distance to the agricultural 

department, ** represents a statistical significance at 99% confidence level, i.e., both P 

and robust P < 0.01. All the three independent variables were statistically significant. 

There was no multicollinearity among the independent variables (Variance Inflation 

Factors < 7.5). The overall model was significant according to the joint Wald statistic 

(P < 0.01). The three variables together explained a meaningful proportion of the 

variance (R2 = 0.43). However, the Jarque-Bera statistic was significant (P < 0.01), 

indicating that the residuals (model over and under predictions) were not normally 

distributed. In addition, the homoscedasticity assumption (the residuals should have a 

constant variance) was violated. 
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The problems mentioned above were solved by taking the square root of the dependent 

variable, i.e., predicting the square root of the dependent variable from the independent 

variables. Lastly, the following regression equation (Eq. A3) was obtained: 

       Sqrt (z-score) = -0.077RESI** + 0.311WOOD** + 0.043DIST** + 0.357**      (A3) 

Where Sqrt (z-score) denotes the square root of a z-score. The overall model was also 

significant according to the joint Wald statistic (P < 0.01) and R2 equaled to 0.45. All 

the assumptions of the regression were satisfied. The coefficients had the expected sign. 

The woodland coverage and distance to the local agricultural department significantly 

related to the square root of the clustering index (Getis-Ord Gi* statistics or z-scores) 

in a positive way, and the coverage of residential area significantly related to the square 

root of the clustering index in a negative way (both P and robust P < 0.01). Therefore, 

the hypotheses were supported. 

However, spatially autocorrelated residuals was observed, which was confirmed by the 

Global Moran’s I (I = 0.85, z = 36.37, P = 0.00). Statistically significant spatial 

autocorrelation is often a symptom of misspecification (one or more key variable is 

missing from the model). Indeed, the variance explained by the three independent 

variables was not quite high (R2 = 0.45). Therefore, further investigation is needed to 

fully understand all possible influencing factors contributing to the pest distribution. 

After that, spatial regression analysis (e.g., geographically weighted regression) may be 
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adopted to better understand specifically how these factors contribute to the observed 

pest distribution pattern in different parts of the study area, so as to better manage the 

pest infestations.  

Appendix 1.1 (a) Dependent and (b-d) independent variables of the OLS multiple 

linear regression. 
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Appendix 2 List of the 76 invasive pest species with their scientific names, common names, species taxonomies, and predicted future changes in the mean probability of presence 

under four climatic projections. The 76 species were selected based on their economic importance or quarantine significance to major food and cash crops recorded in CABI 

(2016). In addition, these species are common, highly harmful, widespread, easily detected, and frequently spotted and reported. They have been recorded in CABI (2014) as being 

capable of establishing and spreading into new ecosystems. The distributions of these 76 species together cover all climatic zones and all the continents, except for Antarctica, 

thereby representing a wide spectrum of the locations across the globe. According to Oerke et al. (2012), CABI (2016), and Agropages (2015), the 76 pest species were classified 

into three categories based on their main host plants/plants affected. Category ‘A’ species mainly causes high economic losses to major food grains including cereal crops, tuber 

crops, and legumes. Category ‘B’ species mainly causes high economic losses to major cash crops including sugar-yielding crops, oil-bearing crops, fibres, fruits, vegetables, floral 

crops, melon crops, nuts, raw materials crops, aromatic crops, tobacco, tea, coffee, and cocoa. Category ‘C’ species can cause high economic losses to both major food grains and 

major cash crops. 

Scientific name Common name Species taxonomy Host plants/ 

plants affected 

Change in mean probability of presence 

  

2050-RCP2.6 

 

2050-RCP4.5 

  

2070-RCP2.6 

 

2070-RCP4.5 

Agrotis ipsilon black cutworm Insecta C -0.007 -0.017 0.001 -0.010 

Anthonomus grandis Mexican cotton boll weevil Insecta B  0.007 0.008 0.006 0.020 

Aphis gossypii cotton aphid Insecta C -0.017 -0.032 -0.012 -0.026 

Bactrocera cucurbitae melon fly Insecta C 0.070 0.064 0.070 0.062 

Bactrocera dorsalis Oriental fruit fly Insecta B 0.122 0.124 0.123 0.133 

Bactrocera oleae olive fruit fly Insecta B 0.003 0.002 0.004 0.006 
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Bemisia tabaci tobacco whitefly Insecta C -0.005 -0.012 0.002 -0.010 

Brevipalpus phoenicis false spider mite Arachnida B 0.068 0.065 0.071 0.068 

Callosobruchus chinensis Chinese bruchid Insecta A 0.091 0.070 0.075 0.048 

Callosobruchus maculatus cowpea weevil Insecta A 0.001 -0.007 0.008 -0.001 

Cerataphis lataniae palm aphid Insecta B 0.003 0.021 0.008 0.004 

Ceratitis cosyra mango fruit fly Insecta B -0.029 -0.041 -0.033 -0.040 

Chilo partellus spotted stem borer Insecta C 0.018 0.007 0.009 0.013 

Chilo suppressalis striped rice stem borer Insecta A 0.040 0.044 0.054 0.059 

Chrysodeixis chalcites golden twin-spot moth Insecta C -0.009 -0.013 -0.009 -0.015 

Eriosoma lanigerum woolly aphid Insecta B 0.000 -0.001 0.006 0.005 

Cornu aspersum common snail Gastropoda C -0.010 -0.016 -0.009 -0.012 

Helicoverpa armigera cotton bollworm Insecta C 0.016 0.003 0.018 0.009 

Crocidosema plebejana cotton tipworm Insecta B 0.039 0.033 0.043 0.037 

Cylas formicarius sweet potato weevil Insecta A 0.005 -0.010 -0.002 -0.012 

Deroceras reticulatum grey field slug Gastropoda C -0.009 -0.021 -0.012 -0.011 
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Diabrotica virgifera virgifera western corn rootworm Insecta A 0.004 -0.004 0.006 0.009 

Dinoderus minutus bamboo borer Insecta B 0.088 0.069 0.085 0.064 

Diuraphis noxia Russian wheat aphid Insecta A 0.001 -0.006 -0.003 0.003 

Ferrisia virgata striped mealybug Insecta C -0.014 -0.025 -0.013 -0.021 

Frankliniella occidentalis western flower thrips Insecta C -0.040 -0.047 -0.037 -0.039 

Grapholita molesta oriental fruit moth Insecta B 0.042 0.035 0.047 0.048 

Helicoverpa zea American cotton bollworm Insecta C -0.025 -0.038 -0.026 -0.033 

Heliothrips haemorrhoidalis black tea thrips Insecta B 0.011 -0.003 0.014 0.006 

Heterodera glycines soybean cyst nematode Heteroderidae A 0.014 0.013 0.017 0.024 

Heterodera goettingiana pea cyst eelworm Heteroderidae A 0.015 0.014 0.018 0.021 

Heteropsylla cubana leucaena psyllid Insecta B 0.090 0.073 0.086 0.074 

Hypothenemus hampei coffee berry borer Insecta B -0.002 -0.004 -0.001 0.000 

Leptinotarsa decemlineata Colorado potato beetle Insecta C 0.009 0.004 0.011 0.013 

Liriomyza sativae vegetable leaf miner Insecta C -0.039 -0.060 -0.036 -0.053 

Lissachatina fulica giant African land snail Gastropoda C 0.094 0.085 0.093 0.090 
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Lissorhoptrus oryzophilus rice water weevil Insecta A -0.002 -0.005 0.004 -0.001 

Listroderes costirostris vegetable weevil Insecta C 0.007 0.001 0.009 0.002 

Maconellicoccus hirsutus pink hibiscus mealybug Insecta C 0.058 0.052 0.056 0.054 

Mononychellus tanajoa cassava green mite Arachnida C -0.017 -0.026 -0.019 -0.046 

Mythimna unipuncta rice armyworm Insecta A 0.019 0.018 0.020 0.030 

Nezara viridula green stink bug Insecta C 0.030 0.022 0.029 0.031 

Nipaecoccus nipae spiked mealybug Insecta C 0.003 0.026 0.027 0.003 

Oryctes rhinoceros coconut rhinoceros beetle Insecta C 0.112 0.114 0.113 0.124 

Ostrinia nubilalis European maize borer Insecta A -0.004 -0.006 0.002 0.001 

Papilio demoleus chequered swallowtail Insecta B 0.085 0.091 0.083 0.098 

Pectinophora gossypiella pink bollworm Insecta B -0.004 -0.015 -0.003 -0.005 

Phenacoccus solenopsis cotton mealybug Insecta B -0.009 -0.023 -0.003 -0.015 

Phthorimaea operculella potato tuber moth Insecta C 0.003 -0.005 0.001 0.004 

Planococcus kenyae coffee mealybug Insecta C -0.004 -0.009 -0.007 -0.005 

Plutella xylostella diamondback moth Insecta B 0.001 -0.011 0.005 -0.007 
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Polyphagotarsonemus latus broad mite Arachnida C 0.024 0.017 0.032 0.029 

Pomacea canaliculata golden apple snail Gastropoda C -0.024 -0.033 -0.023 -0.031 

Prostephanus truncatus larger grain borer Insecta A -0.003 -0.013 -0.010 0.015 

Raoiella indica red palm mite Arachnida B -0.002 -0.009 -0.006 0.003 

Rhynchophorus ferrugineus red palm weevil Insecta B 0.043 0.046 0.017 0.074 

Rhyzopertha dominica lesser grain borer Insecta A -0.007 -0.011 -0.003 -0.006 

Scirtothrips dorsalis chilli thrips Insecta C 0.191 0.190 0.188 0.199 

Sesamia cretica greater sugarcane borer Insecta C -0.008 -0.011 -0.008 -0.004 

Sitobion miscanthi indian grain aphid Insecta A 0.144 0.142 0.143 0.136 

Sitophilus granarius grain weevil Insecta A -0.002 0.001 0.004 0.002 

Sitophilus zeamais greater grain weevil Insecta A 0.021 0.023 0.023 0.025 

Sitotroga cerealella grain moth Insecta A -0.009 -0.014 -0.004 -0.002 

Solenopsis geminata tropical fire ant Insecta C 0.010 0.005 0.010 0.010 

Spodoptera exempta black armyworm Insecta C 0.081 0.068 0.066 0.060 

Spodoptera littoralis cotton leafworm Insecta C -0.006 -0.010 -0.003 -0.011 
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Spodoptera litura taro caterpillar Insecta C 0.059 0.054 0.086 0.059 

Spoladea recurvalis Hawaiian beet webworm Insecta C 0.017 0.005 0.018 0.009 

Sternochetus mangiferae mango seed weevil Insecta B 0.037 0.028 0.038 0.036 

Tetranychus urticae two-spotted spider mite Arachnida C -0.041 -0.051 -0.037 -0.043 

Thrips palmi melon thrips Insecta C 0.070 0.060 0.073 0.077 

Trialeurodes vaporariorum greenhouse whitefly Insecta C -0.053 -0.064 -0.047 -0.055 

Trogoderma granarium khapra beetle Insecta C 0.060 0.064 0.058 0.074 

Tryporyza incertulas yellow stem borer Insecta A 0.033 0.034 0.031 0.040 

Xyleborus perforans island pinhole borer Insecta B 0.050 0.072 0.075 0.044 

Xylosandrus compactus shot-hole borer Insecta B 0.089 0.085 0.086 0.089 

 



 

202 
 
 

 

References for appendices 

Agropages. 2015. World Agrochemical Yellow Page Online [Online]. Available: 

http://cn.agropages.com/Bcc/ [Accessed 14 January 2015]. 

Bruce, E., Albright, L., Sheehan, S. & Blewitt, M. 2014. Distribution Patterns of 

Migrating Humpback Whales (Megaptera Novaeangliae) in Jervis Bay, 

Australia: A Spatial Analysis Using Geographical Citizen Science Data. 

Applied Geography, 54, 83-95. 

CABI 2016. Invasive Species Compendium [Online]. Available: 

http://www.cabi.org/isc [Accessed 16 March 2016]. 

Oerke, E. C., Dehne, H. W., Schönbeck, F. & Weber, A. 2012. Crop Production and 

Crop Protection: Estimated Losses in Major Food and Cash Crops, 

Amsterdam, the Netherlands., Elsevier. 


