41 research outputs found

    The impact of assistive living technology on perceived independence of people with a physical disability in executing daily activities:A systematic review

    Get PDF
    PurposePeople with physical disabilities often require lifetime support and experience challenges to maintain or (re)define their level of independence. Assistive living technologies (ALT) are promising to increase independent living and execution of activities of daily living (ADL). This paper provides a systematic literature review that aims to analyse the present state of the literature about the impact of ALT on perceived independence of people with a physical disability receiving long-term care. Materials and methodsDatabases Embase, Medline, and Web of Science were searched for eligible studies from 2010 or later. ResultsNine studies were included, of which seven qualitative, one quantitative, and one mixed methods. Quality was generally high. ALT enabled participants to execute ADL. We found six themes for the impact of ALT on perceived independence: feeling enabled, choice and control, feeling secure, time alone, feeling less needy, and participation. ConclusionsALT appears to impact perceived independence in many ways, exceeding merely the executional aspect of independence. Existing research is limited and quite one-sided. More large-scale studies are needed in order to inform care organisations how to implement ALT, especially considering societal developments and challenges impacting long-term care

    Design of a Multiple-User Intelligent Feeding Robot for Elderly and Disabled

    Get PDF
    The number of elderly people around the world is growing rapidly. This has led to an increase in the number of people who are seeking assistance and adequate service either at home or in long-term- care institutions to successfully accomplish their daily activities. Responding to these needs has been a burden to the health care system in terms of labour and associated costs and has motivated research in developing alternative services using new technologies. Various intelligent, and non-intelligent, machines and robots have been developed to meet the needs of elderly and people with upper limb disabilities or dysfunctions in gaining independence in eating, which is one of the most frequent and time-consuming everyday tasks. However, in almost all cases, the proposed systems are designed only for the personal use of one individual and little effort to design a multiple-user feeding robot has been previously made. The feeding requirements of elderly in environments such as senior homes, where many elderly residents dine together at least three times per day, have not been extensively researched before. The aim of this research was to develop a machine to feed multiple elderly people based on their characteristics and feeding needs, as determined through observations at a nursing home. Observations of the elderly during meal times have revealed that almost 40% of the population was totally dependent on nurses or caregivers to be fed. Most of those remaining, suffered from hand tremors, joint pain or lack of hand muscle strength, which made utensil manipulation and coordination very difficult and the eating process both messy and lengthy. In addition, more than 43% of the elderly were very slow in eating because of chewing and swallowing problems and most of the rest were slow in scooping and directing utensils toward their mouths. Consequently, one nurse could only respond to a maximum of two diners simultaneously. In order to manage the needs of all elderly diners, they required the assistance of additional staff members. The limited time allocated for each meal and the daily progression of the seniors’ disabilities also made mealtime very challenging. Based on the caregivers’ opinion, many of the elderly in such environments can benefit from a machine capable of feeding multiple users simultaneously. Since eating is a slow procedure, the idle state of the robot during one user’s chewing and swallowing time can be allotted for feeding another person who is sitting at the same table. The observations and studies have resulted in the design of a food tray, and selection of an appropriate robot and applicable user interface. The proposed system uses a 6-DOF serial articulated robot in the center of a four-seat table along with a specifically designed food tray to feed one to four people. It employs a vision interface for food detection and recognition. Building the dynamic equations of the robotic system and simulation of the system were used to verify its dynamic behaviour before any prototyping and real-time testing

    Ambient assisted living systems for older people with Alzheimer’s

    Get PDF
    The older people population in the world is increasing as a result of advances in technology, public health, nutrition and medicine. People aged sixty or over were more than 11.5% of the global population in 2012. By 2050, this percentage is expected to be doubled to two billion and around thirty-three countries will have more than ten million people aged sixty or more each. With increasing population age around the word, medical and everyday support for the older people, especially those who live with Alzheimer’s who can't be trusted for consistence interaction with their environment, attract the attention of scientists and health care providers. Existing provisions are often deemed inadequate; e.g.; current UK housing services for the older people are inadequate for an aging population both in terms of quality and quantity. Many older people prefer to spend their remaining life in their home environment; over 40% of the older people have concerns about having to move into a care home when they become old and nearly 70% of them worry about losing their independence or becoming dependent on others. There is, therefore, a growing interest in the design and implementation of smart and intelligent Ambient Assisted Living (AAL) systems that can provide everyday support to enable the older people to live independently in their homes. Moreover, such systems will reduce the cost of health care that governments have to tackle in providing assistance for this category of citizens. It also relieves relatives from continuous and often tedious supervision of these people around the clock, so that their life and commitments are not severely affected. Hence, recognition, categorization, and decision-making for such peoples’ everyday life activities is very important to the design of proper and effective intelligent support systems that are able to provide the necessary help for them in the right manner and time. Consequently, the collection of monitoring data for such people around the clock to record their vital signs, environmental conditions, health condition, and activities is the entry level to design such systems. This study aims to capture everyday activities using ambient sensory II information and proposes an intelligent decision support system for older people living with Alzheimer’s through conducting field study research in the Kingdom of Saudi Arabia within their homes and health care centres. The study considers the older people, who live with Alzheimer’s in Kingdom of Saudi Arabia. Since Alzheimer’s is a special form of dementia that can be supported in early stages with the ambient assistive systems. Further, the results of the field study can also be generalized to societies, which are interested in the mental and cognitive behaviour of older people. This generalization is related to the existence of common similarities in their daily life. Moreover, the approach is a generalized approach. Hence it can also be utilized on a new society which is conducting the same field study. This study initially presents a real-life observation process to identify the most common activities for these patients’ group. Then, a survey analysis is carried out to identify the daily life activities based on the observation. The survey analysis is accomplished using a U-test (Mann-Whitney). According to the analysis, it has been found that these people have fourteen common activities. However, three of these activities such as sleeping, walking (standing) and sitting cover about 72% of overall activities. Therefore, this study focuses on the recognition of these three common activities to demonstrate the effectiveness of the research. The activity recognition is carried out using a common image processing technique, called Phase-Correlation and Log-Polar (PCLP) transformation. According to results, the techniques predicted human activities of about 43.7%. However, this ratio is low to utilise for further analysis. Therefore, an Artificial Neural Network (ANN)- based PCLP model is developed to increase the accuracy of activity recognition. The enhanced PCLP transformation method can predict nearly 80% of the evaluated activities. Moreover, this study also presents a decision support system for Alzheimer’s people, which will provide these people with a safe environment. The decision support system utilises an extended sensory-based system, including a vision sensor, vital signs sensor and environmental sensor with expert rules. The proposed system was implemented on an older people patient with 87.2% accuracy

    Ambient assisted living systems for older people with Alzheimer’s

    Get PDF
    The older people population in the world is increasing as a result of advances in technology, public health, nutrition and medicine. People aged sixty or over were more than 11.5% of the global population in 2012. By 2050, this percentage is expected to be doubled to two billion and around thirty-three countries will have more than ten million people aged sixty or more each. With increasing population age around the word, medical and everyday support for the older people, especially those who live with Alzheimer’s who can't be trusted for consistence interaction with their environment, attract the attention of scientists and health care providers. Existing provisions are often deemed inadequate; e.g.; current UK housing services for the older people are inadequate for an aging population both in terms of quality and quantity. Many older people prefer to spend their remaining life in their home environment; over 40% of the older people have concerns about having to move into a care home when they become old and nearly 70% of them worry about losing their independence or becoming dependent on others. There is, therefore, a growing interest in the design and implementation of smart and intelligent Ambient Assisted Living (AAL) systems that can provide everyday support to enable the older people to live independently in their homes. Moreover, such systems will reduce the cost of health care that governments have to tackle in providing assistance for this category of citizens. It also relieves relatives from continuous and often tedious supervision of these people around the clock, so that their life and commitments are not severely affected. Hence, recognition, categorization, and decision-making for such peoples’ everyday life activities is very important to the design of proper and effective intelligent support systems that are able to provide the necessary help for them in the right manner and time. Consequently, the collection of monitoring data for such people around the clock to record their vital signs, environmental conditions, health condition, and activities is the entry level to design such systems. This study aims to capture everyday activities using ambient sensory II information and proposes an intelligent decision support system for older people living with Alzheimer’s through conducting field study research in the Kingdom of Saudi Arabia within their homes and health care centres. The study considers the older people, who live with Alzheimer’s in Kingdom of Saudi Arabia. Since Alzheimer’s is a special form of dementia that can be supported in early stages with the ambient assistive systems. Further, the results of the field study can also be generalized to societies, which are interested in the mental and cognitive behaviour of older people. This generalization is related to the existence of common similarities in their daily life. Moreover, the approach is a generalized approach. Hence it can also be utilized on a new society which is conducting the same field study. This study initially presents a real-life observation process to identify the most common activities for these patients’ group. Then, a survey analysis is carried out to identify the daily life activities based on the observation. The survey analysis is accomplished using a U-test (Mann-Whitney). According to the analysis, it has been found that these people have fourteen common activities. However, three of these activities such as sleeping, walking (standing) and sitting cover about 72% of overall activities. Therefore, this study focuses on the recognition of these three common activities to demonstrate the effectiveness of the research. The activity recognition is carried out using a common image processing technique, called Phase-Correlation and Log-Polar (PCLP) transformation. According to results, the techniques predicted human activities of about 43.7%. However, this ratio is low to utilise for further analysis. Therefore, an Artificial Neural Network (ANN)- based PCLP model is developed to increase the accuracy of activity recognition. The enhanced PCLP transformation method can predict nearly 80% of the evaluated activities. Moreover, this study also presents a decision support system for Alzheimer’s people, which will provide these people with a safe environment. The decision support system utilises an extended sensory-based system, including a vision sensor, vital signs sensor and environmental sensor with expert rules. The proposed system was implemented on an older people patient with 87.2% accuracy

    PROGRAM, THE NEBRASKA ACADEMY OF SCIENCES: One Hundred-Thirty-First Annual Meeting, APRIL 23-24, 2021. ONLINE

    Get PDF
    AFFILIATED SOCIETIES OF THE NEBRASKA ACADEMY OF SCIENCES, INC. 1.American Association of Physics Teachers, Nebraska Section: Web site: http://www.aapt.org/sections/officers.cfm?section=Nebraska 2.Friends of Loren Eiseley: Web site: http://www.eiseley.org/ 3.Lincoln Gem & Mineral Club: Web site: http://www.lincolngemmineralclub.org/ 4.Nebraska Chapter, National Council for Geographic Education 5.Nebraska Geological Society: Web site: http://www.nebraskageologicalsociety.org Sponsors of a $50 award to the outstanding student paper presented at the Nebraska Academy of SciencesAnnual Meeting, Earth Science /Nebraska Chapter, National Council Sections 6.Nebraska Graduate Women in Science 7.Nebraska Junior Academy of Sciences: Web site: http://www.nebraskajunioracademyofsciences.org/ 8.Nebraska Ornithologists’ Union: Web site: http://www.noubirds.org/ 9.Nebraska Psychological Association: http://www.nebpsych.org/ 10.Nebraska-Southeast South Dakota Section Mathematical Association of America: Web site: http://sections.maa.org/nesesd/ 11.Nebraska Space Grant Consortium: Web site: http://www.ne.spacegrant.org/ CONTENTS AERONAUTICS & SPACE SCIENCE ANTHROPOLOGY APPLIED SCIENCE & TECHNOLOGY BIOLOGICAL & MEDICAL SCIENCES COLLEGIATE ACADEMY: BIOLOGY COLLEGIATE ACADEMY: CHEMISTRY & PHYSICS EARTH SCIENCES ENVIRONMENTAL SCIENCES GENERAL CHEMISTRY GENERAL PHYSICS TEACHING OF SCIENCE & MATHEMATICS 2020-2021 PROGRAM COMMITTEE 2020-2021 EXECUTIVE COMMITTEE FRIENDS OF THE ACADEMY NEBRASKA ACADEMY OF SCIENCS FRIEND OF SCIENCE AWARD WINNERS FRIEND OF SCIENCE AWARD TO DR PAUL KAR

    Prosthetic Body Parts in Literature and Culture, 1832 to 1908

    Get PDF
    Covering the years 1832 to 1908, a period that saw significant development in prosthetic technologies—in particular artificial legs, teeth, and eyes—this thesis explores representations of prostheses in British and American nineteenth- and early twentieth-century literature and culture. By considering prosthetic devices such as wooden legs and hook hands alongside artificial body parts that are often overlooked in terms of their status as prostheses, such as wigs and dentures, this thesis is the first to examine holistically the varied and complex attitudes displayed towards attempts to efface bodily loss in this period. Lennard J. Davis has shown how the concept of physical normalcy, against which bodily difference is defined, gained cultural momentum in the nineteenth century as bodily statistics emerged onto the scene (Enforcing Normalcy). This thesis builds on Davis’s work by considering other historical factors that contributed to the rise of physical normalcy, a concept that I show was buttressed by an understanding of the “healthy body” as “whole”. Like Davis, I also explore the denigration of physical difference that such a rise encouraged. The prosthesis industry, which saw tremendous development in the nineteenth century, cashed in on the increasing mandate for physical normalcy. However, as this thesis shows—and where it breaks new ground—while contemporary journalism and advertising often lauded the accomplishments of an emerging group of professional prosthesis makers, fiction tended to provide the other side of the picture, revealing the stereotypes, stigma, scepticism, inadequacies, and injustices attached to the use and dissemination of prosthetic devices. I argue that Victorian prosthesis narratives complicated the hegemony of normalcy that Davis has shown emerged in this period. Showing how representations of the prostheticised body were inflected significantly by factors such as social class, gender, and age, this thesis argues that nineteenth-century prosthesis narratives, though presented in a predominantly ableist manner, challenged the dominance of physical completeness as they either questioned the logic of prostheticisation or presented non-normative subjects in threateningly powerful ways.AHR

    Prosthetic Body Parts in Nineteenth-Century Literature and Culture

    Get PDF
    This open access book investigates imaginaries of artificial limbs, eyes, hair, and teeth in British and American literary and cultural sources from the nineteenth and early twentieth century. Prosthetic Body Parts in Nineteenth-Century Literature and Culture shows how depictions of prostheses complicated the contemporary bodily status quo, which increasingly demanded an appearance of physical wholeness. Revealing how representations of the prostheticized body were inflected significantly by factors such as social class, gender, and age, Prosthetic Body Parts in Nineteenth-Century Literature and Culture argues that nineteenth-century prosthesis narratives, though presented in a predominantly ableist and sometimes disablist manner, challenged the dominance of physical completeness as they questioned the logic of prostheticization or presented non-normative subjects in threateningly powerful ways. Considering texts by authors including Charles Dickens, Edgar Allan Poe, and Arthur Conan Doyle alongside various cultural, medical, and commercial materials, this book provides an important reappraisal of historical attitudes to not only prostheses but also concepts of physical normalcy and difference

    Adviser\u27s guide to health care: Volume 1, An Era of Reform

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1800/thumbnail.jp

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p
    corecore