13 research outputs found

    Towards Detection of Human Motion

    Get PDF
    Detecting humans in images is a useful application of computer vision. Loose and textured clothing, occlusion and scene clutter make it a difficult problem because bottom-up segmentation and grouping do not always work. We address the problem of detecting humans from their motion pattern in monocular image sequences; extraneous motions and occlusion may be present. We assume that we may not rely on segmentation, nor grouping and that the vision front-end is limited to observing the motion of key points and textured patches in between pairs of frames. We do not assume that we are able to track features for more than two frames. Our method is based on learning an approximate probabilistic model of the joint position and velocity of different body features. Detection is performed by hypothesis testing on the maximum a posteriori estimate of the pose and motion of the body. Our experiments on a dozen of walking sequences indicate that our algorithm is accurate and efficient

    Better features to track by estimating the tracking convergence region

    Get PDF
    Reliably tracking key points and textured patches from frame to frame is the basic requirement for many bottomup computer vision algorithms. The problem of selecting the features that can be tracked well is addressed here. The Lucas-Kanade tracking procedure is commonly used. We propose a method to estimate the size of the tracking procedure convergence region for each feature. The features that have a wider convergence region around them should be tracked better by the tracker. The size of the convergence region as a new feature goodness measure is compared with the widely accepted Shi-Tomasi feature selection criteria

    Unsupervised learning of human motion

    Get PDF
    An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful "foreground" features as well as features that arise from irrelevant background clutter - the correspondence between parts and detected features is unknown. The joint probability density function of the parts is represented by a mixture of decomposable triangulated graphs which allow for fast detection. To learn the model structure as well as model parameters, an EM-like algorithm is developed where the labeling of the data (part assignments) is treated as hidden variables. The unsupervised learning technique is not limited to decomposable triangulated graphs. The efficiency and effectiveness of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled image sequences, and testing the learned models on a variety of sequences

    Flow Lookup and Biological Motion Perception

    Get PDF
    Optical flow in monocular video can serve as a key for recognizing and tracking the three-dimensional pose of human subjects. In comparison with prior work using silhouettes as a key for pose lookup, flow data contains richer information and in experiments can successfully track more difficult sequences. Furthermore, flow recognition is powerful enough to model human abilities in perceiving biological motion from sparse input. The experiments described herein show that a tracker using flow moment lookup can reconstruct a common biological motion (walking) from images containing only point light sources attached to the joints of the moving subject

    A computational model for motion detection and direction discrimination in humans

    Get PDF
    Seeing biological motion is very important for both humans and computers. Psychophysics experiments show that the ability of our visual system for biological motion detection and direction discrimination is different from that for simple translation. The existing quantitative models of motion perception cannot explain these findings. We propose a computational model, which uses learning and statistical inference based on the joint probability density function (PDF) of the position and motion of the body, on stimuli similar to (Neri et al., 1998). Our results are consistent with the psychophysics indicating that our model is consistent with human motion perception, accounting for both biological motion and pure translation

    Real-time systems for moving objects detection and tracking using pixel difference method.

    Get PDF

    Human Pose Tracking from Monocular Image Sequences

    Get PDF
    This thesis proposes various novel approaches for improving the performance of automatic 2D human pose tracking system including multi-scale strategy, mid-level spatial dependencies to constrain more relations of multiple body parts, additional constraints between symmetric body parts and the left/right confusion correction by a head orientation estimator. These proposed approaches are employed to develop a complete human pose tracking system. The experimental results demonstrate significant improvements of all the proposed approaches towards accuracy and efficiency
    corecore