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Abstract

Tracking 2D articulated human poses in monocular sequences is an important task
in computer vision due to its extensive applicability. Many algorithms have been
proposed during the past decades and some progress has been achieved. However,
building a robust human motion tracking framework remains a challenging task,
especially when body sizes of the tracked target vary a lot within a video sequence,
images come with cluttered background, and/or body parts are self-occluded in

side-facing poses.

This thesis aims to propose a comprehensive and robust tracking framework for hu-
man motion tracking on 2D monocular video sequences including rare and complex
motions and proposes various novel approaches to improve the tracking performance.
Firstly, to detect and track the human pose in each frame with a proper perspective
scale, a multi-scale strategy (MSS) module is proposed to implement scale check-
ing and adjusting at the beginning of the tracking process. It enables the tracking
framework to produce satisfactory tracking performance for video sequences when
the sizes of the target projection vary, thus improves the performance of the tracking
framework especially for scale-variation cases. Secondly, to improve the accuracy
of the tracking framework, especially when dealing with rare and complex poses,
the representation of body parts and their relations are investigated in this thesis.
A mixture of mid-level spatial representations, named poselets, are utilized to con-
strain relations of multiple body parts, which are more expressive and specific to
images. These higher-level information among multiple body parts are used to guide
estimation of every single part by providing more image-conditioned information on
pose configurations. Thirdly, the human body model used for pose estimation is
developed to further improve the tracking performance, especially for active body
parts. More dependencies between symmetric and non-adjacent body parts are in-
troduced (AdCon), which can help correct some detection errors due to limbs drifting
and double counting. The proposed body model is incorporated in a factor graph,
which leads to a significant improvement in the accuracy of human pose tracking
while being computationally efficient. Finally, in order to distinguish between the
left and right limbs during tracking, a simple yet effective head orientation (looking

left or right) estimation is proposed to serve as a complementary tool to assist the
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human pose estimation. The inclusion of this step during tracking further reduces
the occurrence of double counting and helps distinguish the left and right limbs

consistently.

This thesis implements and evaluates a complete framework that utilizes the four
proposed approaches to perform the task of tracking human poses based on monocu-
lar view. Experiments are conducted on several challenging video sequences (publicly-
available or collected by ourselves with no restriction on the environment) and eval-
uated with reference to the ground truth. The experimental results demonstrate
that the proposed framework outperforms existing systems significantly, especially

for the active body parts such as forearms and lower-legs.
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Chapter 1

Introduction

Monocular cameras are the most widely and easily available sources that record all
kinds of human activities. This thesis focuses on the task of tracking articulated 2D
human poses in monocular videos. Considerable research effort has been spent on
human pose estimation and tracking from monocular sequences over the past few
decades due to its extensive applicability in computer vision, such as video surveil-
lance, human-computer interactions, motion analysis, etc. In some approaches pose
estimation and tracking depends on electromagnetic sensors that are attached to
the human body. However such systems are generally costly and sometimes un-
stable. Since many applications would benefit from cheaper and more convenient
vision-based tracking approaches using cameras, this topic has received increasing
attention. The goal of 2D human pose tracking is to track the articulations of people
using 2D representations in video sequences. Many algorithms have been proposed
during the past decades (Poppe (2007); Zhou and Hu (2008); Ramanan et al. (2007);
Lu et al. (2012b); Ramakrishna et al. (2013)). However, building a robust human

motion tracking framework using 2D information remains a challenging task.

There are several challenges in 2D human pose tracking. One issue arises from
the variations of body size in one video sequence. In order to perform tracking
efficiently, most human pose tracking approaches assume that the tracked target in
a video sequence are moving with a rather fixed distance to the camera, resulting in
the size of the human figure in the video to be constant or near constant, i.e., the
perspective scale is fixed. However, videos in reality often contain people moving
towards or away from the camera hence appeared in various scales in the videos.
The complexities of human motion add into this problem as well, since the human

body could lean towards or away from the camera, causing size variations.

Another obvious problem is that, unlike tracking with multiple cameras, no depth
information is available in monocular videos, thus cluttered backgrounds and self-

occlusions make the problem more complex. Most of 2D human pose tracking frame-



1.1 Aims and Approaches

works are inspired by the development of bottom-up pose estimation approaches
with the generic Pictorial Structures (PicStr) model, in which the part detectors
are trained based on shape features, and the priors over body part connections are
assumed to be a tree structure independent to image evidence. This means that
shapes similar to limbs in the background and similarities between body parts, es-
pecially the symmetric ones, are big issues affecting the performance of this type
of tracking frameworks. Double counting is a common problem occurring due to
similarities between the symmetric body parts especially when the tracked target
appears in sideways poses, i.e., symmetric body part pairs are often arranged at the
same location in images when they share a high detection score at the same image
evidence. Additionally, the generic PicStr model only considers the dependencies
between the connected body parts. However, humans have a distinct ability to
maintain body balance and coordination. Therefore for complex poses, in order to
improve the performance, the tracking framework should also consider dependencies

between or among non-connected body parts.

The confusion between similar-looking body parts, especially the left and right limbs,
is also an issue during human pose tracking. With the generic PicStr model, although
the frontal poses can be accurately detected especially when all body parts are
visible, the left and right limbs are often confused especially when the human body
is side-faced due to the overlapping of these body parts and the similarities of their

appearances in terms of colour and shape.
This thesis explores a framework for human pose tracking on monocular video se-

quences based on 2D image information, with specific goals to address the issues

mentioned above.

1.1 Aims and Approaches

This thesis aims to propose a comprehensive and highly accurate tracking framework
based on 2D monocular video for tracking human motion, including rare and complex

motion. The specific objectives of this thesis are as follows:

1. Develop new approaches and algorithms to evaluate the perspective scales, to
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estimate and modify the appropriate scale values in order to accurately track

human poses with multiple scales in monocular video sequences.

2. Add more dependencies among multiple and non-connected body parts to
make the human body model more powerful for human pose estimation and
tracking. These dependencies should be more expressive and capture the spa-
tial relationships among multiple body parts. It is expected that body parts
can be detected more accurately using these dependencies and the double
counting problem can be largely solved while the structure of the basic PicStr

model is not changed.

3. Model the dependencies between symmetric body parts to further decrease
the rate of double counting occurrence. These dependencies are utilized to
constrain the left and right limbs, which greatly complement the shortcomings
of the simple traditional tree-based PicStr model by encoding more natural

human distinction for body balance and coordination.

4. Propose a simple yet effective method to address the confusion between the
left and right limbs during tracking, which is a common issue especially when

the tracked target shows different views in a sequence.
To achieve the objectives above, several approaches are proposed in this thesis.

1. To detect and track the human pose in each frame with a proper scale, a
scale checking and adjusting step is incorporated into the tracking process.
Two metrics are proposed for detecting and adjusting the scale change. One
metric is from the height value of the tracked target (Height_Metric), which
is suitable for sequences where the tracked target generally maintains upright
postures with no obvious limbs stretching. For such kind of sequences, a full
body detector is proposed to estimate the height of the tracked target in each
frame. The other metric is named PizelCount_Metric which is able to represent
scale changes invariant to motion types, thus is more generic. Specifically,
the images are firstly processed with foreground segmentation which aims to
obtain an approximate size of the body blob. This blob size is not used to
determine the scale directly. Rather it is used to compare with the size of

the estimated human body (normally in the shape of bounding boxes) from
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pose estimation to determine whether the scale used for the pose estimation
is appropriate. If the comparison shows that the scale value used satisfies a
preset condition, the algorithm will proceed to the next frame using the same
scale value. Otherwise, the scale value will be adjusted and the frame will be

re-processed until the preset condition is met.

2. To improve the accuracy of the tracking framework, especially for tracking
motions including rare and complex poses, the representation of body parts
and their relationship utilized in the tracking framework is re-explored in this
thesis. In addition to the basic 10 single body segmentation part defined in
the PicStr model, another more expressive mid-level spatial representations
that model higher order information between or among a group of body parts
(named poselets, which is introduced by Bourdev et al. (2010)) are incor-
porated in this thesis. Poselets are pieces of human poses that are tightly
similar in both appearance and configuration spaces, which are employed to
capture common configurations and dependencies of multiple body parts. We
explore 11 ‘parts’ representing the mid-level poselets information covering var-
ious body part groups and the whole body. In reality, these kind of ‘parts’
(poselets) convey more motion information and provide more useful constraints
when searching the basic single body part. Certain groups or all of these pose-
let representations can be selected in applications to be utilized as mid-level
constraints for estimating the configuration of the basic single body part in
the PicStr model.

3. To further improve the performance of the tracking framework on limbs, the
tree structured PicStr model is augmented by adding more dependencies be-
tween symmetric and non-adjacent limbs, which are in fact important factors
for human body balancing and coordination. In other words, we propose a
framework based on PicStr that not only encodes the information based on
relations between connected body parts, but also incorporates additional con-
straints (AdCon) between symmetric limbs. Specifically, in this thesis, four
constraints are implemented between left and right upper/lower arms and legs
in the complete human body model, which tend to force the left and right
limbs to separate. When combing these AdCon, it is obvious that the hu-
man body model is no longer a tree structure because loops are introduced.

In order to guarantee high computational efficiency while taking into account
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these dependencies between body parts as much as possible, the factor graph

method is used in this research to infer the pose estimates.

4. A simple estimation method on the head orientation (looking left or right) is
proposed to provide instructive information for the body orientation in order
to address the confusion between the left and right limbs during tracking. A
head-yaw-estimation step is introduced into the tracking framework to serve
as a simple yet effective tool to assist the human pose estimation. In this work,
accurate estimation of the head yaw angle is not necessary. We only need a
brief indication on whether the human body is roughly facing left or right. A
simple skin colour detector and a set of threshold templates is hence used to
roughly identify the head orientation of the tracked target. Such information
is used to determine the visible side of the body, hence it is assumed that
the orientations of the head and the body are consistent in a pose. Such

assumption is believed to be true in most human poses.

1.2 Significance and Contributions

There are four main contributions in this thesis - (1) the strategy for dealing with
scale variation issue during tracking; (2) the incorporation of higher order depen-
dencies of multiple body parts into the image-conditioned PicStr model; (3) the
inclusion of dependencies between symmetric and non-adjacent limbs; and (4) the
creative use of head facing orientation to address the confusion between the left and
right limbs during tracking. The contributions and their significances are detailed

as follows.

1.2.1 Multi-scale strategy

The first major contribution of the thesis is to propose a strategy for the problem of
tracking human motion in multiple scales in monocular image sequences. In reality,
the tracked targets often moving towards or away from the camera, resulting in
their sizes (scales) of their projected images to be changed within a video clip. For

different motion types, two metrics are proposed for detecting and adjusting the
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scale change in the tracking process. One metric is the height value of the tracked
target (Height_Metric), which is suitable for sequences where the tracked target
has generally upright postures with no obvious limb stretching. The other metric
is more generic and invariant to motion types. It is named PizelCount_Metric and
implemented by comparing the pixel counts of the foreground blobs and the detected

body part bounding boxes estimated from pose estimation.

The significance of such an approach is that it enables the tracking framework to
produce satisfactory tracking performance for video sequences with scale variations
and a wide range of motion types. It can detect the poses even when the scale
of the tracked target changes a lot, thus improve the performance of the tracking

framework especially for scale-variation cases.

1.2.2 Modelling higher order dependencies of multiple body
parts

The second major contribution is to combine an image-conditioned model that in-
corporates higher order dependencies of multiple body parts named poselets to the
PicStr model. The positions of multiple body parts are often correlated in most
human motion and activities. Such property has not been reflected in the generic
PicStr approach hence limits the accuracy of pose estimation and tracking. A mix-
ture of mid-level spatial representations captures multiple body parts configurations

and dependencies.

The significance of this model is that it introduces some more expressive spatial
constraints into the PicStr model, which is highly effective in dealing with problems
such as double counting during the tracking process. Moreover, the poselet repre-
sentation increases the flexibility of the PicStr approach by utilizing a set of image

specific part appearance and dependencies.
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1.2.3 Modelling dependencies between symmetric and non-

adjacent body parts

Another contribution of this thesis is to augment the tree-based structure PicStr
model with dependencies between symmetric and non-adjacent limbs, which are
in fact important factors for human body balancing and coordination. Such addi-
tional constraints (AdCon) between symmetric limbs force the tracking to follow
the motion biologically. All unary terms and body part dependencies utilized in
this approach are incorporated in a factor graph to allow for efficient inference. The
proposed model leads to a significant improvement in the accuracy of human pose

tracking while being computationally efficient.

The dependencies between symmetric and non-adjacent limbs can help to correct
some detection errors occurring in the generic PicStr model due to limbs drifting
in some scenarios involving a cluttered background. Additionally, by introducing
these dependencies, symmetric body part pairs are largely avoided to be arranged
at the same location in images. Therefore, the double counting problem that often
occurs within the generic PicStr model will be addressed to a large extent. This
approach also improves the tracking performance by adding more flexibility to the

generic PicStr model.

1.2.4 Avoiding left /right confusion with head facing orien-

tation

The final major contribution of this thesis is to include a head orientation estimation
step to address the confusion between the left and right limbs during tracking due
to their similar appearances. We propose to use the head orientation (looking left
or right) to provide instructive information for estimating the body orientation. A
simple yet effective head orientation detection step is introduced into the tracking

framework to assist the human pose estimation.

The inclusion of this step during tracking further reduces the occurrence of double
counting and helps to distinguish the left and right limbs consistently. With the face

orientation determined, the system can decide whether the left or right side of the
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human body is definitely visible and deduce the state of its counterpart subsequently.

1.3 Thesis Structure

The rest of this thesis is organized as follows.

In Chapter 2, a review of related work in the field of human pose tracking is pre-
sented. Firstly, the existing approaches for detecting a full body within a scene are
described, especially the approaches closely related to this thesis, i.e., background
subtraction and detection with part-based models. Discussions on approaches for
human pose estimation is presented next, which include top-down estimation ap-
proaches and bottom-up approaches. The human body part models and structure
constraints for the bottom-up approaches are described. Finally, some typical track-

ing approaches are described with discussions on their advantages and limitation.

In Chapter 3, the general ideas of the pictorial structures (PicStr) model and a 2D
human pose tracking framework based on the PicStr model are described. It includes
the procedure and approach of constructing the accurate appearance model and the
final tracking system. After that, the overview of the proposed complete tracking
system is presented, which includes four proposed components: scale validation,
poselets detection, filtering part estimates using dependencies between symmetric

body parts, and head (body) orientation detection.

In Chapter 4, the strategy for multi-scale tracking is explored and two metrics are
proposed and presented. Firstly, the Height_Metric is used for dealing with multi-
scale tracking of motions with basically upright postures. The height of the tracked
target is obtained from a full body detection. Secondly, the PixelCount_Metric is
described by providing the details of the method for obtaining the pixel numbers
utilized on evaluating scale values. The performances of the proposed multi-scale

algorithm with two metrics are evaluated separately.

In Chapter 5, a mixture of mid-level body part representations (poselets) are in-
cluded to model more expressive dependencies between /among multiple body parts.

Firstly, the poselet representation is presented including poselet descriptions, poselet
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detectors training and testing. Next, the unary and pairwise terms of poselets con-
ditioned PicStr model are detailed. The tracking system with poselets incorporated
is then presented. Finally, experiments are conducted to analyze the performance of
the poselets-conditioned PicStr model and compare it against other state-of-the-art

approaches.

In Chapter 6, two components are described for the 2D human pose tracking frame-
work. One is the approach for modelling dependencies between symmetric and
non-connected body parts. The other is the head orientation estimation. Firstly,
the additional constraints (AdCon) between symmetric body parts are introduced
into the PicStr model. The details on how to factorize the terms of the whole
model mathematically are also presented. Then the proposed head facing orien-
tation (HeadOri) estimation approach is described. Experiments are conducted to
evaluate the performances of the tracking framework with all components incorpo-
rated: multi-scale stratedy, PicStr with additional constraints on symmetric body
parts, head orientation estimation, and the poselets conditions proposed in the pre-

vious chapters.

Finally, Chapter 7 provides a summary of this thesis, its contributions and potential

future directions.



Chapter 2

Background

The research goal in this thesis is to design a human pose tracker for monocular
image sequences with higher accuracy. It should accurately recover the geometric
location of the human body parts in each frame, track their movement independent
from activities and be computationally efficient. In this chapter, we review the
literature that is closely related to this thesis, i.e., human detection, pose estimation

and tracking.

This chapter is organized as follows. Section 2.1 describes the existing approaches
for detecting a full body within a scene, especially the approaches closely related
to this thesis, i.e., background subtraction and detection with part-based models.
Discussions on approaches for human pose estimation are presented next in Section
2.2. In this Section, top-down estimation approaches are discussed in subsection
2.2.1 and bottom-up approaches are presented in subsection 2.2.2 where we describe
human part models and structure constraints. In Section 2.3, some typical track-
ing approaches are described with discussions on their advantages and limitations.

Finally, a summary of the chapter is presented in Section 2.4.

2.1 Full Body Detection

Full body detection is to find people and detect the entire human as a single object,
which is a fundamental requirement for most computer vision systems for human
pose estimation and tracking. In most cases, a system of pose estimation or tracking
requires knowing a rough region that contains a human before a specific posture can
be estimated. Moreover, most of the video sequences are recorded with complex
or cluttered background especially under uncontrolled environment. Thus finding

people is usually a pre-processing step for human pose estimation and tracking in
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order to reduce search space. For a complete tracking system, such as the work
presented in this thesis, detecting the region of interest (ROI) is an important pre-
processing step before analyzing poses and tracking motions. This section reviews

the approaches for human detection.

Given video sequences from static cameras, background subtraction is a widely used
approach for detecting moving objects. Lots of methods for performing background
subtraction have been proposed (Wren et al. (1997); Koller et al. (1994); Cucchiara
et al. (2003); Power and Schoonees (2002); Stauffer and Grimson (1999); Seki et al.
(2003)). All of them try to effectively estimate the background model from the
temporal sequence of the frames. More details are given below in Section 2.1.1.
In this kind of approach, the region of interests (ROI) of an image, which in this
thesis is the part representing a human body, is encoded as a whole and the common

representation of the ROI is a silhouette.

Another kind of approaches for human body detection is using part-based models,
which is quite popular for detecting objects from static images. Part-based human
models date back to the generalized cylinder models of Binford (1971) and the picto-
rial structures of Fischler and Elschlager (1973) and Felzenszwalb and Huttenlocher
(2005). A great number of work on part models for human detection have presented
in various forms (Amit and Trouvé (2007); Burl et al. (1998); Crandall et al. (2005);
Felzenszwalb and Huttenlocher (2005); Fergus et al. (2003); Fischler and Elschlager
(1973); B.Leibe and Schiele (2007); Weber et al. (2000a); Felzenszwalb et al. (2010)).
The basic premise is that human body can be modelled as a collection of local tem-
plates or models that deform and articulate with respect to one another. More

details of these approaches are provided in Section 2.1.2.

Additionally, interactive segmentation is a popular technique to separate an image
into two segments: ‘object’ and ‘background’. GrabCut (Rother et al. (2004)) is
a robust interactive approach for the segmentation problem in computer vision. It
extracts foreground pixels via iterated Graph Cut optimization by defining some
pixels as nodes of a graph. This methodology has been applied to the problem of
human body segmentation with high success (Ferrari et al. (2009b)). Rother et al.
(2004) propose to find a binary segmentation of an image by formulating an energy
minimization scheme using colour information. Given a colour image I, a trimap

T is defined by the user consisting three regions: Tj, Ty and T,, which contains

11
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background, foreground and uncertain pixels, respectively. The segmentation is
defined as an array a = (aq,...a,),; € 0,1, assigning a label to each pixel of the
image indicating if it belongs to background or foreground. The final segmentation
is performed using a minimum cut algorithm (Boykov and Jolly (2001); Boykov
and Funka-Lea (2006); Boykov and Kolmogorov (2004)). The classical GrabCut

algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 GrabCut algorithm
1: Trimap 7 initialization with manual annotation.
2: Initialize o; = 0 for ¢ € Ty, and o; = 1 for @ € T,, U T5.

3: Initialize background and foreground models from sets o; = 0 and o; = 1

respectively, with k-means.
4: Learn model parameters for background and foreground from pixel data.
5: Estimate segmentation: Graph-cuts.

6: Repeat step 4 and step 5, until convergence.

In the following subsections, we review the first two types of approaches that are

closely related to this thesis.

2.1.1 Background subtraction

Background subtraction is often applied for video segmentation in a scene moni-
tored by a fixed camera. The foreground is detected by comparing the current scene
image against a learned background model of the scene. Most modern background
subtraction algorithms do not literally perform a subtraction operation. Instead, it
is a more generic process of classifying a pixel as either foreground or background
according to some criteria. Thus, background subtraction is in fact a process of mod-
elling the background and foreground and using a classifier to discriminate between
the two.

Early approaches used a non-adaptive but globally thresholded background to detect
foreground pixels (Wiklund and Granlund (1986)). Most researchers abandoned this
method soon because of the need for manual initialization, and a variety of adaptive

approaches have been developed.

A standard adaptive method is averaging the images over time and creating a back-
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ground which is similar to the current static scene except where motion occurs.
Ridder et al. (1995) model each pixel with a Kalman filter which makes the sys-
tem more robust to lighting changes in the scene. Koller et al. (1994) improve this
method and applies it to an automatic traffic monitoring system. It utilizes a selec-
tive update scheme to include only the probable background values into the estimate
of the background. The Pfinder system proposed by Wren et al. (1997) models each
pixel of the background with a single Gaussian distribution, but represents the fore-
ground objects with a multi-class statistical model in the YUV colour space. The
system reports good results for indoor scenes with an initialization step. In a differ-
ent application that monitors traffic scenes, Friedman and Russell (1997) attempt
to classify the pixel values into a mixture of three Gaussians, one for each class
observable in their scenes, i.e., road, shadow and vehicle colour. These Gaussians
are updated via incremental expectation-maximization (EM) algorithm (Neal and
Hinton (1998)) to achieve a good approximation of the optimal parameters online.
Cucchiara et al. (2003) propose to use the median value of the last n frames as the

background model.

Another work trying to use a multi-colour background model per-pixel is imple-
mented by Stauffer and Grimson (1999). They employ an adaptive nonparametric
Gaussian mixture model, where the number of Gaussian distributions is usually be-
tween three and five depending on how much variation exists in the scene. This
method is tolerant to small noises caused by small repetitive motions or small cam-
era displacement. Power and Schoonees (2002) elegantly describe the theoretical
framework supporting the Stauffer et al’s approach and provide corrections at the

same time.

KaewTraKulPong and Bowden (2002) propose an improved model based on Stauffer
et al’s work, with update equations, initialization method and the introduction of
a shadow detection algorithm. The model has been widely utilized and become
almost a standard method for background subtraction. Hence some details of this
model is provided here. FEach pixel in the scene is represented by a mixture of
K Gaussian distributions, each with a weight w; for Gaussian k parameterised by
N(pg,0r). The K Gaussian distributions are ordered based on the fitness value
wy /o and the first B distributions are used as a model of the background of the
scene. Background subtraction is performed by marking a foreground pixel that is

more than 2.5 standard deviations away from any of the B distributions. In this
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Figure 2.1: Foreground segmentation examples from the badminton sequence with
the model proposed by KaewTraKulPong and Bowden (2002). The top screenshots

are original frames selected from the sequence and the bottom ones are the seg-

mented foreground blobs.
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thesis, since our framework focuses on the image sequences taking by fixed cameras,
this approach is chosen as a preprocessing step in order to obtain the foreground
blobs during scale evaluation process. Figure 2.1 shows some screenshots of the

foreground segmentation results for the badminton sequence.

In general, the obtained silhouettes contain some noise due to imperfect extractions.
Also, they are somewhat sensitive to different viewpoints. However, they provide a
good approximation of the human body with a great deal of information encoded

and are considered sufficient as the anthropometry of the person being tracked.

2.1.2 Detection with part-based models

Object detection based on part-based models is quite efficient for static images in
uncontrolled environment. In this kind of approach, each part is detected separately
and a human body is detected if some or all parts are available in a geometrically
configuration. Part-based approaches are popularly used for human motion tracking

due to its ability to deal with great variations in appearance due to body articulation.

Felzenszwalb and Huttenlocher (2005) use the pictorial structure approach where an
object is described by its parts and the geometric arrangement is captured by a set
of springs connecting pairs of parts. Also, they develop efficient inference algorithms
for matching the geometric information to images. loffe and Forsyth (2001) represent
parts as projections of straight cylinders and propose efficient ways to incrementally
assemble these segments into a full body assembly. Body plans proposed by Forsyth
and Fleck (1997) are another representation that encodes particular geometric rules
for defining deformations of local part templates. Mikolajezyk and Schmid (2005)
represent body parts as co-occurrences of local orientation features. The system
proceeds by detecting features, then parts and eventually humans are detected based
on assemblies of parts. Fergus et al. (2003) and Weber et al. (2000b) propose the
constellation models using a sparse set of locations determined by an interest point
operator and arranging their geometries by a Gaussian distribution. The patchwork
of parts model from Amit and Trouvé (2007) is similar as the pictorial structures
approach and explicitly considers how the appearance models of overlapping parts

interact.
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Figure 2.2: Detection process. Here only the transformed responses for the head
and left-lower leg are presented. The model shown in (7) includes three components:
a coarse root filter, several higher resolution part filters, and a spatial model for the

location of each part relative to the root.

A particularly common approach for object detection is the star-model proposed by
Felzenszwalb et al. (2010) based on mixtures of multiscale deformable part models.
The system relies on new methods for discriminative training with partially labelled
data and combines a margin-sensitive approach for data-mining with the latent
Support Vector Machine (SVM). The model of the full body detector is defined
by a coarse ‘root’ filter similar to the Dalal-Triggs filter on histogram of oriented
gradients (HOG) features Dalal and Triggs (2005) which approximately covers the
full body, and a series of higher resolution part filters that cover smaller parts of
the human body. In implementation, the part filters capture features at twice the
spatial resolution to the features of the root filter. The part filters are collected by
a graphical model with deformation prior (Figure 2.2 (7)).

An hypothesis of the detection specifies the location of each filter in the model,
z = (po, ---, Pm), where p; is the position for the iy, filter. At a particular position of
an image, the score of a hypothesis is computed by the response of the root filter
plus the sum of the transformed responses of each part filter (Figure 2.2 (1)-(6)).
Note that the transformed responses are obtained from the responses of part filters
minus a deformation cost that depends on the relative position of each part with

respect to the root (the spatial prior).

The score of a hypothesis z can be expressed in terms of a dot product between a

vector of model parameters 3 and a feature vector ¢(H, z) as:

score(z) = score(py, ...,pm) = B - V(H, 2). (2.1)

Here, (3 is obtained by concatenating the root filter, the part filters, and the deforma-
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tion cost weights; H is a feature pyramid; ¢(H, z) is a concatenation of subwindows
from the feature pyramid and part deformation features. Detecting a person in an
image means to find a root location with high score and the corresponding part

locations with optimal displacements:

score(pg) = pznapx score(po, .., Pm)- (2.2)

The detector is implemented with the deformable part-based model (DPM) frame-
work, and the publicly available software Girshick et al. (2012) is utilized. Please

see Felzenszwalb et al. (2010) for further implementation details.

In our project, the detection result of the ROI in an image is defined by a bounding
box (bbox) B = (z1,y1, T2, y2) with the upper-left and lower-right corners being at
(x1,11) and (xq,ys) respectively. To ensure our tracking system to be invariant to
the size of the human body appeared in different images, the bounding box area
is cropped out and resized to a patch with a normalized height A that is derived
from the scale-normalized training set. In this work A is set as 200. The normalized
bounding boxes form the final ROIs.

2.2 Human Pose Estimation

Human pose estimation is to find the pose parameters of all body parts depending
on the human body model and image observations. There are two main classes
for human pose estimation: top-down and bottom-up. In top-down approaches, a
projection of the human body is matched with the image observations. Instead,
bottom-up approaches find individual body parts first and then assemble them into

a human body. We review these two classes in this section.

2.2.1 Top-down estimation

Top-down approaches match a projection of the human body with the image obser-

vation, i.e., searching over model parameters using a comparison between a predicted
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view of the person and the image. This is often stated as an analysis-by-synthesis ap-
proach. The most common top-down approach for pose estimation is implemented
by template matching. Oren et al. (1997) detect upright pedestrians with arms
hanging at their side by a template matcher. Ramanan (2007) use a distinctive
‘stylized pose’ (lateral walking pose) to search for the object with an edge-based
detector. Niyogi and Adelson (1994); Cutler and Davis (2000) detect walking by a

simple periodic structure generated in a motion sequence.

In the top-down pose estimation approaches, a local search is often performed around
an initial pose estimate Barrén and Kakadiaris (2004); Bregler et al. (2004). It is
computationally expensive due to the high dimensionality of the pose space. More-
over, it is generally difficult to evaluate the similarity between model parameters and
image regions and reliably choose the best parameters. Any optimization function
in top-down methods is going to have a local extremum where a hypothesized pose
lies over that region. The resulted estimates are easy to drift or become confused.
To overcome these problems, a posteriori pose estimate is often found by applying
gradient descent on the cost surface Wachter and Nagel (1997). The search can
also be performed in the image domain. Delamarre and Faugeras (2001) use forces
between extracted silhouettes and the projected model to refine the pose estimation.
Gavrila and Davis (1996) take a top-down approach with search-space decomposi-
tion, where poses are estimated in a hierarchical coarse-to-fine strategy. In other
words, the torso and head are estimated first and then down to the limbs and the
initial pose prediction is based on a constant joint angle acceleration. The analysis-
by-synthesis approach is applied in a discrete fashion, resulting in a limited number

of possible solutions per joint.

Top-down estimations often need a manual initialization in the first frame of a
sequence and often cause problems with self-occlusions. Moreover, errors are prop-
agated through the kinematic chain. For example, an inaccurate estimation for the
torso/head part would cause errors in estimating the orientation of body parts lower
in the kinematic chain. To overcome this problem, Drummond and Cipolla (2001)
introduce constraints between linked body parts in the kinematic chain, where a
pose is described by the rigid displacement of each body part. This in turn yields an

over-parameterized system which is solved in a weighted least-squares framework.
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2.2.2 Bottom-up estimation

Bottom-up pose estimation approaches start by finding body parts and then assem-
bling these into a human pose. They have the advantage of not requiring manual
initialization and hence can be used as an initialization for top-down approaches.
Moreover, temporal constraints can be used to cope with occlusions. The standard
bottom-up pose estimation process takes into account part models and structure

constraints (e.g., physical constraints).

2.2.2.1 Part models

Part models can be considered as fixed-size templates that are used to generate part
detections by scanning over the image observation and finding patches with higher
score. Intuitively, given an image I, a pixel location is defined as [; = (x;,y;) and
the descriptor for part ¢ extracted from a fixed size image patch centred at [; will be
written as ¢(I,1;). The part model is utilized as a comparison template with ¢(7,1;)

to compute scores at all locations in an image.
Colour models

The simplest part model is directly based on pixel colour, which is based on the ob-
servation that the appearance of individual body part generally remains unchanged
even in different poses. Colour models can be encoded with a histogram or a pa-

rameterized Gaussian or a mixture of Gaussians.

For example, skin colour detector works well for head part detection because a head
part contains many skin pixels. Left and right limbs often look similar in appear-
ance because clothes tend to be symmetric (Ramanan and Forsyth (2003)). Upper
and lower limbs often look similar in appearance depending on the particular types
of clothing worn (Tran and Forsyth (2010)). Body part proximity and symmetry
in colour are essential information to prune the search space. Mori et al. (2004)
first perform image segmentation based on appearance cues. The segments are then
classified by body part locators for half-limbs and torso that are trained on image
cues. From this partial configuration, the missing body parts can be derived. An

additional colour information that can be utilized is background consistency, which
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Figure 2.3: A single-scale walking pose detector is first applied on each frame to
detect the lateral walking pose(left). Given the estimated limb positions from that
detection, a quadratic logistic regression classifier is learned for each limb in the RGB
space, considering the masked limb pixels as positives and all non-person pixels as
negatives. In the middle left column, the learned decision boundary for the torso
and the remaining limb classifiers are illustrated. The classifiers are then used to
localize torso, head and limbs (masks shown on the middle right). These masks for
candidate limbs are searched and arranged in a pictorial structure, which yields the

recovered configurations on the right. (Reproduced from Ramanan et al. (2005))

can easily assist in separating the object from the background. Ferrari et al. (2008)
learn some appearance model parameters by applying a foreground-background seg-

mentation (based on ‘GrabCut’) on the output of an upright person detector.

Colour models are more specific to different illumination, viewpoint or clothing.
They are often utilized as a complementary method to improve the performance of
the systems that based on more generic models. Sometimes, the colour models are
learned from detection results based on shape models. For example, an overview of
the approach learning colour-based body part models proposed by Ramanan et al.
(2005) is illustrated in Figure 2.3.
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Figure 2.4: HOG descriptors. (a) Coloured blocks indicate the location and size of
the HOG descriptors in ground truth position for the image shown. Each dot marks
the centre of a spatial bin. (b) The extracted descriptors represent the image patch
by HOG magnitude over a grid of spatial cells. Bars represent the magnitude in
each orientation bin, with darker bars indicating stronger gradient. (Johnson and
Everingham (2009))

Shape models

Most approaches do not directly deal with pixel data, but some features designed to

be more generic and invariant to small changes and differences in lighting conditions.

Edges appear in the image when there is a substantial difference in intensity at
different sides of the image location. It can be extracted robustly at low cost. E.g.,
the Canny edge detector (Canny (1986)) is an edge detection operator that can
detect a wide range of edges in images. Edges are invariant to lighting conditions
to some extent, but are unsuitable for dealing with cluttered background. They
are usually located within an extracted silhouette and are often utilized as a pre-

processing for object shape extraction and recognition.

Most successful shape descriptors in object recognition is the invariant ones, such
as Scale-invariant feature transform (SIFT) (Lowe (2004)), shape context (Belongie
et al. (2000)) and histogram of oriented gradients (HOG) (Dalal and Triggs (2005)).
We will go through HOG and shape context descriptors below since they are par-

ticularly common representations and are used extensively in this work.
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Figure 2.5: Shape context computation. (a) Original shape. (b) Sampled edge
points. (c)(d) Shape context for reference samples marked by o,< in (b). Each
shape context is a log-polar histogram of the coordinates of the remaining point set
measured using the reference point as the origin. Here, 5 and 12 bins for log r and 6

are used respectively. (Dark=large values) (Reproduced from Belongie et al. (2000))

Dalal and Triggs (2005) show that Histogram of Oriented Gradient (HOG) descrip-
tors perform well for human detection compared to other existing feature sets in-
cluding wavelets Viola et al. (2005). HOG feature extraction is based on evaluating
well-normalized local histogram of image gradient orientations in a dense grid. The
basic idea is that local object appearance and shape can often be characterized by
the distribution of local intensity gradient or edge directions. Thus in practice, HOG
extraction is implemented by dividing the image window into small spatial regions
(‘cells’), for each cell accumulating a local 1-D histogram of gradient directions or
edge orientations over the pixels of the cell. The combined histogram entries form
the representation. Specifically, image gradients are first computed at each pixel
with a simple 1-D centred derivative mask [—1,0, 1]. Note that for colour images,
gradients are calculated separately for each colour channel, and the one with the
largest norm is taken as the pixel’s gradient vector. Gradients are then binned into
one of the (typically) 9 orientations over local neighbourhoods of 8 x 8 pixels. A
particularly simple implementation is to compute histograms over non-overlapping
neighbourhoods. Finally, the orientation histograms are normalized by accumulat-
ing a measure of local orientation statistics over some larger spatial regions (‘blocks’)

, e.g., 16 x 16 pixels. Figure 2.4 visualizes the HOG feature.
Belongie et al. (2000) introduce a shape descriptor, the shape context, for shape

matching and shape-based object recognition. They argue that the shape context

descriptor is tolerant to all common shape deformations. Shape context analysis
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2.2 Human Pose Estimation

begins by converting the edge elements of a shape into a set of N feature points,
which can be on internal or external contours. Then for a point P on the shape,
a coarse histogram of the relative coordinates of the remaining N — 1 points is
computed. This histogram is defined to be the shape context of P. To improve
the robustness of the descriptor, a log-polar coordinate system is selected and the
histogram is binned with 12 equally spaced angle bins and 5 equally spaced log-

radius bins. An example of shape context computation is illustrated in Figure 2.5.
Others

Convolutional neural networks (CNNs) is attracting more attentions, which is date
back to 1990s (e.g., LeCun et al. (1998)). Along with the rise of support vector
machines (SVM), it once fell out of fashion particularly in computer vision. How-
ever, Krizhevsky et al. (2012) rekindled interest in CNNs by showing substantially
higher image classification accuracy on the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) (Deng et al. (2012); Endres and Hoiem (2010)). Girshick
et al. (2014) use affine image warping technique to compute a fixed-size CNN in-
put from region proposals and achieve high performance on object detection and
segmentation. They name their method R-CNN: Regions with CNN features.

Shape and colour features can be combined when dealing with object detection
and pose estimation. The body parts are usually described by 2D shape-based
templates. Often, these templates produce many false positives, as there are many
limb-like regions in an image. Lu et al. (2012b,a) propose to construct robust and
specific colour model for each part based on the results from a generic shaped-based
appearance model. Ramanan (2006) improve the detection accuracy iteratively. In
the first iteration, only edges are used to locate possible body parts. Then a rough
region-based colour model for each body part and the background is built from these
locations and finally new locations are found using this model and the process is

repeated.

2.2.2.2 Structure constraints

The human shape in 2D models are often represented as rectangular or trapezoid-

shaped patches (see Figure 2.6). To compose all parts into a full body with high
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2.2 Human Pose Estimation

Figure 2.6: 2D human body shape model with rectangular and trapezoid patches.

accuracy, the structure model and structure constraints are of great importance.
Graphical deformable models are commonly utilized for 2D human pose estimation

issue because of the articulation human body.

Assuming a N-part body, with the ¢ — th part denoted as I; and the full body
configuration as L, then L = (ly,ls,...,Iy). A graphical model of this full body
represents a collection of all parts L and a set of pairwise relationships between the
parts. Denoting the image observations by D, the energy of full body configuration
L defined by a graphical model is given by

N
E(L;D) =Y E"(;;D)+ Y E"(lm,1,), (2.3)

n=1 n~m
where the pairwise relationships between body parts are represented as n ~ m.
According to the kind of the kinematic chin they follow, the structure of the graphical

model is divided into two classes: tree structure model and non-tree structure model.
Tree structure model

Figure 2.7 (a) shows a tree based structure model for a 10-part full human body.
The root part is torso and the leaves nodes are left /right lower legs/arms. It implies
that the left and right body limbs are detected independently given a root torso.

This tree model not only naturally captures the kinematic structure, but allows for
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2.2 Human Pose Estimation

Figure 2.7: Structure model for a 10-part full human body.

efficient inference that is linearly in time in the number of nodes. Felzenszwalb and
Huttenlocher (2000) optimize the tree formulation in order to perform estimation in

O(nh) time, where h is the number of discrete locations for each of the n parts.

The most common and successful tree based model is the Pictorial Structures (Pic-
Str) model introduced by Fischler and Elschlager (1973) and borrowed by Felzen-
szwalb and Huttenlocher (2005) to find object in an image. Felzenszwalb and Hut-
tenlocher (2005) use the concept of pictorial structures to model the coherence be-
tween body parts and all body parts are modelled with 2D appearance models. An
efficient dynamic programming algorithm is used to find an optimal solution in the
tree of body configurations. Ronfard et al. (2002) also use the pictorial structures
concept but replace the body part detectors with more complex ones that learn ap-
pearance models using SVM. Song et al. (2003) involve feature points and inference
the full configuration on a tree model. Sigal et al. (2003) model the spatial struc-
ture constraints between body parts as arcs and the pose estimation is also simply

inference in the tree based graphical model.

Non-tree structure model

Tree models are limited by the fact that they do not capture information about
relations between or among non-connected body parts by joints. Thus some impor-

tant constraints such as balance and coordination has been introduced to further

improve the estimation performance. For example, one can add constraints between
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2.3 Human pose tracking

the arms and legs to account for balance. Figure 2.7 (b) shows a non-tree based
structure model for a 10-part full human body by adding repulsive factors between
symmetric legs and arms. Lan and Huttenlocher (2005) extend the tree structure
with correlations between body parts. For walking, correlations between upper arm
and leg swings are used, resulting in more robust pose estimations. Sigal and Black
(2006a) introduce occlusion-sensitive image likelihoods, which introduces loops in
the graphical model. Sigal and Black (2006b) focus on obtaining 3D poses from
these 2D pose description.

When introduce more constraints between non-connected parts, the spatial structure
of the full body is not a tree anymore, which causes the computational complexity
of estimation to be exponentially increased in the size of the largest clique in the
graph. Lan and Huttenlocher (2005) investigate a technique for adding constraint
to the model while not greatly increasing the computational cost of estimation.
They introduce a small number of latent variables to represent residual correlations
between parts that are not captured by a tree model. Tian et al. (2015) introduce a
factor graph to factorize all parameters that are encoded in the full non-tree model
(shown in Figure 2.7 (b)). The transferred factor graph is illustrated in Figure 6.4
(b), where each part [; is represented by a variable node (empty circle), each local
function f; is represented by a factor node (solid square), and an edge connects a

variable node [; to a factor node if and only if /; is an argument of f;.

2.3 Human pose tracking

Human pose tracking is achieved by estimating poses in every frame, with temporal
coherence integrated between poses in successive frames. In other words, poses in
every frame can be obtained by means of pose estimation algorithms and then the

tracker corresponds poses across frames.

Assume the state to be inferred is X;, the image observation is Z; which is utilized to
estimate the state, then the state and observation history are X, = (Xj, ..., X;) and
Zvy = (24, ..., Z;), separately. The tracker is to estimate the probability of states

(poses) over time Xj., or the pose X; at time ¢ given the sequence of observations
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[

(a) (b)

Figure 2.8: The model shown in (a) is the full body model integrated with con-
straints between symmetric legs and arms (the blue dash lines). The whole model is
transferred to a factor graph shown in (b). Each part [; is represented by a variable
node (empty circle), a factor node (solid square) denoting each local function f;,
and an edge connecting a variable node [; to a factor node if and only if /; is an
argument of f;. (Tian et al. (2015))

Z1.4. According to the Bayes’ rule,

P(X1:t| Z14) o< p(Z1:4| X1:0)p(X1t), (2.4)

where the first term on the right hand is the likelihood of the observations given

state model, the second term is the prior of state dynamics.

p(Xi|Z1.4) is a filtering distribution, i.e., the marginal of the posterior distribution

over states conditioned on observations Z.::

p(Xi| Z1) = /Xl .../Xt_lp(Xlztllet). (2.5)

Generally, two assumptions are imposed to simplify the model. Firstly, the 15-order

Markov model is used for state dynamics:
p(Xe| X14-1) = p(Xe| Xio1). (2.6)

Then the sequence prior dynamics is given as

p(X14) = p(X1) HP(XJ|XJ'—1) (2.7)

t
Jj=2
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2.3 Human pose tracking

The second assumption is that the observations are conditionally independent, thus

the likelihood can be written as

= Hp ZT’XT) (28>

T

p(Z1:t|X1:t) = p(Zt|Xt)p(Zl:t—1 ‘X1:t—1)
t
(
=1

With Equations 2.7 and 2.8, the tracker can be written as:
p(Xlzt‘Zl:t> X p(let’Xl:t)p(Xlzt)
Hp(Xt‘Xt—l)p(ZﬂXt), (2.9)
t

and the filtering distribution is finally written as:

p(Xt|Zl:t) = / / X1 t|th
X1 Xt—1
= Zt‘Xt (Xt|th 1) (210)

— Op(ZX0) /X PN X p(Xes| Zra). (211)

where C' is a constant and obviously, Equation 2.11 is a recursive form of the pos-

terior distribution; and p(X;|X; 1) is the motion model.

2.3.1 Kalman filter

One of the early and most widely-used methods for tracking is the Kalman filter
and its variants Bar-Shalom et al. (2004); Brookner (1998); McKenna et al. (2000);
Mittal and Davis (2003). The Kalman filter is an efficient and optimal filter for
tracking a target that is following a linear trajectory whose dynamics are observed

via measurements that are corrupted by Gaussian noise, i.e.,

Xt = AXt—l + Na (212)

where 1y ~ N(0,04), 9 ~ N(0, 0).

The Kalman filter is a recursive algorithm that updates its estimate at each time

instant ¢ based on the observation. For a given time instant t, the algorithm includes
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2.3 Human pose tracking

two steps. The first step is to make a prediction of the observation at time instance
t by rolling forward the estimate at time ¢t — 1 using the linear dynamics. The second
one is to refine the prediction into an estimate of the position at time ¢ by choosing a
point between the observation at time ¢ and the predicted position for £. The location
that this point falls depends on how confident the Kalman filter is in its prediction.
As more observations are collected the Kalman filter becomes more and more certain
as to the true trajectory of the target, since the filter assumes that the target will
always stay on a linear course. Many approaches extend the basic Kalman filter
algorithm. Bar-Shalom and Li (1993); Efe and Bonvin (2002) propose the concept
of adaptive Kalman filters which aim to handle manoeuvring targets. Switching
Kalman filters are proposed by Murphy (1998) to switch between different possible

linear dynamics models (Stauffer and Grimson (2000)) or observation configurations.

In reality, the object motion and interactions between objects often produce complex
nonlinear dynamics, so Gaussianity is not preserved and the Kalman filter is not a

good choice for these cases.

2.3.2 Particle filter

A popular approach to approximately inference in non-linear tracking is Monte Carlo
filter (particle filters). The distribution of the state X; is represented by a set of
particles and these particles are propagated through a dynamic model. State par-
ticles are re-weighted by evaluating the likelihood. The particle filters have proved
effective for scenarios in which manual initialization is possible or there exist strong
dynamic models (e.g., known motion such as walking). Isard and Blake (1998) pro-
pose a conditional density propagation algorithm (named as CONDENSATION)
that is based on factored sampling and extend to apply iteratively for tracking suc-
cessive images in a sequence. Figure 2.9 illustrates the iterative process as applied
to sample-sets. Deutscher et al. (2000) develop the particle filter and modify it for
searching high dimensional configurations. Based on annealing, the algorithm uses
a continuation principle to introduce the influence of narrow peaks in the fitness
function gradually. This algorithm is termed annealed particle filtering and can

recover full articulated body motion efficiently.

Although particle filters are capable of dealing with multi-mode and non-linear cases,
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Figure 2.9: One time-step in the Condensation algorithm: three steps (drift-diffuse-
measure) of the probabilistic propagation process are represented by steps in the

Condensation algorithm. (reproduced from Isard and Blake (1998))
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Figure 2.10: The people tracker. Initially, a detuned edge-template is used as a
generic person-model. Then an instance-specific model capturing a person’s ap-
pearance is built from the video data. Finally, it tracks the person by detecting that

model in each frame. (Ramanan et al. (2007))

a big problem is that such trackers need to be manually-initialized in the first frame.
Additionally, the likelihood can be highly confused in cluttered scenes. For example,
there may be many image regions that locally look like a limb, which can result
in particles drifted to the wrong mode. Drifting and the requirement for manual
initialization seem to be related and one way to build a robust tracker is to rely less

on the dynamic model but put more attention on the detection results.

2.3.3 Tracking by detection

Tracking-by-detection approaches tend to be more robust because independent pose
estimation is performed for each frame, which means that the tracker can re-initialize
from any frame. A post-processing stage can also be applied on the resulting pose
estimates to remove the temporal noise. Ramanan et al. (2007) propose a tracking-
by-detection framework that works in two stages: first build a model of body ap-

pearance and then track by detecting that model in each frame (see Figure 2.10).

For a N-part human body model, the tracker is a spatial-temporal model with NT'
parts by replicate the body model for T' frames. Following a 1%*-order Markov model
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and a pictorial structure model,

T N

P | Zr) o [T TG 1XE 0p (XX )p(Z0]X5) (2.14)

t=1 i=1

As a notation convention, the superscripts denote the body parts (i ranges over
the torso plus left/right upper/lower arms/legs) and subscripts denote frames t €
1,...,T. The term 7(i) reperesents the parent of part 7, following the tree structure.
To efficiently infer this model, an attractive strategy is to estimate the pose in each
frame and then optimize these poses by a local and simple motion model. Ramanan

et al. (2007) set the local motion model by bounding the velocity:

p(X{IXT_y) o I(|| X] — X{ 1 < Vmaa|])- (2.15)

Given an arbitrary video, part appearance models must initially be clothing-invariant,

which can be accomplished by learning an edge-based model.

When building a human body appearance model, edge (Andriluka et al. (2009, 2012);
Mori et al. (2004); Ramanan (2007)) or colour features are typically used to identify
body parts. Ramanan et al. (2007) propose a tracking-by-detection framework that
works in two stages: it first builds a model of body appearance and then it tracks by
detecting that model in each frame (see Figure 2.10). The system first searches for
a distinctive ‘stylized pose’ with an edge-based detector (they used a lateral walking
pose) and then extracts the colour model from the best detected pose. However,
this approach requests that the stylized pose exists clearly in the video. Ferrari
et al. (2009a) use a generic parts detector based on edges and a pictorial structure
to estimate many possible pose configurations per frame in a sequence. Within these
estimates, the one with the maximum posterior at each frame is chosen as the correct
estimate. All the chosen estimates are then used to construct a specific appearance
model for the tracked person. A drawback of this approach is that the generic detec-
tor cannot guarantee that the maximum posteriors for all frames always correspond
to the correct pose. Incorrect appearance models can be produced and consequently
cause tracking errors. To overcome this issue, the approach by Lu et al. (2012b)
clusters pose estimates from generic parts detectors across all frames and selects the
largest cluster per-limb as the indicator (they call them the ‘correct’ estimates) for
the specific appearance model. This method shows better performance than Ferrari
et al. (2009a) and Ramanan (2007). However, the pixels included in the so-called

‘correct’ estimates in Lu et al. (2012b) are usually contaminated by some non-target
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pixels due to a loose-fitting body model. These pixels may either be from the back-
ground of the scene or from other body parts of the tracked person. Consequently
the accuracy of the specific appearance models constructed is affected, so is the per-
formance of the pose tracking based on them. Therefore, Lu et al. (2012a) propose
a secondary analysis step to identify and eliminate the non-target pixels from the
‘correct’ estimates in order to obtain a more accurate/uncontaminated specific ap-
pearance model. Their method is successful based on the fact that the initial part
detectors can provide a set of high-scoring detections. Later they use the learned

appearance models to produce a dense track.

2.4 Chapter Summary

This chapter has presented a review of the literature that is relevant to this thesis.
It begins with a review of current methods for finding people in a scene, including
their strengths and shortcomings. Specially, two classes of approaches are presented
in detail, i.e., background subtraction and detection with part-based models. The
next section explores common methods for human pose estimation which is an im-
portant task in this thesis. Top-down and bottom-up approaches for human pose
estimation are reviewed and compared. Part models and structure constraints are
described which are two aspects in bottom-up approaches. Following this is the
theoretical formulations for pose tracking. Approaches for human pose tracking are
also reviewed, with particular focus on tracking-by-detection techniques due to their

relevance to this thesis.
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Chapter 3

Tracking System Overview

For constructing a robust tracking system, two kinds of evidence need to be bal-
anced. One is the image evidence of the body configuration and the other is motion
dynamics. A great number of previous works focus on high-level reasoning, e.g.,
probabilistically modelling human motions (Sidenbladh et al. (2002, 2000); Fablet
and Black (2002)). They use the configuration in the current frame and a motion
dynamics model to predict the configuration in the next frame. Such predictions
can be refined using image data. Stochastic search methods, such as the annealed
particle filter (APF) proposed by Deutscher et al. (2000) and its variants described
in Kaliamoorthi and Kakarala (2013), are used widely in pose tracking due to their
efficiency. However, these works generally require knowing a specific motion or
establishing a motion dictionary. Complex motions are often non-linear and un-
predictable hence it is generally difficult to establish a suitable motion dynamics

model.

An alternative approach is to ignore motion dynamics and detect human postures in
each frame, using cues such as appearance (Bai and Li (2012); Sullivan and Carls-
son (2002)) or local motion (Song et al. (2000)) or both (Viola et al. (2005)). The
types of motion to be tracked can be unrestricted and it is not necessary to estab-
lish or train motion models beforehand. Low-level image features are powerful for
detection (Ponce et al. (2011)). Body appearances are generally stable throughout
a video sequence because people tend not to change clothes from frame to frame.
As such, recent methods are generally in favour of the tracking by detection idea.
Ramanan et al. (2005) propose to build a discriminative appearance model from an
easily detectable canonical pose detector, and use this model as a limb detector in
a pictorial structure framework (Fischler and Elschlager (1973); Felzenszwalb and
Huttenlocher (2005)) to detect figures in both the current and successive frames.
Approaches combining detection and tracking have proven useful (Ramanan et al.
(2007); Okuma et al. (2004); Ramanan et al. (2005); Lu et al. (2012b)). Among
them, Lu et al. (2012b) propose a tracking algorithm combining edge-based (generic)
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Figure 3.1: Two examples show that both target pixels and non-target pixels co-

exist in the so-called correct estimates. Figure (a) shows that non-target pixels may
come from the background. Figure (b) shows that non-target pixels may also come

from other non-target body parts.

and colour-based (specific) appearances and produce very satisfactory results. They
first processed the images using a set of generic human body detectors based on the
shape feature, then clustered pose estimates from these detectors across all frames
and selected the largest cluster per-limb as the indicator for the specific appearance
model. However, the estimates that are utilized to construct the specific appearance
models sometimes cannot perfectly cover the area of the body part, as shown the
examples in Figure 3.1. The ‘contamination’ might be caused by background pixels
or pixels of other body parts that exist in the clustered estimates. To overcome
this issue, Lu et al. (2012a) propose to build an accurate and uncontaminated ap-
pearance model for tracking by eliminating such negative pixels and then track the

figure’s pose by detecting the constructed appearance model in each frame.

This chapter presents a tracking system with an optimal colour-based specific ap-
pearance model that is learned by pixel clustering (Lu et al. (2012a)). An overview of
the human pose tracking framework based on an accurate specific appearance model
is shown in Figure 3.2. Part (a) shows the whole tracking process, which consists
of three major components: generic pose detection, accurate specific appearance
model, and final pose tracker. The human body is modelled with 10 rectangles.
The system firstly detects each body parts using a set of AdaBoosted part detec-
tors based on the shape feature (generic appearance) Andriluka et al. (2009) for a
T-frame sequence. All the detection results are then analyzed in order to extract
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Figure 3.2: (a) Overview of the human pose tracking system. (b) Visualization
about how to build an accurate specific appearance model for human pose tracking
based on the results from generic human pose detection and results of the colour
histogram clustering. Lu et al. (2012a). The process of training the torso appearance

is used to illustrate the approach.

specific appearance information and the proposed algorithm for building an accu-
rate specific appearance model is shown in Figure 3.2 (b). Finally, human poses
are tracked by detecting this accurate appearance model in all frames. Similar to
other 2D tracking systems, the human body is represented here by the pictorial
structures model (PicStr). In practice, motion is certainly a useful cue for detec-
tion, so a simple dynamic restriction is incorporated into the tracking system, which
assumes the body moves relatively slowly between successive frames. Thus a kine-
matic pose tracker is formed by a tree-structured graphical model (PicStr) with a

simple temporal constraint incorporated.

Although this tracking system is experimented and proved that it can track people
in various motions from a single view with automatic initialization and the perfor-
mance is superior compared to several state-of-art 2D tracking systems, it is only for
sequences in which the tracked target appears in the same or similar size. Moreover,
tracking performance for the most active body part, such as the arms, is relatively
low compared to the other parts of the body. Therefore, our main task in this thesis
is dealing with tracking in various scales and exploring approaches to improve the

tracking performance for active limbs.
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3.1 Pictorial Structures Model

Based on the system proposed by Lu et al. (2012a), a new 2D human pose tracking

system is proposed in this thesis and detailed in Section 3.4.

The structure of this chapter is as follows. Section 3.1 provides the details of the
pictorial structures model that is the base model for 2D human pose tracking. The
procedure of constructing the accurate appearance model and The final tracking
system proposed in Lu et al. (2012a) are detailed in Section 3.2 and Section 3.3.
Based on this framework, the overview of the proposed tracking system in this
thesis is presented in Section 3.4. Finally, some concluding marks and discussion

are given in Section 3.5.

3.1 Pictorial Structures Model

A pictorial structures model for an object is given by a collection of parts with
connections between certain pairs of parts. A natural way to express such a model is
using an undirected graph G = (V, E'), where the vertices V' = {vy, ..., v, } correspond
to the n parts, and there is an edge (v;,v;) € E between each pair of connected parts
v; and v; (Felzenszwalb and Huttenlocher (2005)). In this work, we use a 10-part
model for a human body: head, torso, and left/right lower/upper arms/legs. The
projection of each body part is approximately modelled as a rectangle based on the
assumption that a rigid human body part is more or less cylindrical. (see Figure
3.3).

The body configuration is denoted as L = {l;}, i € {0 ~ 9}, where [; = (z;,y;, 6;, s;)
represents the body part centred at (z;,y;) in image coordinate with orientation 6;
(illustrated with yellow circles and short lines in Figure 3.3 (a)), s; is the scale factor
of the body part, defined to be relative to the size of the corresponding part in the
training set. In this chapter, we use the model trained from the People dataset
gathered in Ramanan (2007), which includes annotated humans across a variety of

views, articulations and activities.

Given an object appearance model C' and an image evidence I, the posterior of the

human body configuration L can be written as:
p(L|1,C) < p(L)p(I|L, C), (3.1)
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Figure 3.3: Representation and kinematic prior of an articulated object. (a) a body
is represented using 10 bounding boxes configured with the centre locations in image
coordinate illustrated with yellow circles. The short lines starting from the yellow
circles show the local coordinate system of each part. (b) and (c) illustrate two parts
in their own local coordinate systems. Two points (d¥,d) and (d¥,d!), indicated
by the black circles, represent the position of the joint, each in the coordinate system
of the corresponding part. (d) shows the ideal configuration of the connected parts,

i.e., the two joint positions overlap.
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where p(I|L,C) is the likelihood of the image evidence, and p(L) represents the
geometric relations between the connected parts called the configuration prior. Each
body part is assumed to be conditionally independent given the part configuration
l; and the part appearances C;. The likelihood p(I|L,C) is decomposed into the
product of single part likelihoods. In order to enable exact and efficient inference,

the configuration prior is restricted to form a tree structure.

The configuration prior. For an articulated object, pairs of parts are connected
by flexible joints. The first term in the right-hand side of (3.1) is the configuration
prior p(L) representing the constraints between the connected parts in the proba-
bilistic form. A tree-structured graphical model is used to encode such constraints

(i.e., the kinematic dependencies between body parts).

In a tree graphical model, each child node only depends on the immediate parent

node, thus the prior on part configurations can be factorized as

p(L) =plo) 1] p(ully), (3-2)

(i,7)EF

where F is the set of all edges in the kinematic tree, [y denotes the root node, which
is the torso in our case, similar to many other approaches based on PicStr. The
prior for the root node configuration p(ly) is assumed to be uniform to allow for a

wide range of body postures.

A pair of connected parts I; and [; is illustrated in Fig. 3.3 (b), (c¢) and (d). The
position of the joint is specified by two points (d¥, dzj ) and (d77, d]y"'), represented by
black circles in Figure 3.3 (b) and (c), each in the local coordinate system of the

corresponding part. These points overlap in an ideal configuration as indicated in
Figure 3.3 (d).

The joint probabilities between the dependent child body part [; and its immedi-
ate parent part [; are denoted as pairwise terms p(/;|/;), as in Felzenszwalb and
Huttenlocher (2005), which are modelled by Gaussian distributions allowing for effi-
cient inference. As pointed out in Felzenszwalb and Huttenlocher (2005), the spatial
distribution between connected parts is possibly well captured by a Gaussian dis-
tribution in a transformed space even when it is not Gaussian distribution in the

image coordinates. The part configuration l; = (x;,y;, 6;, s;) is transformed into the
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3.1 Pictorial Structures Model

local coordinate system of the joint between the two parts by the transformation:

z; + s;dYcosb; — sid;j sin 6;
Yi + sidY sinb; + s;dYJ cos b;

Si

(3.3)

where d = (d,d})" is the joint position between parts [; and [; represented in the
coordinate system associate with part [;, and 6;; is the relative angle between the

two parts. The p(l;|l;) can now be represented as:
p(lilly) o< N(T5(ly) — Ty (1) [, 57), (3.4)

where Tj; is the transformation that maps the configuration of the parent part [;
to the local coordinate system of the joint between parts ¢ and j, u% is the relative
orientation, and X% is the covariance matrix of the parts. All these parameters in

the kinematic tree prior can be learned from the training data.

Likelihood model. The other important part in the pictorial structures model is
the likelihood p(I|L,C). For simplicity, assuming that each body part is condition-
ally independent given the part configuration [/; and the part appearances C;, the

likelihood p(I|L,C) is decomposed into the product of single part likelihoods:

N

p(IIL,C) = [ [ pLill;, Cy). (3.5)

=0

In the implementation of the system, a set of Boosted part detectors are adopted,
which are pre-trained by Andriluka et al. (2009) to model the part likelihoods. The
appearance of each body part C; is represented by a shape context descriptor and
trained with an AdaBoost classifier to predict the presence of a part. They are
generic appearances describing shape features and have proven to be an effective

generic approach for human body detection.

Using (3.2) and (3.5), the posterior (3.1) is factorized as

p(LIL,C) o< p(lo) [ [ p(Lilti, ) T p(illy). (3.6)
i=0 (i,9)€E
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3.1 Pictorial Structures Model

(2) (b) (c) (d) ©) ® ©)

Figure 3.4: Samples of the top estimates for specific body parts. The primary esti-
mate is illustrated in red (such as the red bounding box in (a) and in other images)

and the alternative estimates for specific part are shown with yellow color((b)-(g)).

(a) (b) (©) (d) (e)

Figure 3.5: Samples of the wrong estimates in the primary estimate set. The primary
estimate is illustrated in red bounding box (b-box) and the alternative estimates
are bounded in yellow. The b-box in (a) and (c) are the primary estimates for the
left-lower-leg and left-upper-arm separately, but they are wrong estimates due to
the ‘arm-like’ shape and other noises in the images. On the contrary, the probable
alternative estimates (in yellow colour) in (b) and (d) include the correct estimate.

Similar examples for the right-lower-arm are shown in (e).
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3.2 Building an Accurate Specific Appearance Model

Generic part estimates. With the model described above, human postures can be
detected by finding the most probable configuration of each body part. Due to each
possible configuration [; being viewed as an probabilistic estimate corresponding to
p(l;|1,C), each part detector in fact generates multiple estimates, samples of which
are shown in Figure 3.4. For one part in each frame, all estimates can be identified
as two types: the optimum estimate and a set of probable alternative estimates.
The optimum estimate called primary estimate (p,,) is the most probable location
for part m based on the generic appearance model. Beside the optimum estimate
for part m, a set of sub-optimal estimates called probable alternative estimates are
also obtained by sampling the top N posteriors except for the maximum posterior
(in Lu et al. (2012b), N is selected to be 30), denoted as @,.

For a T-frame sequence, the primary estimates for part m in all frames are denoted
as a set Sy, and S,, = {pL ,p%,...pL}, where the superscript is the index of image
frames in the sequence. Because the part detectors rely on generic shape features,
not all the optimum candidates in S,,, are guaranteed to be the correct estimates. For
example, as shown in Figure 3.5, the ‘limb-like’ shapes or other noises around a limb
often confuse this shape-based part detectors. Fortunately, experiments show that,
for a sequence, the colour information provides a convenient and effective supplement

for avoiding such erroneous estimates as much as possible Lu et al. (2012b).

3.2 Building an Accurate Specific Appearance Model

In this section we present the approach for building an accurate specific appearance
model based on body part estimates from the generic pose detector. As mentioned
above, there are both correct and false estimates in the primary estimate set S,,. If
the correct and false estimates can be separated and the correct estimates identified,
the colour information of the body part could be extracted, thus an appearance

model specific to the tracked target can be constructed.

Based on this reasoning, the system first follows the approach proposed by Lu et al.
(2012b) to cluster the colour histogram of primary estimates across 7' frames in
a sequence (each body part clustered separately), under the assumption that the

dominant cluster represents the ‘correct’ estimates of the tracked target. Lu et al.
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3.2 Building an Accurate Specific Appearance Model
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Figure 3.6: An estimate is represented by a bounding box in an image. The green
area represents the central area and the white area represents the border area of the
bounding box. It also illustrates how to compute a perpendicular distance d of the

pixel (x,y) with respect to the long axis of the bounding box.

(2012b) have proven that this assumption is reasonable as long as enough correct
estimates are obtained (more than any sets of false estimates that fall randomly on

the same colours).

However, even in the so-called correct estimates, they would definitely include some
non-target pixels, i.e., the estimates are contaminated, which may either be from
the image background or from other body parts of the tracked person, as in the ex-
amples shown in Figure 3.1. In other words, even with the ‘correct” estimates, there
is a possibility that the colour features they provided might not be good enough for
the representation of some particular body parts, especially if the so-called ‘contam-
ination’is not trivial. A secondary analysis procedure is hence introduced to identify
and eliminate the non-target pixels from the ‘correct’ estimates, rather than using
them directly to build the specific appearance model for a body part, as an at-
tempt to obtain a more accurate/uncontaminated specific appearance model. Two
assumptions are utilized in the procedure. Firstly, within a bounding box identified
as a correct estimate, the number of body pixels (the target pixels) is expected to

exceed the number of non-target pixels, which is reasonable given that the detection
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3.2 Building an Accurate Specific Appearance Model

of Lu et al. (2012Db) is relatively accurate and the body model is not too loose a
fit. Secondly, as illustrated in Figure 3.6, body pixels tend to locate in the central
area of the bounding box and most of the non-target pixels would locate along the
border.

In Section 3.2.1 we briefly explain how to cluster the colour histograms of the primary
estimate set S,,. The procedure described in Section 3.2.2 is an extension of the
clustering procedure which aims to improve the accuracy of the appearance model

obtained by addressing the ‘contamination’ problem.

3.2.1 Colour histogram clustering

For each estimate p!, in the primary estimate set S,,, a corresponding image patch
(a rectangular area) A’ would be specified by the estimate. In the proposed frame-
work, the size of the image patch A%, could vary due to the scale variation between
different frames. We firstly resize the image patches for each body part in T" frames
according to the corresponding scale values which are determined by the strategy
described later in Chapter 4 and obtain a series of new image patches {a’,} with the
same size. The patch a!, bounds the position of limb m and is represented by the
colour histogram of the pixels (a feature vector (vf,)) in that patch. Specifically, the
histogram is calculated by projecting the pixels of an image patch onto the L,a,b
axes in the CIE Lab colour space separately, with each of the three colour channels
divided into 10 evenly distributed bins. A feature vector (vf)) is hence created con-
sisting of a 30-bin Lab colour histogram. The set of the primary estimates (.S,,) for

part m is then transformed to a set of feature vectors {v! }Z_,.

These image patches with feature vectors {v! }L , are then clustered by the mean-
shift procedure (Comaniciu and Meer (2002)), a nonparametric density estimation
technique. The set of colour histogram feature vectors {v{ }I_, can be viewed as T
data points, t = 1,...,7T in the 30-dimentional space. The mean-shift procedure is
an iterative scheme in which we find the mean position of all feature points within a
hypersphere of radius h, re-centre the hypersphere around the new mean, and repeat
until convergence. The constant h can be adjusted to control the merging of the
clusters. Points in one cluster tend to represent similar colours. The points in the

biggest cluster are then identified as the ‘correct’” estimates, and a subset U,, C S,,
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3.2 Building an Accurate Specific Appearance Model

is used to denote this set of correct estimates

Um = {ptmn }flV:l’ (37)

where n indexes the subset of times ¢,, which are considered correct estimates. For
each element p!* in the subset U,,, a corresponding image patch a!" would be ob-

tained.

3.2.2 Improving the appearance model by de-contamination

In order to identify the target (body) pixels for part m, we further analyze the pixels
specified in the set U,,. A group of colour vectors Y,'» are constructed to represent
one image patch a'». Again, the colour vectors are extracted in the CIE Lab colour
space,

Yoo = {K} (3.8)

in
m?

where ¢ corresponds to one pixel in the image patch a’», and w, h represent the

width and the height of the image patch alr.

Let
Y, = UL {Yir}. (3.9)

All pixels specified by estimates in U, are transformed into colour vectors in Y,,.
When (3.8) is substituted into (3.9), the set Y, can also be denoted as
Yo = {Ki}isy, (3.10)

where L = w * h x* N and N is the size of the subset U,,.
Pixel clustering

After all pixels specified by the estimates in U, are represented by colour vectors in

Y., pixel clustering can be implemented.

The mean shift algorithm is applied for pixel clustering procedure to obtain the
modes of the colour vectors Y,,. According to the mean shift algorithm, a set of

[ modes Y;,, = {K,, }2:1 are generated, which represent the local maxima points,
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3.2 Building an Accurate Specific Appearance Model

where [ < L. Thus each vector in Y, is attached to a specific mode and the set of

colour vectors Y,, is partitioned as
Y = Ul M/ (3.11)

where M/ is one of the clusters which corresponds to the mode K. in the set of [

modes Y,,,.
Identifying target pixels

The goal here is to divide the subsets M7 into positive subsets containing the pixels
from the body part being modelled (target pixels) and negative subsets containing
the pixels from background and other body parts (non-target pixels). Figure 3.7
shows two examples of the results from the pixel clustering, one is for the lower left
leg (a single-colour body part) and the other is for the upper left arm (a multi-colour
body part). The pixel clustering procedure is performed on them using the approach
described in Section 3.2.2. In the right column of Figure 3.7 (a), two clusters are
obtained for the lower-left leg , where Cluster #1 represents the target pixels and
Cluster #2 represents the non-target pixels clustered from all pixels in the patches
shown in the left column of Figure 3.7 (a). In Figure 3.7 (b), it can be clearly seen
that the target pixels are in two different colours, i.e., the navy colour and the skin
colour, which are separated into Cluster #1 and Cluster #2 respectively shown in
the right column of Figure 3.7 (b). Cluster #3 illustrates the non-target pixels in
the patches of the upper left arm.

How to determine which cluster (or clusters) represents the target pixels? It is
reasonably assumed that the colour of the pixels along the central axis of a body
part should be most representative of the target pixel colours for that body part
since human body parts are typically vertically arranged (e.g., clothes colouring,
etc.). Besides, it is expected that most of the target pixels are located in the central
area of its corresponding bounding box, and the number of target pixels is larger
than the number of non-target pixels in a ‘correct” estimate. An average distance
D, for a subset M? is defined to identify the positive subsets. A colour vector K;
in Y,, corresponds to a pixel (z,y) in certain image patch al* which is enclosed
by a bounding box. As shown in Figure 3.6, for a pixel of coordinate (x,y), a
perpendicular distance d with respect to the long axis of the bounding box can be

obtained. Thus every Kj; in Y,, would correspond to a perpendicular distance d. For
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Figure 3.7: Two examples for pixel clustering. (a) shows the result of pixel clustering
for the left lower leg (single-colour body part). (b) shows the result of pixel clustering
for the left upper arm (multiple-colour body part).

a subset M7, an average distance D; can be defined as
(3.12)

where S is the size of set M.

If D; is small and the size of M/ is big, M? is more likely representing the target
pixels. The elements in set {M J3L_, can be sorted from small to large according to
the average distances. A dlstance threshold dyj..s is used to separate the positive
subsets from the negative subsets. dyp.cs is set relative to the half body part width
(dm), €., dinres M

. If the average distance D, for M, J is bigger than diyes, M?
is removed; otherwise it is retained. Among the positive subsets, the subsets whose

= uxd,,

number of elements is far less than the others are discarded. The remaining posi-
tive subsets {MJ"

model.

R | are retained to be used for building the accurate appearance

Building the accurate appearance model

With the positive subsets (target pixels subsets) {MJ"
rate/uncontaminated appearance model can be built through training a set of target-

R | identified, the accu-

pixel classifiers. The number of classifiers is determined by the number of the positive
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3.2 Building an Accurate Specific Appearance Model

subsets. Although complex classifiers, such as SVM or quadratic logistic regression
classifiers, can be learned, simpler Gaussian classifiers turn out to be sufficient for

our system.

Given the data in {MJ"}*  each MJ" is characterized by a Gaussian and modelled
into a single Gaussian. To classify an unknown vector z, its likelihood probability

is defined as
p(a|MI") = N (@, 18, 53,). (3.13)

A threshold « is used. If p(x|MJ") is more than 7, the vector z is identified as
representing the target pixels. Otherwise, the vector x is classified as representing

non-target pixels. In this way, all target pixels in each frame can be classified and

labelled.
Labelling target pixels

As stated above, the target-pixel classifier or classifiers can be built for each body
part, which can then be applied to check the pixels through all frames in a sequence.
Consequently, for each body part, a binary image (called mask image) can be gen-
erated for every frame in the sequence. If a pixel in a frame with coordinate (x,y)
is a target pixel, the corresponding pixel in the mask image with coordinate (x,%)

is marked as 0, otherwise marked as 1.

An experiment is conducted on the Combo sequence from the HumanEva dataset
(as shown in Figure 3.8 (a)) to test the proposed target-pixel classifiers. In this
experiment, the learned target-pixel classifiers for each body part are used to mark

the target pixels.

Sample results are shown in Figure 3.8. It can be seen that the body part pixels are
clearly identified and labelled. Although a small number of noise pixels are wrongly
marked as the target pixels, they have very small impact on localizing the part. Due
to the symmetrical colouring of typical clothing, the symmetric body parts such as
left and right arms/legs usually appear in similar colours. For example, the legs
including left /right lower /upper legs have the same colour, so four different target-
pixel classifiers actually represent the same colour, as shown in Figure 3.8 (c). In
these cases, the pictorial structures is used to resolve the confusion between body

parts. The spatial relations between the body parts are defined in the pictorial
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b) Torso pixels marked in binary images
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(c) Leg pixels marked in binary images

Figure 3.8: Several examples of marking target pixels for body part using the learned
Gaussian classifiers. The frames shown in this figure are representative and typical

in Combo sequence (HEI.S2_Combo_2_C2) from HumanEva dataset Sigal et al.
(2010).
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3.3 Tracking with the Accurate Appearance Model

structure, which helps to determine which target pixels should belong to which
body part. Section 3.3 describes how to use these mask images during the tracking

process.

The separation of target and non-target pixels in the ‘correct’ estimates helps to

improve the accuracy of the constructed specific appearance model.

3.3 Tracking with the Accurate Appearance Model

After the accurate appearance model is obtained using the algorithm of Section 3.2,
poses are tracked by detecting this model in all frames. The pictorial structure

framework as described in Section 3.1 is used.

For body part m in frame ¢, given a set of configurations, filtering is used to select the
candidates which agree with the specific accurate appearance model and generate
a set Gt called concentrated set. Specific to this system, the trained appearance
model (a set of target-pixel classifiers) can label the target (body part) pixels in each
frame, thus the criterion for filtering can be defined as the correct rate of target pixels
appearing in each patch of the candidates. Specifically, for a candidate detection
(a bounding box a’ for body part m in frame t), given the width and length (w,,
and [,,,) and a mask image b’ obtained from the pixel labelling process described in
section 3.2.2 (Figure 3.8), a mask patch p!, can be extracted by intersecting the mask
image b with the bounding box af . The specific appearance feature is recorded in
the mask patch. In order to score the candidate detection, a final response is set to
evaluate the ratio of target pixels in this detection. If a pixel in the mask patch pf,
is a target pixel (the pixel value is 0), a positive response (r(i,j) = 1) is obtained;
otherwise a negative response (r(i,j) = 0) is obtained. Finally, the response of the

specific appearance for a candidate detection is defined as

l ..
o Z;U:Wi jzl T(lvj)
Wy, X ’

Ly (ay,) (3.14)

Given any detection af, for body part m in frame ¢, if L,,(al,) > 50%, it is retained

otherwise it is discarded thus generating a subset G*' in which each element satisfies

20



3.3 Tracking with the Accurate Appearance Model

| I
| I
---- L"'~ l
T
S e |
J | ‘\ll
: I y
e e——
=] 7> “\ I ,"'l
D N
‘Q" ‘*" \..~ | "0' |
..... foeme” |
| I
| I
(a) (h)

Figure 3.9: The endpoints for all body parts in the human body model.

the specific accurate appearance model. Each estimate in the concentrated set G

is a candidate for the final estimate with spatial search.

Spatial search is conducted to find an estimate from set Gt that best fits with the
neighbouring body parts. The estimate for part m is required to satisfy the spatial
constraint of its parent part n. In the pictorial structures model, a tree-graphical
model is adopted to model a human body consisting of a set of body parts, which has
been described in Section 3.1. Figure 3.9 shows a ten-part human body connected
by nine pairs of hinge points. The spatial constraint is defined as follows. For any
pair of hinge points, the hinge point of the child part is required to exist within the
circle of radius R centred at the hinge point of the parent part. Formally, given the
coordinate of the hinge point {x,,ys,} in the parent (body part n), the coordinate
of the hinge point {xy, ,ys, } in the child (body part m) is required to satisfy:

(mhm - xhn)Q + (yhm - yhn)2 < R (315)

Note that the final estimate of the torso is determined by choosing the candidate

with the largest value of L,,(a!,)) in the concentrated set.
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3.4 Overview of the Proposed Tracking System
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Figure 3.10: The overview of the proposed tracking system.

3.4 Overview of the Proposed Tracking System

The tracking system presented above is experimented and proved that it can track
people in various motions from a single view and the performance is superior com-
pared to several state-of-art 2D tracking systems (Lu et al. (2012b)). However, it is
only for sequences in which the tracked target appears in the same or similar size.
Moreover, tracking performance for the most active body part, such as the arms, is

relatively low compared to the other parts of the body.

In order to address these issues, based on the framework described above (Lu et al.
(2012Db)), a new tracking system is proposed in this thesis and the overview of it is

illustrated in Figure 3.10.
The main contributions of the whole system includes four parts: multi-scale strategy

(MSS) for scale estimation and adjustment, poselet detector, additional constraints

(AdCon) on symmetric body parts and head orientation estimation.
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3.5 Chapter Summary

The first step of the proposed human pose tracking system is scale estimation and
adjustment, which is implemented by the multi-scale strategy (MSS) described in
Chapter 4. Two metrics for scale validation are proposed in this thesis depend-
ing on the motion types of the tracked target performing in sequences. One is
the Height_Metric that is based on the height of the tracked target and suitable
for sequences in which the tracked target is always upright. The other is Pixel-
Count_Metric, which is implemented by computing the ratio between pixel counts
of the foreground blobs and the detected body part bounding boxes and hence invari-
ant to motion types. With the estimated scale value, each frame is then processed by
the generic human pose detector based on the generic shape-based PicStr model and
the mid-level poselet detectors separately. The poselet representations and detector
implementation are presented in Chapter 5. The results obtained from the former
are a set of estimates for every single body part. The latter provides a set of poselet
detections for ‘large parts’ that cover a range of portions of the human body. The
configurations of poselet detections can be combined to the generic PicStr model,
which guide the search of smaller single parts by providing more image-conditioned
information on dependencies of multiple body parts from a higher level while do
not change the structure of the generic PicStr model. The head detection from the
generic pose detector for each frame is processed to estimate the head orientation,
and hence the orientation of the whole body. The goal of this component is to cor-
rect the confusion of the left and right limbs due to the overlapping and occlusion
during tracking especially when the human is not facing front (detailed in Chapter
6). In addition to the inclusion of the mid-level poselet representations and the head
orientation estimation, the final pose detector and tracker also considers more de-
pendencies between symmetric body parts to constrain the left and right arms and
legs, encoding the natural human distinction for balance and body coordination (see
Chapter 6). With the final pose tracker, a series of human poses for all frames are

obtained with high accuracy.

3.5 Chapter Summary

The goal of 2D human pose tracking is to track the articulations of people using 2D
representations in video sequences. In this chapter we present a robust framework

for human pose tracking with a specific accurate appearance model without motion
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3.5 Chapter Summary

priors in 2D monocular images. One of the main contributions here is to propose
an automatic process to identify the non-target pixels and excluding them from
being used in building the appearance model. A specific appearance model has
hence been proposed, which can be used to track the target’s postures with much

improved accuracy.

However, most of the existing systems including the one described in this chapter
are for sequences in which the tracked target appears in the same or similar size.
Moreover, tracking performance for the most active body part, such as the arms, is

relatively low compared to the other parts of the body.

In order to address these issues, a new framework based on the pipeline of the system
(Lu et al. (2012b)) is proposed in this thesis. Researches on tracking in various scales
and improving the tracking performance for active limbs will become our main task

in this thesis and will be discussed in more details in the subsequent chapters.

o4



Chapter 4

Multi-Scale Strategy (MSS)

Many algorithms have been proposed for human motion tracking on 2D monocu-
lar videos. Most of 2D human postures tracking frameworks are inspired by the
development of bottom-up pose estimation approaches and they tend to focus on
building body models or deriving effective detectors. In most of these approaches,
the tracked target in the video is moving with a rather fixed distance to the camera,
resulting in the size of the human figure in the video to be constant or near constant,
i.e., the perspective scale is fixed. In reality, videos often contain people appearing
at any distance to the camera hence appeared in various scales in the videos. Often
they are moving towards or away from the camera, resulting in their sizes (scales) to
be changed within a video clip. In this chapter, we focus on the problem of tracking

human motion in multiple scales in monocular image sequences.

A successful approach for 2D human pose tracking in video is to detect the human
body and estimate body posture in each frame (‘tracking by detection’). One ex-
ample is by Ramanan et al. (2007), a colour-based specific appearance model based
on the detections from a ‘stylized pose’ detector and then to track the person by
detecting the model in each frame. Another system (Lu et al. (2012b)) proposes to
combine a generic shape-based appearance model with a specific colour-based one
for human motion tracking. Although the performance of Ramanan et al. (2007)
and Lu et al. (2012b) is acceptable, a critical problem is that they do not implement
the scale-variation issue. Lu et al. (2012b) state their tracking approach can only
track a target at a single scale in a video clip. Ramanan et al. (2007) mention their
system should work theoretically for the multiple scales by searching the pictorial
structures over an image pyramid for each frame in the video. But no implemen-
tation detail is given in the paper on the idea. Since it is basically an exhaustive

search it should be computationally inefficient.

Recently, there are a few approaches on pose estimation trying to address the scale-

variation issue for still images. In Eichner et al. (2012), an upper-body detector and
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a foreground high-lighting step are used to determine the approximate location and
scale information of the person to be tracked. Although it is capable of estimating
upper body pose in highly challenging images, the person to be tracked is required
to be upright and seen from the front or the back (not the side). Andriluka et al.
(2012) discuss the scale variation problem on pose estimation for still images. In their
approach, the value for the scale parameter is changed within a fixed range at a fixed
interval to estimate the human pose in the still images in a trial-and-error fashion.
Even though this algorithm is quite generic, it is obviously not attractive for tracking
in image sequences because it is cumbersome and computationally inefficient. In
contrast, a more effective approach is proposed in this chapter for automatically
evaluating and adjusting the perspective scales of the moving target during the
tracking process, which enables the tracking for free-moving human motion with
high efficiency and accuracy. Two strategies are proposed in this chapter depending

on the motion that the target performs.

To track the human motion in a video sequence, it is required to detect the person’s
pose in each frame with a proper scale. A scale checking and adjusting step is
incorporated into the tracking process. Two metrics are proposed for detecting and
adjusting the scale change. One metric is from the height value of the tracked target
(Height_Metric), which is suitable for some sequences where the tracked target has
generally upright postures with no limbs stretching. For such sequences, a full body

detector is proposed to estimate the height of the tracked target in each frame.

However, in general cases, the types of the motion performed by the tracked target
are not known and the tracked target may not always maintain an upright posture.
A metric is therefore needed to represent the scale changes that is invariant to mo-
tion types. An alternative metric is hence proposed that is more generic (named
PizelCount_Metric). The illustration of our tracking system encoded with scale eval-
uation procedure based on PixelCount_Metric is shown in Figure 4.1. Specifically,
the images are firstly processed with foreground segmentation which aims to obtain
an approximate size of the body blob. This blob size is not used to determine the
scale directly. Rather it is used to be compared with the size of the estimated human
body (normally in the shape of bounding boxes) from pose estimation to determine
whether the scale used for the pose estimation is appropriate. If the comparison
shows that the scale value used satisfies the preset condition, the algorithm will

proceed to the next frame using the same scale value. Otherwise, the scale value
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Re-track
with new
scale

(c) (d) (e)

Figure 4.1: (a) original image. (b) foreground segmentation. (c) kinematic tree
model. (d) area of the tracking body parts (represented using bounding boxes) for
this frame. The pixel numbers from the foreground and from the tracked body
parts are counted for scale evaluation. If the scale used is deemed inappropriate,
the scale value will be changed and the frame reprocessed. When the scale value is

satisfactory, the tracking results is accepted and shown as (f).

will be adjusted and the frame will be re-processed until the preset condition is met.
The metrics and condition used for evaluating and adjusting the scale values are

detailed in the next sections.

The structure of this chapter is as follows. Section 4.1 presents the Height_Metric
for dealing with multi-scale issue during tracking of basically upright postures and
the height of the tracked target is obtained from a full body detection. The Pixel-
Count_Metric is described in Section 4.2, which provides the details of the method
for obtaining the pixel numbers utilized on evaluating scale values. Finally, the
performance of the proposed multi-scale algorithm with two metrics are evaluated

separately in Section 4.3.
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4.1 Metric from the Height of the Tracked Target

Figure 4.2: Some frames from the sequence HE_Walking_S1.

4.1 Metric from the Height of the Tracked Target

4.1.1 Full body detection

For certain human motions, such as the walking sequence shown in Figure 4.2, the
change in the body height is a good representation for scale variation of the person.
Before applying the temporal PicStr model for pose estimation and tracking, a pre-
processing stage is incorporated to find the height of the full body in each frame,

hence provide indication for scale evaluation and adjusting.

A full body detector is implemented with the deformable part-based model (DPM)
framework. The model of the full body detector is defined by a coarse ‘root’ filter
similar to the Dalal-Triggs filter on histogram of oriented gradients (HOG) features
Dalal and Triggs (2005) which approximately covers the full body, and a series
of higher resolution part filters that cover smaller parts of the human body. In
implementation, the part filters capture features at twice the spatial resolution to
the features of the root filter. The part filters are collected by a graphical model
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4.1 Metric from the Height of the Tracked Target

@) model
frame feature map
feature map at twice the @D responseofroot filter
resolution @» detection based on
transformed responses of combined scores
part filters person model

Figure 4.3: Full body detector. We only show the transformed responses for the
head and left-lower leg. The model shown in (7) includes three components: a
coarse root filter, several higher resolution part filters, and a spatial model for the

location of each part relative to the root.
with deformation prior (Figure 4.3 (7)).

An hypothesis of the detection specifies the location of each filter in the model,
z = (po, ..., Pm), Where p; is the position for the iy, filter. At a particular position of
an image, the score of a hypothesis is computed by the response of the root filter
plus the sum of the transformed responses of each part filter (Figure 4.3 (1)-(6)).
Note that the transformed responses are obtained from the responses of part filters
minus a deformation cost that depends on the relative position of each part with
respect to the root (the spatial prior). The score of a hypothesis z can be expressed
in terms of a dot product between a vector of model parameters  and a feature
vector ¥(H, z) as:

score(z) = score(py, ...,pm) = B - V(H, 2). (4.1)

Here, [ is obtained by concatenating the root filter, the part filters, and the de-

formation cost weights; H is a feature pyramid; and ¢(H, z) is a concatenation of
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4.1 Metric from the Height of the Tracked Target

subwindows from the feature pyramid and part deformation features. Detecting a
person in an image means to find a root location with high score and the corre-

sponding part locations with optimal displacements:

score(pg) = mazx score(pg, ..., Pm)- (4.2)
P1y---sPm

The detection result in an image is defined by a bounding box (bbox) B = (x1, y1, T2, ¥2)
with the upper-left and lower-right corners being at (xy,y;) and (x9, y2) respectively.

Then h; = (yo — y1) is taken as the height value for the iy, frame.

4.1.2 ROI normalization

A straightforward metric as given in Equation 4.3 is proposed for estimating the
scale value in motions where the tracked target keeps upright with no extreme limbs
stretching,

si = hi/a, (4.3)

where s; is the scale value used for pose estimation for the #;;, frame, h; is the body
height in pixels measured from the tracked target in the frame, and « is a reference
coefficient, which corresponds to the height of the tracked person in pixels when the
scale equals to 1. It is important to note that the scale here is defined to be relative

to the value in the training set.

After the scale values for each frame are obtained, they are not directly used to
estimate and track poses. Rather all these scale values are processed as indicators
to normalize the height of target person in each frame. From the full body detector,
a bounding box (bbox) containing all pixels representing the person is achieved. In
order to avoid the possible impact of imperfect bounding box boundaries or the false
positive detections, the bounding boxes are enlarged by 10 pixels vertically and 15
pixels horizontally in the original images. To ensure the tracking to be invariant to
the size of the human body appeared in different images, the bounding box area is
cropped out and resized to a patch with a normalized height A that is derived from
the scale-normalized training set for PicStr. In this work A = 210. The normalized

bounding boxes form the final ROIs.
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Figure 4.4: Sample poses which are not upright, such as seating, bending or the

ones with limbs stretching.

4.2 Metric from Pixel Counts

Although the body height is a straightforward metric for sequences such as walking,
it is not suitable for sequences where the human body is not always upright such as

the poses shown in Figure 4.4.

A simple fact of perspective projection is that the number of pixels a person pro-
jected onto an image always changes with respect to the distance between the person
and the camera, regardless of the pose/motion of the person. Therefore, the num-
ber of pixels occupied by the bounding boxes representing the estimated human is
a good indication of the scale value used for pose estimation. The pixel count hence
provides a very good means for estimating and adjusting the scale value. As shown
in Figure 4.5, if the two pixel counts are similar (as in row 1), it can be concluded
that the scale used for the pose estimation is acceptable. Otherwise as shown in the
second row, the scale value used for pose estimation is far from adequate and needs

to be adjusted according to the difference between the two pixel counts.

In many situations, the tracked person could stretch his limbs or bend towards/away
from the camera, resulting in some parts of the body with more scale changes than
the others. Like most state-of-art motion tracking techniques, we do not distinguish
the scale differences within body parts since their effect is rather insignificant under

the current bounding box framework.

The pixels occupied by the tracked target in images can be obtained through im-
age segmentation, while the pixels occupied by the bounding boxes can be easily
identified after pose estimation. Assuming the pixel numbers counted from both

operations are denoted as n; and ns respectively, the scale value used for pose esti-
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Similar? Accepted
Y scale

Similar? Scale has
Py to be

N adjusted

Figure 4.5: Examples of pixel area of the foreground blobs and the estimated bound-
ing boxes for the body parts for a single image. In both rows, the images in the
second column are the foreground blobs and the images in the third column show
the bounding boxes(bbox) area. It can be seen that the area of foreground blob is

larger than the bbox in Row 2 while the two areas in Row 1 are similar.

mation is evaluated and adjusted according to Equation 4.4

Si if |r; —1| <o

VTi*s;  else

where s; is the scale value used for pose estimation for the 4, frame, r; stands for
the ratio between n; and nq, and o is the threshold, again set ¢ = 0.1. Since any
changes in the scale value will apply to both the width and the height in a 2D image,

square root of the ratio r; is chosen as the coefficient in Equation 4.4.

An initial value needs to be given for s; for the first frame. It does not have to be a
proper scale, since the pixel numbers n; and n, counted after image segmentation
and pose estimation will be compared to check whether s; is an appropriate value.
It can then be adjusted according to Equation 4.4 and used for pose estimation until
r1 &~ 1. The updated scale will be used for tracking the second frame, and the same

procedure will apply to all remaining frames.

Our framework focuses on situations using a fixed camera, so background subtrac-

tion is a proper method for image segmentation. In our implementation, an extend
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4.3 Experiments and Discussion

version of background subtraction (Stauffer and Grimson (1999); KaewTraKulPong
and Bowden (2002)) is selected to provide the blobs of the foreground. Although
in general, image segmentation is unable to provide accurate image blobs for repre-
senting the tracked target, it is sufficient to provide the approximate pixel count of

the human body projection, and can be easily implemented in our approach.

The pixel number ny can be easily obtained by considering the vertices of the re-
sulting bounding box for each body part. The pixels bounded by them can be easily

counted with overlapping areas counted only once.

4.3 Experiments and Discussion

In this section we evaluate the performance of the proposed multi-scale algorithm.
PCP Metric: To numerically evaluate the performance, we use the well-known
PCP metric proposed in Ferrari et al. (2008). Specifically, a body part 1, is con-
sidered correctly localized if the endpoints of its segment lie within 50% of the
ground-truth segment length. This is commonly used as an evaluation metric in

bottom-up human pose tracking.

4.3.1 Evaluation of the proposed metrics

We begin the experimental part of this chapter with the evaluation of each proposed

metric.
Tracking using the Height_Metric (M_I).

The proposed multi-scale tracking framework is first applied on two sequences from
the well-known HumanEva dataset (Sigal et al. (2010)), hereby named as HE_Walking_S1
and HE _Jogging_S1. In both sequences, the tracked person walks or jogs in a circle,
thereby generates image frames with different scales and shows different body orien-
tations including frontal, back, and sideways, but is basically upright in all frames.
Figure 4.2 and Figure 4.6 shows some sample frames of both sequences. We also

apply the Height_Metric on a walking sequence (named Walking S2) that we collect
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Figure 4.6: Some frames from the sequence HE_Jogging S1.

Figure 4.7: Some frames from the sequence Walking_S2.
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Walk_s1

Walk_s2

Frame80

Figure 4.8: Some normalized ROI results processed from the full body detector for

jogging and walking sequences.

from a free environment and some sample frames are shown in Figure 4.7. The

tracking targets recorded in these sequences are all shown in different sizes because

their distances to the fixed camera vary throughout the sequences.

These sequences are firstly processed by the full body detector that is described

in section 4.1.1 and some sample normalized ROI results are illustrated in Figure

4.8. The height of them are normalized to the reference value, which also greatly

decreases the searching expense by removing most of the background area.

Table 4.1: Tracking results based on the Height_Metric in percentage.

Sequence Tor | Head U.L. L.L. U.A. F.A. Total
HE_Walking S1 | 99.2 | 95.5 | 85.1 86.5 | 81.6 79.3 | 86.4 84.5 | 82.3 84.1 | 86.5
HE_Jogging S1 | 96.9 | 93.8 | 93.8 87.5 | 90.6 78.1 | 59.4 59.4 | 31.3 25.0 | 71.6
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Figure 4.9: Sample results on jogging and walking sequences from the proposed

tracking system.
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Figure 4.10: Comparison of scale values between the ground_truth and the ones
achieved from the Height_Metric.

Figure 4.9 and Table 4.1 show the quantitative and qualitative tracking results on
jogging and walking sequences from the proposed tracking system. It demonstrates
that, for upright poses, the height is a suitable metric for scale evaluating and the
normalization depending on the height of the tracked target is a good approach to

deal with scale-variation issue during tracking.

To further evaluate the performance of the Height_Metric, we try to obtain the
‘eround_truth’ of the scale values for every frame in sequences HE_Jogging_S1 and
Walking_S2 by doing pose estimation for each frame with the trial-and-error idea
proposed by Andriluka et al. (2012). The scale parameter is changed at a fixed
interval within a range and the best scale value is selected as the ‘true’ scale value
depending on the estimation score for each frame. The comparison of the ‘true’ scale
values obtained this way and derived from the Height _Metric for both sequences are
shown in Figure 4.10. The computed scale values from the Height Metric match

well with the ‘true’ scale values.
Tracking using the PixelCount_Metric (M_II).

The proposed multi-scale tracking framework with PixelCount_Metric is firstly ap-
plied on the sequence Skating S1, which is extracted from a video recording the
skater Michelle Kwan performed at Olympics Sports 1998 and consisting of 116
frames. The skater in the sequence Skating S1 performs different actions with dif-
ferent scales and various poses. The second row of Figure 4.11 shows several sample

frames of this sequence.
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Figure 4.11: Some frames from sequences Skating S1 and HE_Combo_S1.
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Figure 4.12: Sample results on the sequence Skating S1.

Many poses are not upright but bending or stretching, thus changes on the height
of the tracking target do not reflect the corresponding scale variation. Rather the
ratio between the foreground blobs and the estimated bounding-boxes better reflects
whether the utilized scale is acceptable or not. Therefore, the PixelCount_Metric

can deal with the scale variation issue regardless of the type of poses and motions.

Several screenshots of the tracking results on the sequence Skating_S1 based on the
PixelCount_Metric are illustrated in Figure 4.12 and the performance is quantita-
tively illustrated in the first row of Table 4.2. The results prove that the system can

handle scale variation issue during tracking.

Table 4.2: Tracking results based on the PixelCount_Metric in percentage.

Sequence Tor | Head U.L. L.L. U.A. F.A. Total
Skating_S1 94 | 914 | 78.581.0 | 77.6 785 | 76.7 71.6 | 61.2 59.5 | 77.0
HE_Combo_S1 | 98.4 | 94.5 | 84.783.2 | 81.8 78.0 | 81.0 82.5 | 73.1 72.8 | 83.0
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Figure 4.13: Comparison of scale values between the ground truth and the ones

achieved from the PixelCount_Metric.

Besides special poses like skating, the PixelCount_Metric is also definitely suitable
for the sequences including upright poses. In order to analyze the performance on
sequences with upright poses, the system with the PixelCount_Metric is applied on
the sequence HE_Combo_S1, which is a 600 frame sequence containing a person
performing different motions in a circle and showing different scales and body ori-
entations. In addition, the sequence contains several non-lateral motions, such as
jumping, kicking, leaning and stretching. The numerical analysis is presented in the

second row of Table 4.2.

Same as the analysis in the previous part, for further evaluating the performance
of the PixelCount_Metric, we also compare the estimated scale values with the
‘ground_truth’ for sequences Skating_S1 and HE_Combo_S1. Similarly, the ‘ground_truth’
is obtained by performing pose estimation for each frame in a trial-and-error fashion
proposed by Andriluka et al. (2012). The comparison between the computed scale
values from the PixelCount_Metric and the ‘ground_truth’ for both sequences are
shown in Figure 4.13. It is clearly seen that the computed scale values from the

PixelCount_Metric match well with the ‘ground_truth’.

4.3.2 Combing the multi-scale strategy (MSS) to the Clas-

sifier and Cluster algorithms

For further testing the application of the proposed multi-scale strategy (MSS), we
incorporate MSS to both the CLASSIFIER algorithm (described in Chapter 3) and the
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CLF

MS

Figure 4.14: The screenshots of tracking results for HE_Combo_S1 sequence from
CLUSTER (CLS) and CrASSIFIER(CLF) without and with MSS.

CLUSTER algorithm (Lu et al. (2012b)) separately and compare their performance
qualitatively and quantitatively with the tracking results from the same algorithms
without the MSS. For this experiment, we still utilize the sequence HE_Combo_S1,

which combines different motion together.

The performance of the tracking results from these algorithms (CLASSIFIER and
CLUSTER with and without the MSS are shown in Figure 4.14 and Table 4.3.

In Figure 4.14 Row 1 and Row 3 are the results by CLASSIFIER and CLUSTER with
a fixed scale value, while the other two rows show the results of the two algorithms
with MSS incorporated. The results of tracking without MSS are clearly much
worse because these algorithms cannot handle scale variations. When the scale
value used is not appropriate for a frame, some or even all body parts cannot be
correctly located. However, with the proposed multi-scale strategy incorporated,
both algorithms can produce satisfactory tracking performance for the sequence with
a wide range of motion types. It can be seen from Table 4.3 that the performance

of the systems with MSS actually improves for every body part.
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Table 4.3: The performance of CLUSTER and CLASSIFIER systems with and without

multi-scale strategy (MSS)

Dataset | Method Tor Head U.L. L.L. U.A. F.A. Total

CLUSTER 86.8 81.6 56.856.8 53.752.5 44.3 48.7 41.840.2 56.3
HE_Co- | CLUSTER+MSS 100  98.0 83.8 81.8 82.6 77.9 83.778.4 78.775.9 84.1
mbo_S1 CLASSIFIER 85.3 82.7 57.4 55.8 55.6 53.5 48.3 44.2 43.4 41.2 56.7

CLASSIFIER+MSS | 100 98.4 87.1 86.8 85.0 81.3 86.3 70.7 85.5 70.0 85.1

Table 4.4: Comparison of tracking results on Combo sequence with scale variation.

Method Tor | Head U.L. L.L. U.A. F.A. Total
Ramanan | 52.5 | 36.3 | 45.8 43.4 | 55.8 52.0 | 24.3 27.5 | 32.8 29.7 | 40.0
Yao 85.3 | 82.7 | 57.4 55.8 | 55.6 53.5 | 48.344.2 | 43.4 41.2 | 56.7
Proposed | 98.4 | 94.5 | 84.7 83.2 | 81.8 78.0 | 81.0 82.5 | 73.1 72.8 | 83.0

4.3.3 Comparison to state-of-the-art approaches

Comparison with Lu et al. (2012a) (Yao) and Ramanan et al. (2007)

(Ramanan).

To further illustrate the performance of the proposed algorithm, we compare it with
Lu et al. (2012a) (Yao) and Ramanan et al. (2007) (Ramanan) on sequences where
the tracked person appears with scale variation. The reason for choosing these two
systems as the benchmark since the basic tracking ideas in them are similar to
ours, such as pictorial structures model, baseline of tracking by detection, etc.. We

implement the two approaches based on their provided source code.

The three methods are applied on the sequence HE_Combo_S1, in which the tracked
person appears at different scales, and the tracking results are compared. Sample
screenshots of the tracking results from these three frameworks are shown in Figure
4.15. The first row is the results by Ramanan et al. (2007) (Ramanan) and the second
row shows the results by Lu et al. (2012a) (Yao). The results from our approach
are shown in row 3. It is obvious that our method can produce satisfactory tracking
performance for sequences not only with a wide range of motion types but also with
the significant scale variations. The other two approaches fail for frames in which

the assumed fixed scale does not provide a reasonable approximation.

The quantitative comparison is given in Table 4.4, where the accuracy is evaluated
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Figure 4.15: Screenshots of tracking results on sequences with scale variations.

based on the tracking results for all frames in the sequence. Clearly, the tracking
performance of our approach surpasses the other two with the tracking for all body
parts remarkably improved. It appears that the method proposed by Ramanan et al.
(2007) (Ramanan) performs quite poorly when there are significant scale variations
in the image sequence. This clearly demonstrates the importance of including scale
adjustment in the tracking process, since the overall performance can be greatly

improved.

4.4 Summary

In this chapter, we attempt to address the scale variation problem in a human
motion tracking framework for 2D monocular images. An automatic multi-scale
strategy (MSS) is proposed to adaptively change the scale values during the tracking
process. Two metrics are proposed to be used in the MSS. One is the Height _Metric,
which is a simple and straightforward metric suitable for motions where the tracked
target remains basically upright. The other is the PixelCount_Metric, which is

implemented by computing the ratio between pixel counts of the foreground blobs
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and the detected body part bounding boxes. This metric is more complicated yet
is more generic and invariant to motion types. The efficacy of the proposed MSS
is demonstrated through experiments on the publicly available HumanEva dataset
and videos taken from uncontrolled environment, where the proposed algorithm can

produce significantly improved tracking results.
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Chapter 5

Modelling Non-connected Body
Part Dependencies by Poselets

In the generic Pictorial Structures (PicStr) model, part detectors are trained invari-
ant to poses. In order to compute the likelihood and inference efficiently, the body
parts appearances are often assumed to be mutually independent (Andriluka et al.
(2012)) and the prior over body parts connections are assumed to be a Gaussian

with a tree structure independent to image evidence.

However, there generally exist a great number of strong dependencies between /among
many, even all body parts in human activities, such as walking, dancing or playing
ball games. In other words, human motions and activities often make the posi-
tions of multiple body parts correlated (see Figure 5.1). Such property has not
been reflected within the generic PicStr approach, which limits the accuracy of pose

estimation and tracking.

Furthermore, there is another problem often occurring within the generic PicStr

model: double counting, i.e., both body parts are arranged at the same location in

(a) all parts are correlatedin
similar pose;

(b) same case as (a);

(c)-{e) multiple parts are
correlated when perform
some poses: (c) torso and
arms, torsoand legs ; (d)
legs; (e)right legs

K=
e 5

Figure 5.1: Illustrations of the correlation among appearance of multiple body parts.

Given similar poses such as in (a)-(e), multiple even all body parts are dependent

even if they are not directly connected.
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Figure 5.2: The possible erroneous cases with the generic PicStr (a)-(c) and the

tracking process with temporal PicStr model (d)-(e).

the image. Double counting often happens during pose estimation when symmetric
part pairs share the high detection score at the same image evidence (see Figure
5.2 (a) and (b)). We have found out that modelling the dependencies between non-
adjacent body parts is highly effective in handling such detection errors during the

tracking process.

In this chapter, we propose to incorporate some more expressive spatial constraints
by defining a mixture of mid-level image conditioned spatial representations that
model higher order information between body parts (named poselets, which is in-
troduced by Bourdev et al. (2010)). We employ them to capture multiple body parts

configurations and dependencies.

The generic tree-based PicStr methods used for pose estimation and tracking gen-
erally work well for images/sequences where all limbs of the person are visible.
However, they are easily affected by cluttered background and suffer from double
counting issue especially when self-occlusions occur. Several recent approaches aug-
ment the tree-structure to capture cues such as appearance similarity between limbs
not connected in the tree (Karlinsky and Ullman (2012); Tran and Forsyth (2010)).
Wang et al. (2011) propose an approach relying on a complex hierarchical model
that requires approximating inference with loopy belief propagation. A recent work
proposes an occlusion-aware algorithm for tracking human pose in image sequences
in order to address the problem of double counting (Ramakrishna et al. (2013)).
They address the problem of tracking human pose using an iteration process and

employing multi-target tracking algorithm for the symmetric parts.
To effectively model dependencies between non-adjacent body parts while still al-

lowing for efficient and exact inference in a tractable PicStr model, the mid-level

features (poselets) are chosen and incorporated into a conditional model in which
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all parts are connected a priori. The poselet representation increases the flexibility
of the PicStr approach by collecting a set of image specific part appearance and
dependencies. Similar to Desai and Ramanan (2012), our approach can incorporate
dependencies between body parts that go beyond adjacent pairwise interactions

while allow efficient inference at test time.

The structure of this chapter is as follows. Section 5.1 describes the details of
the poselet representation including poselet descriptions, poselet detectors training
and testing. The unary and pairwise terms of poselets conditioned PicStr model
are detailed in Section 5.2. The final tracking system is described in Section 5.3.
Section 5.4 describes the experiments conducted to analyze the performance of the
poselets conditioned PicStr model presented in this chapter and compare it against
other state-of-the-art approaches. Finally, some concluding marks and discussions

are given in Section 5.5.

5.1 Poselet Representation

Poselets are pieces of human poses that are tightly similar in both appearance and
configuration spaces, which aim to capture common dependencies of multiple body

parts.

In the standard PicStr model, the human body is modelled with a set of rigid parts
corresponding to body segmentation, e.g. torso, head, upper/lower arms/legs. This
definition of parts is natural, but it excludes interactions of non-connected body

parts and is easily confused by similar shape existing in the background.

In reality, some action patterns are visually distinctive, such as ‘a torso with left
arm raising up’, ‘right leg kicking’ or ‘legs in lateral pose’. The group of these kind
of ‘parts’ convey more motion information and provide more useful constraints on
part dependencies. Therefore, the ‘parts’ can be re-defined to cover more pieces of

human poses at various levels.

Apart from the original 10 rigid parts defined in the generic PicStr model, another 11

body part configurations are defined in our system to serve as the mid-level poselets,
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10rigid parts defined in generic PS model: left/right
upper/lower legs/arms, head, torso
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11-21 are newly defined “parts’: whole body, upper body, torso&head, torso&right arm, torso&left arm, right
arm, left arm, torso&legs, legs, right leg, left leg.

Figure 5.3: An illustration of all parts utilized in our tracking system. 1 — 10 are
original rigid body parts defined in the generic PicStr model. 11 — 21 are newly

defined parts for presenting poselets information.

similar to Pishchulin et al. (2013), namely full body, upper body, torso and head,
right arm and torso, left arm and torso, right arm alone, left arm alone, torso with

legs, legs, right leg alone, and left leg alone (shown in Figure 5.3).

The following two steps are implemented to train a set of poselet detectors. The
first step is to prepare the training data, i.e., to select proper poselets clusters for

each poselet-part. The second step is to learn detectors for all poselets.
Preparing the poselet clusters.

Figure 5.5 (a) shows all joint positions (0 — 15) of the rigid body segmentations.
These joints are also utilized as reference positions for poselets. Each poselet-part
is assigned with a joint as its reference position. For example, the reference position
of the full body part is joint 8 in Figure 5.5 (a). Similarly, joint 12 is the reference

position for left arm alone, and joint 6 is for legs part, etc..

Firstly, the joints on each poselet-part are clustered into several clusters based on
their offsets (relative x and y coordinates) of all related rigid body parts with respect
to the reference position using Euclidean distance. For example, for the part ‘upper
body’, joint 8 is chosen as the reference point and the relative coordinates of all upper
body parts are computed with respect to this reference joint, which is concatenated

to form a vector used for clustering.
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Figure 5.4: Examples of three poselets for the ‘legs’ part and each row corresponds

to a poselet.

K-means is selected for clustering on the vectors collected from all training images.
The clusters that have less than 10 members are removed and the remaining ones
are utilized as poselets. In such method, we obtain a set of K (K < 200) clusters
and each cluster contains similar pose type. These clusters are used as poselets.
Similarly, the clusters for all other poselet-parts are obtained by picking different
reference points and different subsets of related rigid body parts and finally a total

of M clusters are obtained.

Based on the clustering, the corresponding patches from the images can be cropped
(examples are shown in Figure 5.4). Note that, in this work, the annotated training
images are from the ‘Leeds Sports Poses’(LSP) dataset Johnson and Everingham
(2010) that includes 2000 images showing people involved in various sports (see
Figure 5.1).

Learning the poselet detectors.
With the clusters collected, the next step is to learn detectors for all poselets, i.e.,

a separate AdaBoost detector that is trained based on the dense shape context

features for every poselet cluster.
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5.1 Poselet Representation

Figure 5.5: (a) shows hinge points of single body parts. In our model, each part is
controlled by two hinge points, hence the ground truth of all body parts is defined
by 16 hinge points. (b)-(1) illustrate the poselet detection outcomes for one sample

frame. Note only results for some not all poselet configurations are shown here.

For each poselet, shape context features are constructed from patches in the corre-
sponding cluster. Then a set of Adaboost detectors are trained for poselets using

all training images.

Given a test frame, we can compute the maximum response for every poselet detector
which represents the modalities of human poses and use them as mid-level feature
representations. Example poselet detection results for one sample frame are shown in
Figure 5.5, in which the top scoring poselets are sampled and denoted with bounding

boxes.

The parts considered in this chapter are ‘large parts’ that cover a wide range of
portions of human bodies. The reason for choosing this kind of representation is
mainly due to the fact that large body parts are easily found at the coarse level and
the configurations of large pieces of human bodies can guide the search of smaller
parts. For example, an upright torso with arms raising up is coarse-level informa-

tion, which is a very good indicator of where the arms (fine-level details) might be.
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5.2 Poselet-conditioned Pictorial Structures Model

Therefore, poselets are chosen to capture distinctive appearance patterns of various
parts. These poselets have better discriminative powers than the traditional rigid

part detectors.

5.2 Poselet-conditioned Pictorial Structures Model

As discussed in Chapter 3 and Chapter 4, in each frame, the body parts are repre-

sented with a PicStr model and the generic PicStr model is formulated by

E(L;D) =Y E"(Ilz D)+ Y E*(I;,1;). (5.1)

i~j

The unary terms E" represent the image likelihood, and the pairwise relationships
between body parts are denoted by ¢ ~ j. They are spatial priors encoding the kine-
matic dependencies of body parts. In order to simplify the inference, an assumption
is introduced in Felzenszwalb and Huttenlocher (2005) that the part d; only depends
on its own configuration [/; and different part evidences are conditionally indepen-
dent given the configuration L. Furthermore, the pairwise term is a prior tree-based
structure, which is image independent and modelling the displacement relations be-

tween adjacent body parts only.

To generate optimal proposals for part locations in each frame, we need to take a
closer look on the terms E" and EP in Equation (5.1). In this section we focus on
improving the model representation to make it more flexible and also capable for
encoding non-adjacent part dependencies. Note that we do not intend to change
the base PicStr model structure, but aim to include a mid-level stage to reflect the
dependencies of multiple body parts, inspired by the image-conditioned poselets idea
introduced in the work Pishchulin et al. (2013).

The location and rotation for each body part are first predicted separately using the
poselet features. For instance, to predict the position of part i, during training we
cluster the relative offsets between the reference point and the part into K clusters.
For each cluster we compute the mean offset ;1 and the variance . If the mid-level

poselet feature f is obtained, prediction will be treated as a multi-class classification
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5.2 Poselet-conditioned Pictorial Structures Model

@ (b) (c) (d) (e) (A

Figure 5.6: (a) shows the generic tree-based PicStr model. (b)-(f) illustrate the
samples of the poselets conditioned PicStr model with deformable pairwise terms.
(reproduced from Pishchulin et al. (2013))

problem, from the poselet response f into the set of K clusters. A classifier can now
be trained based on the sparse linear discriminant analysis (sLDA) Clemmensen
et al. (2011). The mean offset 1 and the variance ¥ can be predicted from the poselet
feature f using the learned classifier. Here the mean offset p and the variance X
are subsequently used as a Gaussian unary potential for the part. Prediction of the
absolute body part orientation is done in the same way. A sLDA classifier is learned
to predict the absolute part rotation based on the poselet responses. The Gaussian
unary terms for both the location and the orientation of a part also form a Gaussian
potential denoted by E™™. The complete unary term of our model is then defined
by

E“(l;; D) = E**(l;; D) + w - E“™(l;; D), (5.2)

where E** is the original unary term for a single body part given in the generic PicStr
model as denoted in Equation (5.1); w is the weighting parameter of the poselets-
based unary term estimated on the validation set, which defines the influence extent
of the poselet features in the final solution. Following Pishchulin et al. (2013), w is
set as 0.05.

The generic PicStr model has a limitation that the spatial prior of the body parts is
modelled as a tree-structured Gaussian and independent to image evidence, which
cannot properly represent the multi-modalities of human poses. Here we extend
the pairwise terms in Equation (5.1) with image conditioned factors and then make

them image dependent and more flexible (see Figure 5.6).

For each pair of parts (l;,[;), the training data with respect to the relative part

rotations is clustered into K clusters. Similar to the unary terms, a sSLDA classifier
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is trained to predict the type of the multiple pairwise terms based on the image

conditioned poselet feature f. The new pairwise terms is defined by
E?(L,,1;) = EP™ (1, 1;; D). (5.3)

The original image-independent pairwise term defined in Equation (5.1) is then re-
placed by image-conditioned term EP™(l;,l;; D) that is embedded with multimodal
of body poses.

With the improved image conditioned unary and pairwise terms, predictions for

single parts in each frame can be obtained.

5.3 Tracking

In addition to the single-frame inference (see the left part of Figure 5.7), we extend
the model to include dependencies between body parts over time (see the right part

of Figure 5.7), which becomes a temporal PicStr model and is defined by

p(LEY | DI o 3037 (0t liy) + B D) + B, D)) . (5.4)
t=1 i=1
Here superscripts are used to represent body parts and subscripts for frames, e.g.,

I! is the configuration of part i at time .

The first term in the right-hand side of Equation (5.4) is the motion model capturing
temporal continuity of body parts between frames. Since the position of body parts
generally changes smoothly within an image sequence, we exploit this temporal
continuity using a simple velocity threshold, i.e., the Euclidean distance between

the part positions in successive frames should not exceed a preset threshold:
Qb(liv lz—l) & I('D(li, lz—l) < dpaz), (5.5)

where Z is the standard identity function and D(I%, 1! ;) is the Euclidean distance

between the part positions in consecutive frames.
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Poselets conditioned PS
inference

Kinematic tracking with time continuity
Figure 5.7: (a) shows the pose inference for one frame. The kinematic tracking

applying the learned poselets and temporal continuity is shown in (b).

5.3.1 Full body detection

It is noted that, before applying the temporal and poselet-conditioned PicStr models
for pose estimation and tracking, a pre-processing stage is incorporated to crop the
region of interest (ROI) in each frame, hence reduces the search space for the PicStr
models. A full body detector with part-based models is chosen to deal with this
pre-processing step, which has been described in Section 2.1.2. For the reader’s

convenience, we recap here briefly how the detector works and how it is implemented.

The model of the full body detector is defined by a coarse ‘root’ filter similar to
the Dalal-Triggs filter on histogram of oriented gradients (HOG) features Dalal and
Triggs (2005) which approximately covers the full body, and a series of higher reso-
lution part filters that cover smaller parts of the human body. In implementation,
the part filters capture features at twice the spatial resolution compared to the fea-
tures of the root filter. The part filters are collected by a graphical model with
deformation prior (Figure 5.8 (7)).

An hypothesis of the detection specifies the location of each filter in the model,

z = (po, ..., Pm), where p; is the position for the iy, filter. At a particular position of
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frame feature map
feature map at twice the @D responseofroot filter
resolution @» detection based on
transformed responses of combined scores
part filters person model

Figure 5.8: Detection process. Here only the transformed responses for the head
and left-lower leg are shown. The model shown in (7) includes three components: a

coarse root filter, several higher resolution part filters, and a spatial model for the
location of each part relative to the root.
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5.3 Tracking

an image, the score of a hypothesis is computed by the response of the root filter
plus the sum of the transformed responses of each part filter (Figure 5.8 (1)-(6)).
Note that the transformed responses are obtained from the responses of part filters
minus a deformation cost that depends on the relative position of each part with

respect to the root (the spatial prior).

The score of a hypothesis z can be expressed in terms of a dot product between a

vector of model parameters § and a feature vector ¢(H, z) as:

score(z) = score(py, ...,pm) = B - W(H, 2). (5.6)

Here, 3 is obtained by concatenating the root filter, the part filters, and the deforma-
tion cost weights; H is a feature pyramid; ¢(H, z) is a concatenation of subwindows
from the feature pyramid and part deformation features. Detecting a person in an
image means to find a root location with high score and the corresponding part

locations with optimal displacements:

score(pg) = maz score(po, .., Pm)- (5.7)

The detector is implemented with the deformable part-based model (DPM) frame-
work and the publicly available software Girshick et al. (2012) is utilized. Further

implementation details can be found from Felzenszwalb et al. (2010).

The detection result in an image is defined by a bounding box (bbox) B = (21, y1, T2, Y2)
with the upper-left and lower-right corners being at (x1,y;) and (x9, y2) respectively.
In order to avoid the possible impact of imperfect bounding box boundaries or the
false positive detections, the bounding boxes are enlarged by 10 pixels vertically and
15 pixels horizontally in the original images. To ensure the tracking to be invariant
to the size of the human body appeared in different images, the bounding box area
is cropped out and resized to a patch with a normalized height h that is derived from
the scale-normalized training set for PicStr. In this work A = 200. The normalized
bounding boxes form the final ROIs.
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5.4 Experiments and Discussion

In this section we evaluate the performance of the proposed framework on two well-
known datasets and report the comparison results with other approaches from the

literature.
Datasets and Evaluation Metric.

Datasets: We first evaluate our method on a sequence (HE_combo_S1) from the
HumanEva dataset Sigal et al. (2010). It shows a person moving in a circle and
contains several non-lateral motions, such as jumping, kicking, leaning and stretch-
ing. They are used to demonstrate that the proposed system can be widely applied
to different motions, with different viewing angles and different number of frames.
Note that here we choose 320 frames from the Combo sequence (600 frames) for the
experiment in this chapter. We also evaluate our approach on the ‘Baseball’ dataset
from Ramanan et al. (2007). The Baseball dataset is a sequence of 200 frames that

records a pitcher throwing out a ball.

PCP Metric: As discussed in the previous chapter, to numerically evaluate the
performance, we use the well-known PCP metric proposed in Ferrari et al. (2008).
Specifically, a body part [,, is considered correctly localized if the endpoints of its
segment lie within 50% of the ground-truth segment length. This is commonly used

as an evaluation metric in bottom-up human pose tracking.

The experimental results are evaluated qualitatively and quantitatively.

5.4.1 Framework components evaluation

There are two essential parts involved in our temporal tracking framework, i.e.,
the pre-process (ROI selection, abbreviated as ROI) and the poselets constraints
(shortened as PL).

We implement a series of experiments to evaluate the performance of various compo-

nents in our framework using a step-by-step manner. Specifically, we first implement
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(©)

Figure 5.9: The screenshots of tracking results for HE_Combo_S1 sequence from the
proposed framework with different components. Row 1 shows the results from the
temporal tracking framework with PicStr only. Bounding boxes coloured with red
and yellow shown in Row 2 are the tracking results from PicStr+ROI and the whole
framework PicStr+ROI+PL, respectively.

the temporal tracking based on the generic tree-structured pictorial structures (Pic-
Str) model only. Then the ROI selection component is combined with the temporal
PicStr-based tracking (i.e., PicStr+ROI). Finally, the temporal tracking framework
(i.e., PicStr+ROI) is augmented with poselets constraints to form the complete
tracking framework (i.e., PicStr+ROI+PL).

Several screenshots of the tracking results from the frameworks with different com-
ponents on Combo sequence are shown in Figure 5.9. Row 1 shows results from
the temporal tracking framework with generic PicStr model only and the selected
screenshots show that the results are affected severely by background clutter. When
combined with the ROI selection before temporal tracking, some errors from the
background clutter such as the arm-like shape in the door or the straight line in the
floor can be eliminated in a large extent, which is clearly seen from the red-coloured
bounding boxes shown in the second row of Figure 5.9. Moreover, the follow-up
temporal PicStr-based tracking process only detects and searches the pose from the
ROI area, which largely decreases the search space and improves the computational

efficiency. The tracking performance from the whole proposed framework (Pic-
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Table 5.1: The performance comparison for Combo sequence (in percentage).

Method Tor |Head| U.L. L.L. U.A. F.A. |Total
PicStr 98.4/94.5 |84.7 83.2/81.8 78.0(81.0 82.5|73.1 72.8| 83.0
PicStr+ROI 100| 100 |86.3 85.5[82.2 81.1|87.1 84.7|85.5 83.0| 87.5
PicStr+ROI+4+PL|{100| 100 |99.3 98.7|93.8 90.0{94.2 94.0(93.1 89.8| 95.3

Str+ROI4+PL) is demonstrated in the second row of Figure 5.9 with yellow colour.
In addition to further error corrections from background clutters, as shown in column
(c), the combined poselets constraints also increase the accuracy by eliminating most
of the double counting problems, e.g., the lower-leg cases shown in column (b) and
(c) of Figure 5.9, which is benefited from the multiple parts dependencies modelled

with the poselet representation.

The quantitative performance of the frameworks with different components on Combo
sequence are shown in Table 5.1. Compared with the performance of the temporal
generic PicStr-based tracking framework (PicStr), the PicStr+ROI system improves
the total accuracy by 4.5% and the framework combined with PL component (Pic-
Str+ROI4+PL) further increases it by 7.8%. The PicStr+ROI system improves the
accuracy significantly for forearms by more than 10%. The whole system (Pic-
Str+ROI4+PL) increases the accuracy for all body parts.

The ROI part is an essential pre-processing in our work, which can decrease the
search space significantly, thus improve computational efficiency. The ROI compo-
nent alone even outperforms the effort to improve the tracking accuracy by perfecting
the appearance model, such as in Lu et al. (2012a), the results of which on Combo

sequence are shown in Table 5.2.

5.4.2 Comparison to state-of-the-art approaches

To further evaluate the performance of the proposed framework, we also implement a
series of experiments to compare its performance against other state-of-art tracking-
by-detection frameworks. The first one is from Ramanan et al. (2007). The second
one is the specific (colour-based) appearance model from Lu et al. (2012b), which

is built by clustering the generic (edge-based) part detections across all frames. We
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Figure 5.10: The screenshots of tracking results for HE_Combo_S1 and Baseball
sequences from the frameworks (Ramanan et al. (2007), Cluster Lu et al. (2012b),
Classifier Lu et al. (2012a)) and the framework proposed in this work.

refer to this algorithm as Cluster. The last one is referred to as Classifier, which
is an accurate specific appearance model from Lu et al. (2012a). The source code

packages implemented are from the respective research teams.

The performance of the tracking results from these algorithms (Ramanan, Cluster,
Classifier and the proposed framework with all components in this work) are shown
in Figure 5.10 and Table 5.2.

In Figure 5.10 Row 1 to Row 3 show visually some screenshots for tracking by
Ramanan, Cluster and Classifier respectively, and the last row shows the results
from the proposed framework. The performance of the proposed approach is clearly
much superior. It corrects most of the double counting problems, e.g., the lower-leg
cases shown in column (a) and (b) of Figure 5.10, which is mainly benefited from
the multiple part dependencies modelled with the poselet component. Moreover,
the proposed system can deal with some errors from the background clutter such
as the arm-like shape in the door, as illustrated in column (c) and (d), due to the
ROlI-selection.

Table 5.2 shows the performance comparison of the frameworks on two datasets. The
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Table 5.2: The performance comparison based on PCP-metric in percentage.

Tracking Performance
Dataset Method Tor  Head U.L. L.L. U.A. F.A. Total
Ramanan 98.5 70 58.355.2 77.971.1 76 35.8 77.9 48.9 67
Baseball | Cluster 100 97 93.492.1 89.488.1 93.8924 91.590.8 92.85
Classifier 100 100 94.1 93.4 92.990.6 94.793.5 94.2 92.6 94.6
PicStr+ROI+PL 100 100 96.6 95.1 94.0 92.7 94.593.8 91.5 90.1 94.8
Ramanan 52.5 36.3 53.865.0 68.8 63.4 24.3 26.7 33.8 42.5 46.7
HE_Co- Cluster 100 98.0 83.881.8 82.677.9 83.7784 787759 84.1
mbo_S1 Classifier 100 98.4 87.186.8 85.081.3 86.370.7 85.570.0 85.1
PicStr+ROI+PL 100 100 99.3 98.7 93.890.0 94.294.0 93.189.8 95.3

proposed system outperforms the others in every single case. For both sequences, all
frameworks achieve good performance in tracking the torso part. However, for the
other body parts, i.e., the limbs, the correct rates of the proposed system (more than
90%) is much higher than those of the other systems. It clearly demonstrates that
the multiple parts dependencies modelled in this work can significantly improve
the performance of tracking and is much more robust. The proposed framework
works much better for the detection of smaller and more active body parts, such
as arms and legs. The motion in the Combo sequence is much more complex than
those in the Baseball sequence, hence the existing methods (Ramanan, Cluster and
Classifier) perform worse for this sequence. However our proposed framework is able
to produce highly satisfactory results for both sequences, which clearly demonstrates

the superiority of the proposed system.

5.5 Summary

In this chapter, we propose a robust framework for human pose tracking in 2D
monocular image sequences. A model is proposed to incorporate higher order de-
pendencies of multiple body parts, even if they are not directly connected, which
allows the body part connections to be more flexible and specific to image evi-
dences. In order to establish the image-conditioned variables, the effective poselet
features are employed. Based on a series of detectors, the poselet descriptors can
be computed for each frame. These image-specific terms can be combined to the
pictorial structures model, which leads to highly accurate and efficient computation
and inference. A simple motion constraint is also incorporated to capture temporal

continuity of body parts between frames, which makes the positions of body parts
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change smoothly across all frames. In addition, a full body detector is introduced
as the first step of our framework to reduce the search space for pose tracking. The
proposed framework is evaluated on two challenging image sequences and compared
against existing state-of-the-art approaches. The results illustrate that the proposed

framework outperforms the state-of-the-art 2D pose tracking systems.
In the next chapter, we will continue to exploit the non-connected body part de-

pendencies by augmenting the PicStr model from the same layer. Moreover, the

confusion between the left and right limbs will also be discussed in the next chapter.
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Chapter 6

Symmetric Body Part
Dependencies Modelling and Head

Orientation Estimation

Most approaches in 2D human pose tracking rely on the simple tree-based pictorial
structures (PicStr) model, in which the appearances of body parts are modelled
with a set of unary terms and the spatial arrangement between adjacent body parts

is captured by a group of pairwise terms.

The generic tree-based PicStr methods used for pose estimation and tracking are
successful on images where all the limbs of the person are visible. However, as
described in Chapter 5, the main drawback of such approaches is that the simple
tree structure completely excludes all the dependencies among non-adjacent body
parts. As a consequence, the detections for some limbs from these approaches can be
inaccurate especially in scenarios involving a cluttered background or self-occlusion.
Moreover, double counting is another common problem with the tree-based PicStr
model especially when the tracked targets show sideways poses. Symmetric body
part pairs often appear in close proximity in images hence share a high detection

score with the same image evidence.

In Chapter 5, a model incorporated higher order dependencies of multiple body parts
has been proposed, which provides more conditions onto the generic PicStr model
from a higher level and make the PicStr model more specific to images. In this
chapter we propose methods to further improve the tracking performance by adding
more flexibility to the generic PicStr model. One of the methods proposed in this
chapter augments the tree structured PicStr model by adding more dependencies
between symmetric and non-adjacent limbs, which are in fact important factors
for balancing and coordination. In other words, we propose a framework based on

pictorial structure that not only encodes the information based on relations between
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Figure 6.1: The proposed model integrates the relation information between sym-
metric legs and arms, i.e., the blue dash lines illustrate the augmented dependencies

between symmetric body parts.

connected body parts, but also integrates additional constraints (AdCon) between
symmetric limbs. The model incorporated AdCon utilized in this chapter is shown
in Figure 6.1. It can be seen from the tracking results shown in the frame on the
right of Figure 6.1 that the proposed approach can effectively deal with the problem

associated with the double counting.

As shown in Figure 6.1, it is clear that the new model is no longer a tree structure
since loops are introduced. To effectively model dependencies between non-adjacent
body parts while still allowing for efficient inference, we use the factor graph Kschis-
chang et al. (2001) to represent the whole human body model and libDAI Mooij
(2010) is employed to implement inference for this graphical model.

A factor graph is an easy and straightforward way to add more variable and factor
nodes which can be used to represent more dependencies between different body
parts. We exploit the inference relying on the factor graph approach, in which the
whole model is encoded by a set of variable and factor nodes. Section 6.1.1 describes

the factor graph utilized for this work in detail.

Another serious problem occurring frequently during 2D human motion tracking is

the confusion between the left and right limbs. For example, Figure 6.2 shows several
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(a) (b)

Figure 6.2: Several tracking results. In (b) and (c), the detections of the left and
right legs are clearly inconsistent with those in (a) because of occlusion and the

double counting issues.

tracking results for frames in a walking sequence (named HE _walking S1) from the
well-known tracking dataset HumanEva Sigal et al. (2010). In this sequence, the
tracked target walks around a circle. Although the frontal (or back) poses can be
accurately detected especially when all body parts are visible, the left and right limbs
are often confused especially when the human body is side-faced. For example, in
Figure 6.2 (a), the pink colour bounds the left limbs while the bounding boxes in
light blue are for the right limbs. The left and right legs are incorrectly identified for
the side-faced poses shown in Figure 6.2 (b) and (c). The trajectories of the right/left
upper legs (lul/rul) for the sequence HE walking_S1 are also illustrated in Figure
6.3. From the frontal poses to back-facing, it is clearly noted that the right and
left limbs shown in these trajectories only represent the relative locations of limbs
in images without considering the consistency issue, which is a big problem during
tracking. For example, the left leg in the frontal pose is encoded with blue colour
in the trajectory, but the same left part in some back-facing poses is recognized as

right-side leg and coloured with orange.

The reason for the left/right inconsistency problem is that the left and right body
parts in the generic PicStr model are defined only depending on their relative lo-

cations in the image coordinate system because the PicStr is originally designed
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Figure 6.3: Tracking trajectories of upper legs from frontal poses to back-facing for

the sequence HE_walking_S1. It is clearly noted that the real right and left limbs

are not, consistent with the recognized left and right shown in the trajectory. For

example, the left leg in the frontal pose is encoded with blue in the trajectory, but

the same left part in backwards poses is recognized as right-side leg and coloured

with orange.
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to infer body poses for one frame. When dealing with a video sequence, confusion
between the left and right limbs often occurs especially when poses from different

viewpoints exist in the sequence since their appearances are similar.

In this work, we propose a very simple method based on estimation of the head
orientation (looking left or right) to provide instructive information to address such
a problem. A head-yaw-estimation step is introduced into the tracking framework
to serve as a complementary tool to assist the human pose estimation. Yaw rotation
of the head is one important type of head poses and it attracts much attention
because its estimation has many potential applications Ma et al. (2015). In this
work, accurate estimation of the head yaw angle is not necessary. We only need a
brief indication on whether the human body is roughly facing left or right. A simple
skin colour detector and a set of threshold templates is hence used to indicatively
identify the head orientation of the tracked target. Such information is used to
determine the visible side of the body, hence in this work we only deal with side-
facing poses in which the orientations of the head and body are consistent. We
believe this covers most side poses in most human motion. Postures which do not

satisfy such an assumption are not considered in this work.

Generally, self-occlusions are more likely to happen when the tracked targets are
side-facing. With the head orientation determined, if the human figure is not frontal
or backward facing, the system can first determine whether the left or right side of
the body is certainly visible and then deduce the situation of the other side based
on image evidences. For example, for the side-facing pose in Figure 6.2, the head
pose detector indicates that the pose is facing right. The system will then determine
that the left side of the body is definitely visible. Accordingly, the system will grant
higher priority for the left body parts and assign the posterior with higher score
to them. The posteriors for the right side limbs will then be searched and located
with reference to their left counterparts. If all posteriors for a certain right body
part score very low, this part will be regarded as being occluded. Therefore, the
double counting problem can be effectively avoided and the confusion between left

and right body parts is cleared.
The structure of this chapter is as follows. In Section 6.1, the repulsive factors,

i.e., additional constraints (AdCon), between symmetric body parts are introduced
to the PicStr model. The details on how to factor the terms of the whole model
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mathematically is also presented in this section. Then the proposed head facing
orientation (HeadOri) estimation approach is described in Section 6.2. After that,
the complete tracking process with the proposed tracking framework is presented
in Section 6.3. The components included in the complete tracking framework are
the improved PicStr model with constraints on symmetric body parts, head facing
orientation estimation and the poselets conditions proposed in previous chapter.
The experiment settings and experimental results are shown in Section 6.4. Finally

we conclude this chapter in Section 6.5.

6.1 Repulsive Factors

6.1.1 The PicStr model with additional constraints (Ad-

Con) between symmetric body parts

While the generic PicStr model often leads to competitive results, there are sit-
uations in practice that the tree structure for the human body cannot be clearly
observed such as in the case of body parts occluding each other. In order to im-
prove the tracking performance especially for the challenging limbs, we propose a
framework in this chapter that augments the tree structure model by considering
dependencies between symmetric and non-adjacent body parts, which are actually
important in real life for balancing and coordination. Specifically, in the proposed
framework,

N

p(Li|Dy) =Y E“(I;; D)+ | EP(I 175 D). (6.1)

i=1 men
where, E* is the unary term and E? is the pairwise term of the proposed model,
and m ~ n denotes the relationship between the body parts m and n. Same as
the generic PicStr model, the unary term denotes the image likelihood based on
a set of pre-trained shape-based appearance models for all body parts. However,
the pairwise term here is different from the generic PicStr model. Specifically, the
pairwise term EP(I}*,1}'; D) represents relations between the connected and non-
connected body parts while the pairwise term in the generic PicStr model only

represents information on relations between the connected body parts.
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Figure 6.4: The model shown in (a) is the generic tree-based PicStr model (drawn
in black colour) integrated with constraints between symmetric legs and arms (the
blue dash lines). The whole model is transferred to a factor graph shown in (b).
Each part [; is represented by a variable node (empty circle), a factor node (solid
square) denoting each local function f;, and an edge connecting a variable node I;

to a factor node if and only if /; is an argument of f;.

Obviously loops are introduced when constraints are added between symmetric and
non-adjacent body parts. Thus the original inference approach for the tree based
model cannot be utilized for the proposed model. In order to guarantee high com-
putational efficiency while taking into account the dependencies between body parts

as much as possible, the factor graph method is used in this research.

Figure 6.4 shows a transferred factor graph from a PicStr model augmented with
additional constraints between symmetric legs and arms. Each body part is rep-
resented by a variable node (empty circle), a factor node (solid square) denoting a
local function (f;), and an edge connecting a variable node to a factor node if and
only if the variable node is an argument of the factor node. All the unary terms and

the dependencies of the proposed model are factorized in Figure 6.4.

6.1.2 Factorization of the model

A factor graph is a bipartite graph representing the factorization of a function. In
probability theory and its applications, factor graphs are used to represent factor-
ization of a probability distribution function, enabling efficient computations such

as the computation of marginal distributions through the sum-product algorithm.
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Factor graph provides an easy and straightforward way to add more variable and
factor nodes representing more dependencies between different body parts. Both
the unary term and the dependencies modelled in the pairwise term of Equation

(6.1) should be factorized in a factor graph.

First of all, the unary term represents the image likelihood and is written as

B = Hf(li) = Hp(diﬂi) (6.2)

which is resulted from a set of appearance models for all body parts. In Figure 6.4,
unary terms correspond to variable vertices [;, the factor vertices (solid squares) f
connecting only one variable, and undirected edges connecting these variable vertices

to factor vertices.

Besides the dependencies between the connected parts, another four repulsive fac-
tors are incorporated in the proposed model to represent the dependencies between
symmetric and disconnected limbs, i.e., the factors between left /right upper/lower

arms and legs. Thus the pairwise term in Equation (6.1) can be written as

E? = f(lo,1s) f (I, L) f (L, 1) f (s, 1) [ £ 1)) (6.3)

(li,lj)EE
where FE is the edge set containing all connections between adjacent body parts and
f(li,1;) is the kinematic dependencies between connected body parts, and all body

parts arrangement is shown in Figure 6.4.

The additional dependency factors in the proposed model is defined as

exp(—a) ToU(ly,l,) >~

1 otherwise

fllm, 1) = { (6.4)
where IoU (l,,,[,) is the ratio of intersection and union of the bounding boxes of part
m and n, vy is a threshold controlling when the defined factor should take effect. The
additional factors tend to push two symmetric limbs away from each other, which
intend to serve the purpose of avoiding double counting in the same image region.
The parameter « defines how strong the parts are pushed away from each other. In

this research, we set v = 0.3, = 1.5 for legs and v = 0.2, &« = 1.5 for arms.

Factorizing all factors in Equation (6.1), the transferred factor graph is illustrated

in Figure 6.4 (b), where each part [; is represented by a variable node (empty circle),
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6.2 Estimating the Head Facing Orientation

each local function f; is represented by a factor node (solid square), and an edge

connects a variable node /; to a factor node if and only if /; is an argument of f;.

Different from the tree structure, loops are introduced in the proposed structure.
The whole inference process thus consists of two steps: firstly inference is performed
using the model with only tree-based kinematic constraints, and then the posterior
marginals of each part are sampled and inference is performed with the full model
using the samples as the new state-space. The inference for the proposed model
utilizes an open source C++ library libDAI Mooij (2010) that implements various
(approximate) inference methods for discrete graphical models. LibDAI supports

arbitrary factor graphs with discrete variables.

6.2 Estimating the Head Facing Orientation

The goal of this step in our work is merely to roughly decide whether the tracked
target is facing left /right /front /back. It is worth noting that estimating the accurate
yaw angle of the head is not necessary for this purpose. Although there are many
algorithms published on the accurate estimation of the head pose (Demirkus et al.
(2014); Zhu and Ramanan (2012)), they are considered unnecessary and computa-
tionally overkill for our purpose. Rather, a very simple algorithm based on colour
detection is utilized to identify the rough head orientation of the tracked target,
namely, whether he/she is roughly facing front, back, left or right.

Given the head bounding box for each frame shown in the first column of Figure 6.5,
it is noted that the absolute location of the face area (C') or the relative location of

the face and hair regions (p) are essential clues for the head orientation estimation.

Considering the generally small size of the head area in this kind of applications
and to ensure simplicity of the algorithm, we utilize a skin colour detector to select
the face area which can produce a binary skin-map and highlight patches of skin-
like pixels for a given image (see Figure 6.5 (a)). The hair region is not detected
separately. The head image is firstly transformed from RGB colour space to YCbCr

colour space and the resultant image is comprised of intensity component (Y) and
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Figure 6.5: The face detector is shown in (a). The skin-map is overlayed onto
the image marked in blue. The binary skin-maps are shown in the third column.
(b) shows the set of face templates. Examples of estimation results with the face

templates are shown in (c).

chrominance components (Cb and Cr).

Y 16 0.257  0.504  0.098 R
Cy| = |128] + |—0.148 —0.291 0.439 G (6.5)
C, 128 0439 -0.368 —0.071| |B

The YCbCr colour space is chosen since it is effective and efficient for the separation
of image pixels in terms of colour and can be applied for complex colour images with

uneven illumination.

For determining the head orientation H(C, p), a set of templates for different head
orientations are pre-set and illustrated in Figure 6.5 (b). The boundary of the face
area is assumed to be roughly elliptic and the region intersecting with the head
bounding box is considered the face area, which is marked in green. Intuitively, in

the head bounding box, if the skin-coloured region accounts for a great part of the
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bounding box and is locates in the central, it is considered that the target is front
facing. In contrast, if there are only a small number of skin-like pixels and the region
they represent locates at the bottom of the head bounding box, the tracked target
is considered to be back-facing. If the skin area is located only in the right-bottom
or the left-bottom area of the bounding box, we consider the head is looking right
or left and hence the tracked target is assumed to be in a sideway pose, facing right
or left accordingly. As mentioned before, in this work, it is assumed that the pose

orientations are always consistent with the head orientation during tracking.

6.3 Human Pose Tracking

Given an image sequence, our task is to infer the posterior p(L;|D;) across all frames,
i.e., to estimate the optimal tracks of each part, which corresponds to find the
maximum a posteriors

L' = argmaa(p(LLY | DEY)). (6.6

Taking into consideration the time coherence and the head orientation, the posterior
in the proposed complete model for pose estimation in each frame can be formulated

as

N

P(LEY | DI o 303 (6l liy) + B0 D, H) + EP(7 5D, H)) . (67)

t=1 i=1

Here superscripts are used to represent body parts and subscripts for frames, e.g.,
I! is the configuration of the part ¢ at the time instance t. The first term in the
right-hand side of Equation 6.7 captures temporal continuity of body parts between
frames. The last two terms are the unary term and pairwise term of the proposed
model. Here the pairwise term represents the relationships between both the con-

nected and non-connected body parts. H is the head orientation indicator.

In the proposed framework, we first perform inference using the model with only tree-
based kinematic constraints, and then sample from the posterior marginals of each

part according to Gaussian prior, temporal filter and head orientation information.

Through experiments, we observe that the posterior marginals of each part in the
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Figure 6.6: The yellow bounding box in(b) is the ground-truth location of the left
lower leg (LLL). (d) shows the posterior probabilities of LLL in image coordinates,
which is mapped to image (c¢) in the 2D space. It can be clearly seen that the

posteriors form a Gaussian distribution.

tree structure model approximately satisfy a Gaussian distribution, which means
that the closer the candidate location is to the ground truth of the target location,
the more possible it is to be chosen as the final tracked location. An example for

left lower leg is illustrated in Figure 6.6.

It is obvious that the most probable posteriors are around the ground-truth location
of the body part. Therefore, the posterior marginal set (named M) can be sampled
based on this fact, i.e., more posteriors are sampled at the locations near the centre
of the tracked body part in the previous frame. The marginal set sampled this way

is named M g.

Since the position/orientation of each body part generally changes smoothly within
an image sequence, a simple motion model is exploited, taking advantage of this
temporal continuity, by setting a simple velocity threshold, similar to the one uti-
lized in Chapter 5. That is, the Euclidean distance between the part positions in

successive frames should not exceed a pre-set threshold:

¢(liv lzz‘:—l) (8 I('D(li, li—l) < dmaz), (6.8)
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Figure 6.7: The tracking process. For each frame, the tracking system first deter-
mines whether the left or right side of the human body is certainly visible according
to the head orientation and then grants higher priority to the visible side for the

subsequent pose inference.

where Z is the standard identity function and D(I¢,li_,) is the Euclidean distance
between the part positions in consecutive frames. Besides, the orientation difference
of each body part in two successive frames should not exceed a pre-set threshold

0_mazx.

To avoid left/right inconsistency during tracking, the proposed head detector is
implemented to roughly estimate the head (and subsequently the overall body) ori-
entation (represented as HeadOri). During tracking, the head orientation is firstly
estimated using the approach described in Section 6.2 and the body facing direc-
tion is then determined based on the estimated head orientation. If the body pose
is determined as not being frontal or back-facing, the system can first determine
whether the left or right side of the human body is certainly visible according to the
head orientation and grant higher priority to that side for the subsequent posterior
sampling and pose inference. For example, if the head pose detector indicates that
the pose is facing right, the system can identify that the left side is definitely visi-
ble. Accordingly, the system will grant higher priority for the left side and sample
posteriors of body parts in the order [ly, 11, (4,5, ls,l9]. The next step is to select the
sampled posteriors for the right side limbs [l3, [3, ls, [7] and allocate them to different
places from their respective left counterparts. It is noted that if all posteriors for a

certain right body part are small, this part will be regarded as being occluded. In
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the contrary, if the pose is facing left, the order will be [I3,ls,17,ls, s, o] and then

[lo, 11,14, 15]. The arrangement of the part order is demonstrated in Figure 6.1.

The tracking process is shown in Figure 6.7.

With the time coherence and the head orientation information, the marginal set
M} _g is then sampled, which further shrinks the candidate marginal set. Here the

final marginal set is named as M/ _g_s.

With the marginal set M/ _g_s, inference for the proposed model is performed again

to obtain the final pose estimation for each frame.

Algorithm 6.1 Tracking human poses with head orientation estimation

Generate all part proposals with part detectors.
Generate head orientation from head yaw estimation step.
for all frames do
Sample posterior candidates for all body parts
if is_right — facing(pose) then
Prioritize the left-side body parts and then infer the right side pose with
reference to the left side parts.
else if is_left — facing(pose) then
Prioritize the right-side body parts and then infer the left side pose with
reference to the right side parts.
else
Directly infer the body pose with 10-part Pictorial Structures Model.
end if

end for

6.4 Experiments and Discussion

In this section we evaluate the performance of the proposed complete framework on
several datasets and compare its performance with the framework based on the tree

structure PicStr model.

Datasets: Two sequences are used in the experiments. One is the sequence HE_Combo_S1,
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Figure 6.8: Some frames from sequences Skating S1 and HE_Combo_S1.

Combo

Skatlng

which is a 600 frames sequence and the tracked person in it performs different mo-
tions in a circle and shows different scales and body orientations. In addition, the
sequence contains several non-lateral motions, such as jumping, kicking, leaning
and stretching. The other is the sequence Skating_S1, which is selected from a video
recording the skater Michelle Kwan performed at the 1998 Olympics Game and
consisting of 116 frames. The skater in the sequence Skating S1 performs different
actions with various poses. Several sample frames of both sequences are illustrated
in Figure 6.8. They are used to demonstrate that the proposed system can be widely

applied to different motions with different viewing angles .

We conduct a series of experiments to evaluate the performance of the proposed

framework qualitatively and quantitatively.

6.4.1 Experiments with additional constraints (AdCon)

We first implement a pose tracking framework on the sequence HE_Combo_S1 based
on the generic tree-structured pictorial structures model. Then, we augment the
tracking framework with the proposed additional constraints, i.e., dependency in-

formation between symmetric limbs, and the system is named PicStr + AdCon.
To improve computational efficiency and ensure fairness of the comparisons, for the
sequence HE_Combo_S1, all frameworks implemented in this chapter use the same

region-of-interest (ROI) selection technique to normalize the scale value of all frames.

Several screenshots of the tracking results from both frameworks with different com-
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PicStr

PicStr+
AdCon

Figure 6.9: Row 1 shows the selected screenshots from the basic pose tracking frame-
work with the generic PicStr model. The tracking performance with constraints on

symmetric body parts (PicStr + AdCon) is shown in the second row.

ponents on HE_combo_S1 sequence are shown in Figure 6.9. The selected screenshots
show that the results using PicStr only are affected severely by the double counting
problem especially for legs.. When augmented with repulsive factors on symmetric
limbs (AdCon) during tracking, errors from the double counting can be corrected
in a large extent, which is clear in the screenshots shown in the second row of Fig-
ure 6.9. In other words, the combined constraints on limbs increase the accuracy
by overcoming most of the double counting problems benefited from the additional

factors between symmetric legs and arms.

The quantitative performance of the tracking frameworks with PicStr only and
PicStr + AdCon components on the Combo sequence is shown in first and second
rows of Table 6.1. Compared with the PicStr system, the framework combined
with additional dependencies (PicStr + AdCon) increases the total accuracy by
6%. Tt is thus evident that the additional constraints between non-connected body
parts is important for improving the tracking performance. More specifically, the
inclusion of dependencies between symmetric body parts increase the accuracy for
limb tracking by overcome the double counting errors. It is clearly seen from the

quantitative comparison that, with the AdCon component, the tracking accuracy
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Table 6.1: The performance comparison in percentage for HE_combo_S1 sequence.

Framework Tor/Head| U.L. L.L. U.A. F.A. |Total
PicStr 100| 100 | 86.3 85.5 | 82.2 81.1 | 87.1 84.7 | 85.5 83.0 | 87.5
PicStr+AdCon 100/ 100 | 100 98.5(95.9 94.7| 87.8 86.9 | 86.0 85.1 | 93.5
PicStr+PL 100| 100 | 99.3 98.7 | 93.8 90.0 |94.2 94.0/93.1 89.8| 95.3
PicStr+AdCon-+PL{100| 100 |99.6 98.7(95.9 94.7|95.8 94.0/93.1 90.0| 96.2

for the legs are improved significantly.

It can also be noted through our experiments that the ROI part is an essential
pre-processing in this kind of pose tracking, which can decrease the search space
significantly, thus improve computational efficiency. The simple ROI component
even outperforms the effort to improve the tracking accuracy by perfecting the ap-

pearance model, such as the one described in Lu et al. (2012a).

In this chapter, we also implement the mid-level poselet representation (described
in Chapter 5) onto the tracking framework PicStr + AdCon. From the experiment
results in Chapter 5, the tracking performance of the system with poselets for arms is
more significant than AdC'on experimented in this chapter while for legs, the AdC'on
component is much more effective. Therefore, all parameters on poselets and AdCon
are tuned and combined here to play their role as much as possible. That is, the
group of poselets related arms are selected to constrain the configuration of arms
and the repulsive factors between symmetric legs are utilized to inference the leg

configurations.

In implementation, 7 poselets parts (11 — 17) and 2 repulsive factors between left
and right upper/lower legs are selected. The quantitative and qualitative comparison

between all frameworks are shown in Table 6.1 and Figure 6.10.

The results proved that the system with PL component performs better on tracking
arms while the system with AdCon provides higher accuracy on legs. This is due
to the fact that the mid-level poselets representation can guide the search for body
parts even for small limbs such as arms. It should be true for legs. However in fact,
the legs are not only with similar appearance but also adjacent and often crossing
or occluded by each other, which limits the effectiveness of the PL component.

Compared with the PL, the AdC'on on the symmetric body parts are more effective
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Figure 6.10: Row 1 shows the selected screenshots from the human pose track-
ing framework with constraints on symmetric body parts (PicStr + AdCon). The
tracking performance with mid-level poselets constrains (PicStr + PL) is shown
in the second row. The third row is the performance of the tracking system with
components PicStr + AdCon + PL.
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for legs because they tend to push two symmetric limbs away from each other. When
both components PL and AdCon are combined, the accuracy for legs and arms is

simultaneously improved, which is clearly shown in Table 6.1 and Figure 6.10.

6.4.2 Experiments with head orientation estimation (HeadOr7)

In addition to the inclusion of the poselets and the additional constraints on symmet-
ric body parts, the head orientation information is augmented to form the complete
tracking framework PicStr + AdCon + PL + H.

The complete tracking system is tested with the sequences HE_Combo_S1 and Skat-
ing_S1. As mentioned before, for the sequence HE_Combo_S1, the region-of-interest
(ROI) selection technique is applied to normalize the scale value of all frames. For
the sequence Skating_S1, the Pixel_Count metric is utilized to deal with the scale
variation issue during tracking because the ROI strategy is not suitable for the

sequence in which not all poses are upright.

Several screenshots of tracking results for both sequences without and with head
orientation information (PicStr+AdCon+PL vs. PicStr+AdCon+PL+HeadOri)
are shown in Figure 6.11 and Figure 6.12. With the body orientation changing within
the video sequences, if the head orientation information are estimated and utilized
as shown in the bottom row of both Figures, the limbs are tracked consistently. On
the contrary, without the head orientation information, the left and right limbs are

often confused during tracking as shown in the top row.

The improvements is especially evident in the correct tracking of legs for the sequence
Skating_S1, in which the body turns frequently. For both sequences, the proposed
method reduces the confusion between the symmetric left and right limbs and thus
enhances temporal smoothness for each body part, which subsequently results in

smoother and more accurate tracking.

The quantitative performance of both the frameworks (PicStr + AdCon + PL vs.
PicStr + AdCon + PL + HeadOri) on the two sequences are shown in Table 6.2
and Table 6.3. For both sequences, the proposed approach improves the tracking

performance consistently for every limb. The left/right consistency in the proposed
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Figure 6.11: Several screenshots show tracking results for the sequence Skating S1
without and with head orientation information. The screenshots are selected with
poses facing front/back/left/right separately. The left and right limb confusions
as shown in the top row are corrected when the body orientation information is
utilized during tracking as shown in the bottom row. For example, the left upper
leg in the frontal pose (coloured in pink) is mistaken as the right upper leg in the
back pose (coloured in blue) when tracking without orientation information. With
the orientation information, the left upper leg is always recognized as the left-side

part no matter which side the body is facing, thus the limbs are tracked consistently.
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Without head orientation

With head orientation

Figure 6.12:  Several screenshots show tracking results for the sequence
HE_Combo_S1 without and with head orientation information. The left and right
limb confusions as shown in the top row are corrected when combing with the body

orientation information during tracking as shown in the bottom row.

112



6.5 Summary

Table 6.2: The performance comparison in percentage for Skating S1 sequence.

Framework Tor|Head| U.L. L.L. U.A. F.A. |Total
PicStr+AdCon-+PL 96.1|94.6 [88.3 87.5| 83.7 84.1 |78.2 79.6|75.4 74.3| 84.2
PicStr+AdCon+PL+HeadOri|96.1] 94.6 [89.9 89.8/88.9 89.7|79.4 81.0(/79.1 78.0| 86.7

Table 6.3: The performance comparison in percentage for HE_combo_S1 sequence.

Framework Tor|Head| U.L. L.L. U.A. F.A. [Total

PicStr+AdCon+PL 100| 100 (99.6 98.7| 95.9 94.7 (95.8 94.0] 93.1 90.0 | 96.2
PicStr+AdCon+PL+HeadOri|100| 100 {99.0 99.0|97.1 96.8|96.0 95.4/94.3 92.5| 97.0

whole framework is improved, thus decreasing the detection errors in the previous
framework. Moreover, the proposed inclusion of head orientation estimation into the
tracking system increases the accuracy for limb tracking by eliminating the double

counting errors caused by self-occlusions.

6.5 Summary

In this chapter we propose a complete framework for human pose tracking in 2D
monocular image sequences, which incorporate additional dependencies of non-

connected body parts and head orientation information.

A model encoded with additional relationships between symmetric limbs is analysed
in this chapter to constrain the left and right arms and legs, encoding the natural
human distinction for balance and body coordination. In order to implement the
inference efficiently for the proposed model, the factor graph approach is utilized
to factorize the proposed model. All the unary term and all dependencies modelled
in the pairwise term of the proposed model, both between the connecting and non-

connecting body parts, are factorized in a factor graph.

A head orientation detector is augmented into the human pose tracking framework
in this chapter. It is a very simple and efficient method, but effectively addresses
one of the biggest problems in 2D human pose tracking, i.e., the confusion of the
left and right body parts due to the overlapping and occlusion when the human is

not facing front or back. A simple head orientation detector based on skin colour
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detection is proposed to roughly estimate the head facing direction, and hence the
orientation of the whole body. The side of the body that is definitely visible can then
be determined and given higher priority for the subsequent inference. The other side
will then be inferred with reference to their visible counterparts, with some body

parts confidently determined to be occluded.

The proposed complete framework is evaluated on two challenging image sequences
and compared against the framework with the tree-based PicStr model. Experimen-
tal results show that the proposed framework is able to achieve very high detection
rate for very complicated video sequences involving large variations of motions and
orientation. Another key advantage of the proposed framework is that it has a
tunable model structure, i.e., we can select a certain group of the poselets represen-
tation and certain parameters of additional dependencies between symmetric limbs
depending on the specific sequence, which enables more flexibility for the model to

be simplified or added more constraints.
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Chapter 7

Conclusions and Future Directions

7.1 Summary

This thesis has proposed a system for 2D human pose tracking on monocular videos.
Monocular cameras are the most widely and easily available sources that record all
kinds of human activities. In the past few decades, vision-based tracking using
cameras rather than wearable sensors has received increasing attention because it is

cheaper and more convenient.

Many algorithms have been proposed but building a robust human motion tracking

framework is still a challenging task.

One of the challenges is the variations of body size in one video sequence. Videos in
reality often contain people appearing at any distance to the camera hence appeared
in various scales in the videos. To detect and track the human pose in each frame
with a proper scale, a scale checking and adjusting module is developed in this the-
sis and incorporated into the tracking process. Chapter 4 presented this module.
Two metrics are proposed and proved effective for detecting and adjusting the scale
change within a sequence. The first metric is from the estimated height value of
the tracked target (Height_Metric), which is suitable for some sequences where the
tracked target has generally upright postures with no limbs stretching. The other
metric is named PizelCount_Metric and implemented by computing the ratio be-
tween pixel counts of the foreground blobs and the estimated body part bounding

boxes, which is invariant to motion types, thus is more generic.
Another challenge for 2D human pose tracking is resulted from cluttered background

and double counting of body parts. The shapes similar to limbs in the image back-

ground and the similar appearances of symmetric body parts often affect the per-
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formance of tracking frameworks based on the generic Pictorial Structures (PicStr)
model. This is due to the fact that the part detectors in the generic PicStr model
are trained based on shape feature only and the prior over body part connections
is assumed to be a tree structure independent to image evidence. In order to ad-
dress this challenge and improve the accuracy of the tracking framework, especially
when dealing with rare and complex poses, the representation of body parts and the

human body model utilized in the tracking framework is re-explored in this thesis.

In addition to the basic rigid body parts defined in the PicStr model, a series of more
expressive spatial constraints are incorporated in this thesis by defining a mixture of
mid-level spatial representations. Chapter 5 described these representations, named
poselets. Each poselet captures multiple body parts configurations and dependen-
cies, which is image conditioned and used to model higher order information among

multiple body parts.

In Chapter 6, the human body model used for pose estimation is researched to fur-
ther improve the tracking performance, especially for active body parts. Specifically,
the generic tree structured PicStr model is augmented with more dependencies be-
tween symmetric and non-adjacent body parts, i.e., left and right upper/lower arms
and legs. A new framework is proposed based on PicStr model to include additional
constraints (AdCon) between symmetric limbs. These AdCons are in fact important
factors for body balancing and coordination, which tend to force the left and right

limbs separate and hence make the tracking to follow the motion biologically.

The confusion between similar-looking body parts, especially the left and right limbs,
is also a challenge during human pose tracking. With the generic PicStr model,
both sides of limbs are often confused especially when estimating side-faced poses
due to the similarities of their appearance and the overlapping of these body parts.
To overcome this problem and ensure the left and right limbs of being recognized
correctly during tracking, a novel approach based on a simple head orientation
(looking left or right) estimation is also proposed in Chapter 6, which serves as a

complementary tool to assist the human pose estimation.
The complete tracking system can produce satisfactory tracking performance for

video sequences with scale variations and a wide range of motion types, even rare

and complex motions. It is highly effective in dealing with problems such as limbs
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drifting due to cluttered background and double counting during the tracking pro-
cess. Additionally, the proposed tracking system can distinguish the left and right
limbs consistently during tracking process. The experimental results demonstrate
that the proposed framework outperforms existing systems significantly, especially

for the active body parts such as forearms and lower-legs.

7.2 Future Work

Based on the findings described in this thesis, some future directions could be pos-

sible and the components of our framework could be further improved.

One of the future directions is to explore more methods for handling the self-
occlusion problem during tracking. Self-occlusion means that one body part is
occluded /overlapped by another in the image, which often occurs in human pose
tracking. The left/right confusion correction module proposed in this thesis works
well for some self-occlusion cases because it can distinguish the visible body side and
hence is able to deduce the depth order of body parts correctly. Future work will
aim to learn more adaptable templates for determining head orientation and hence
improve the accuracy for detecting the occlusion cases. We believe that other more
effective methods for dealing with self-occlusion cases are deserved to be researched.
For example, modelling the probability of an occlusion state of body parts may be a
good way to implement an adaptive occlusion-sensitive model. In addition, dealing

with inference for the occluded body parts is also an aspect to be further researched.

More robust and versatile higher level features and other approaches should also be
explored to constrain more image observations into the basic human body model.
In addition to the higher level features (poselets representations) used in this thesis,
a variety of other cues based on body part correlations in poses could also be used
to adapt the model with images. One limitation of the poselet representations is
that they are independent from each other, which could limit their full functionality.
Dependencies between poselets could be explored to establish the spatial correlation
between poselets. Moreover, the factor graph structure used in this thesis enables
the human body model being tunable, which means we can simplify or add more

constraints between body parts by easily changing the factors. This excellent char-
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7.2 Future Work

acteristics suggests a possibility of future work on the human body model to research

dependencies between different groups of non-connect body parts.

Furthermore, the proposed framework is currently only implemented for tracking of
a single person. Future work could make some effort to track multiple persons within
the same video sequence. This could be achieved by analysing the type mode of the
appearance model. One possible method is to distinguish the appearance mode
for torso, hence to distinguish between multiple people because torso is a large and
consistently-detected body part. Once the torsos are defined, the scale of each person
and the other body parts could be inferred by exploiting some motion constraints.
The modules proposed in this thesis are also suitable if we make some adjustments
depending on specific cases. For example, the head orientation module could provide
not only information for body orientation but also each person’s location even their
motion direction. When a person mode is determined, the higher order dependencies
among multiple body parts and constraints between symmetric parts can then be

applied to infer the pose of each person.
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