72 research outputs found

    New Conditional Privacy-preserving Encryption Schemes in Communication Network

    Get PDF
    Nowadays the communication networks have acted as nearly the most important fundamental infrastructure in our human society. The basic service provided by the communication networks are like that provided by the ubiquitous public utilities. For example, the cable television network provides the distribution of information to its subscribers, which is much like the water or gas supply systems which distribute the commodities to citizens. The communication network also facilitates the development of many network-based applications such as industrial pipeline controlling in the industrial network, voice over long-term evolution (VoLTE) in the mobile network and mixture reality (MR) in the computer network, etc. Since the communication network plays such a vital role in almost every aspect of our life, undoubtedly, the information transmitted over it should be guarded properly. Roughly, such information can be categorized into either the communicated message or the sensitive information related to the users. Since we already got cryptographical tools, such as encryption schemes, to ensure the confidentiality of communicated messages, it is the sensitive personal information which should be paid special attentions to. Moreover, for the benefit of reducing the network burden in some instances, it may require that only communication information among legitimated users, such as streaming media service subscribers, can be stored and then relayed in the network. In this case, the network should be empowered with the capability to verify whether the transmitted message is exchanged between legitimated users without leaking the privacy of those users. Meanwhile, the intended receiver of a transmitted message should be able to identify the exact message sender for future communication. In order to cater to those requirements, we re-define a notion named conditional user privacy preservation. In this thesis, we investigate the problem how to preserve user conditional privacy in pubic key encryption schemes, which are used to secure the transmitted information in the communication networks. In fact, even the term conditional privacy preservation has appeared in existing works before, there still have great differences between our conditional privacy preservation definition and the one proposed before. For example, in our definition, we do not need a trusted third party (TTP) to help tracing the sender of a message. Besides, the verification of a given encrypted message can be done without any secret. In this thesis, we also introduce more desirable features to our redefined notion user conditional privacy preservation. In our second work, we consider not only the conditional privacy of the message sender but also that of the intended message receiver. This work presents a new encryption scheme which can be implemented in communication networks where there exists a blacklist containing a list of blocked communication channels, and each of them is established by a pair of sender and receiver. With this encryption scheme, a verifier can confirm whether one ciphertext is belonging to a legitimated communication channel without knowing the exact sender and receiver of that ciphertext. With our two previous works, for a given ciphertext, we ensure that no one except its intended receiver can identify the sender. However, the receiver of one message may behave dishonest when it tries to retrieve the real message sender, which incurs the problem that the receiver of a message might manipulate the origin of the message successfully for its own benefit. To tackle this problem, we present a novel encryption scheme in our third work. Apart from preserving user conditional privacy, this work also enforces the receiver to give a publicly verifiable proof so as to convince others that it is honest during the process of identifying the actual message sender. In our forth work, we show our special interest in the access control encryption, or ACE for short, and find this primitive can inherently achieve user conditional privacy preservation to some extent. we present a newly constructed ACE scheme in this work, and our scheme has advantages over existing ACE schemes in two aspects. Firstly, our ACE scheme is more reliable than existing ones since we utilize a distributed sanitizing algorithm and thus avoid the so called single point failure happened in ACE systems with only one sanitizer. Then, since the ciphertext and key size of our scheme is more compact than that of the existing ACE schemes, our scheme enjoys better scalability

    Identity based signcryption schemes without random oracles

    Get PDF
    Signcryption is a cryptographic primitive which performs encryption and signature in a single logical step with the cost lower than signature-then-encryption approach.. In this paper we gave attacks on confidentiality and unforgeability of two identity based signcryption schemes without random oracles. Further we proposed an improved identity based signcryption scheme without random oracles. We also proposed an identity based public verifiable signcryption scheme with third party verification without random oracles

    On the Security of ID Based Signcryption Schemes

    Get PDF
    A signcryption scheme is secure only if it satisfies both the confidentiality and the unforgeability properties. All the ID based signcryption schemes presented in the standard model till now do not have either the confidentiality or the unforgeability or both of these properties. Cryptanalysis of some of the schemes have been proposed already. In this work, we present the security attacks on `Secure ID based signcryption in the standard model\u27 proposed by Li-Takagi and `Further improvement of an identity-based signcryption scheme in the standard model\u27 by Li et al. and the flaws in the proof of security of `Efficient ID based signcryption in the standard model\u27 proposed by Li et al., which are the recently proposed ID based signcryption schemes in the standard model. We also present the cryptanalysis of `Construction of identity based signcryption schemes\u27 proposed by Pandey-Barua and the cryptanalysis of `Identity-Based Signcryption from Identity-Based Cryptography\u27 proposed by Lee-Seo-Lee. These schemes present the methods of constructing an ID based signcryption scheme in the random oracle model from an ID based signature scheme and an ID based encryption scheme. Since none of the existing schemes in the standard model are found to be provably secure, we analyse the security of signcryption schemes got by directly combining an ID based signature scheme and an ID based encryption scheme in the standard model

    Homomorphic signcryption with public plaintext-result checkability

    Get PDF
    Signcryption originally proposed by Zheng (CRYPTO \u27 97) is a useful cryptographic primitive that provides strong confidentiality and integrity guarantees. This article addresses the question whether it is possible to homomorphically compute arbitrary functions on signcrypted data. The answer is affirmative and a new cryptographic primitive, homomorphic signcryption (HSC) with public plaintext-result checkability is proposed that allows both to evaluate arbitrary functions over signcrypted data and makes it possible for anyone to publicly test whether a given ciphertext is the signcryption of the message under the key. Two notions of message privacy are also investigated: weak message privacy and message privacy depending on whether the original signcryptions used in the evaluation are disclosed or not. More precisely, the contributions are two-fold: (i) two different definitions of HSC with public plaintext-result checkability is provided for arbitrary functions in terms of syntax, unforgeability and message privacy depending on if the homomorphic computation is performed in a private or in a public evaluation setting, (ii) two HSC constructions are proposed: one for a public evaluation setting and another for a private evaluation setting and security is formally proved

    A Constructive Perspective on Signcryption Security

    Get PDF
    Signcryption is a public-key cryptographic primitive, originally introduced by Zheng (Crypto \u2797), that allows parties to establish secure communication without the need of prior key agreement. Instead, a party registers its public key at a certificate authority (CA), and only needs to retrieve the public key of the intended partner from the CA before being able to protect the communication. Signcryption schemes provide both authenticity and confidentiality of sent messages and can offer a simpler interface to applications and better performance compared to generic compositions of signature and encryption schemes. Although introduced two decades ago, the question which security notions of signcryption are adequate in which applications has still not reached a fully satisfactory answer. To resolve this question, we conduct a constructive analysis of this public-key primitive. Similar to previous constructive studies for other important primitives, this treatment allows to identify the natural goal that signcryption schemes should achieve and to formalize this goal in a composable framework. More specifically, we capture the goal of signcryption as a gracefully-degrading secure network, which is basically a network of independent parties that allows secure communication between any two parties. However, when a party is compromised, its respective security guarantees are lost, while all guarantees for the remaining users remain unaffected. We show which security notions for signcryption are sufficient to construct this kind of secure network from a certificate authority (or key registration resource) and insecure communication. Our study does not only unveil that it is the so-called insider-security notion that enables this construction, but also that a weaker version thereof would already be sufficient. This may be of interest in the context of practical signcryption schemes that do not achieve the stronger notions. Last but not least, we observe that the graceful-degradation property is actually an essential feature of signcryption that stands out in comparison to alternative and more standard constructions that achieve secure communication from the same assumptions. This underlines the vital importance of the insider security notion for signcryption and strongly supports, in contrast to the initial belief, the recent trend to consider the insider security notion as the standard notion for signcryption

    ID Based Signcryption Scheme in Standard Model

    Get PDF
    Designing an ID based signcryption scheme in the standard model is among the most interesting and important problems in cryptography. However, all the existing systems in the ID based setting, in the standard model, do not have either the unforgeability property or the indistinguishability property or both of them. In this paper, we present the first provably secure ID based signcryption scheme in the standard model with both these properties. The unforgeability property of this scheme is based on the hardness of Computational Diffie-Hellman problem and the indistinguishability property of this scheme is based on the hardness of Decisional Bilinear Diffie-Hellman problem. Our scheme is strongly unforgeable in the strong attack mode called insider security. Moreover, our scheme possess an interesting property called public verifiability of the ciphertext. Our scheme integrates cleverly, a modified version of Waters\u27 IBE and a suitably modified version of the ID based signature scheme in the standard model proposed by Paterson et al. However, our security reductions are more efficient. Specifically, while the security reductions for indistinguishability is similar to the bounds of Waters\u27 scheme, the unforgeability reductions are way better than the bounds for Paterson et al.\u27s scheme

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Efficient identity based signcryption scheme and solution of key-escrow problem

    Get PDF
    In cryptography for sending any information from sender to receiver, we have to ensure about the three types of security policies i.e. integrity, confidentiality and authentication. For confidentiality purpose, encryption-decryption technique is used and for authentication purpose digital signature is used, so to ensure this three properties, first sender encrypt the message and then sign the message. Same process done at the receiver end that means first message is decrypted then verified, so it's two step process that increases the communication as well as computation cost. But in many real life applications where more speed and less cost is required like e-commerce applications, we can't use signature then encryption technique, so signcryption is the cryptographic primitives that provides signature as well as encryption at the same time on a single step. First signcryption scheme is proposed by Yullian Zheng in 1997, Since then many signcryption scheme is proposed based on elliptic discrete logarithm problem (ECDLP) , Bilinear pairing, Identity Based and certificateless environment. Many of the Signcryption scheme used Random Oracle Model for their security proofs and few are based on standard model

    Identity-Based Higncryption

    Get PDF
    Identity-based cryptography (IBC) is fundamental to security and privacy protection. Identity-based authenticated encryption (i.e., signcryption) is an important IBC primitive, which has numerous and promising applications. After two decades of research on signcryption,recently a new cryptographic primitive, named higncryption, was proposed. Higncryption can be viewed as privacy-enhanced signcryption, which integrates public key encryption, entity authentication, and identity concealment (which is not achieved in signcryption) into a monolithic primitive. Here, briefly speaking, identity concealment means that the transcript of protocol runs should not leak participants\u27 identity information. In this work, we propose the first identity-based higncryption (IBHigncryption). The most impressive feature of IBHigncryption, among others, is its simplicity and efficiency. The proposed IBHigncryption scheme is essentially as efficient as the fundamental CCA-secure Boneh-Franklin IBE scheme [18], while offering entity authentication and identity concealment simultaneously. Compared to the identity-based signcryption scheme [11], which is adopted in the IEEE P1363.3 standard, our IBHigncryption scheme is much simpler, and has significant efficiency advantage in total. Besides, our IBHigncryption enjoys forward ID-privacy, receiver deniability and x-security simultaneously. In addition, the proposed IBHigncryption has a much simpler setup stage with smaller public parameters, which in particular does not have the traditional master public key. Higncryption is itself one-pass identity-concealed authenticated key exchange without forward security for the receiver. Finally, by applying the transformation from higncryption to identity-concealed authenticated key exchange (CAKE), we get three-pass identity-based CAKE (IB-CAKE) with explicit mutual authentication and strong security (in particular, perfect forward security for both players). Specifically, the IB-CAKE protocol involves the composition of two runs of IBHigncryption, and has the following advantageous features inherited from IBHigncryption: (1) single pairing operation: each player performs only a single pairingoperation; (2) forward ID-privacy; (3) simple setup without master public key; (4) strong resilience to ephemeral state exposure, i.e., x-security; (5) reasonable deniability
    corecore