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Abstract

Nowadays the communication networks have acted as nearly the most important

fundamental infrastructure in our human society. The basic service provided by the

communication networks are like that provided by the ubiquitous public utilities.

For example, the cable television network provides the distribution of information

to its subscribers, which is much like the water or gas supply systems which dis-

tribute the commodities to citizens. The communication network also facilitates the

development of many network-based applications such as industrial pipeline control-

ling in the industrial network, voice over long-term evolution (VoLTE) in the mobile

network and mixture reality (MR) in the computer network, etc. Since the communi-

cation network plays such a vital role in almost every aspect of our life, undoubtedly,

the information transmitted over it should be guarded properly. Roughly, such in-

formation can be categorized into either the communicated message or the sensitive

information related to the users. Since we already got cryptographical tools, such

as encryption schemes, to ensure the confidentiality of communicated messages, it is

the sensitive personal information which should be paid special attentions to. More-

over, for the benefit of reducing the network burden in some instances, it may require

that only communication information among legitimated users, such as streaming

media service subscribers, can be stored and then relayed in the network. In this

case, the network should be empowered with the capability to verify whether the

transmitted message is exchanged between legitimated users without leaking the

privacy of those users. Meanwhile, the intended receiver of a transmitted message

should be able to identify the exact message sender for future communication. In

order to cater to those requirements, we re-define a notion named conditional user

privacy preservation.

In this thesis, we investigate the problem how to preserve user conditional pri-

vacy in pubic key encryption schemes, which are used to secure the transmitted

information in the communication networks. In fact, even the term conditional

privacy preservation has appeared in existing works before, there still have great

differences between our conditional privacy preservation definition and the one pro-

posed before. For example, in our definition, we do not need a trusted third party

(TTP) to help tracing the sender of a message. Besides, the verification of a given

iii
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encrypted message can be done without any secret.

In this thesis, we also introduce more desirable features to our redefined notion

user conditional privacy preservation. In our second work, we consider not only the

conditional privacy of the message sender but also that of the intended message

receiver. This work presents a new encryption scheme which can be implemented in

communication networks where there exists a blacklist containing a list of blocked

communication channels, and each of them is established by a pair of sender and

receiver. With this encryption scheme, a verifier can confirm whether one ciphertext

is belonging to a legitimated communication channel without knowing the exact

sender and receiver of that ciphertext. With our two previous works, for a given

ciphertext, we ensure that no one except its intended receiver can identify the sender.

However, the receiver of one message may behave dishonest when it tries to retrieve

the real message sender, which incurs the problem that the receiver of a message

might manipulate the origin of the message successfully for its own benefit. To tackle

this problem, we present a novel encryption scheme in our third work. Apart from

preserving user conditional privacy, this work also enforces the receiver to give a

publicly verifiable proof so as to convince others that it is honest during the process

of identifying the actual message sender. In our forth work, we show our special

interest in the access control encryption, or ACE for short, and find this primitive can

inherently achieve user conditional privacy preservation to some extent. we present

a newly constructed ACE scheme in this work, and our scheme has advantages over

existing ACE schemes in two aspects. Firstly, our ACE scheme is more reliable

than existing ones since we utilize a distributed sanitizing algorithm and thus avoid

the so called single point failure happened in ACE systems with only one sanitizer.

Then, since the ciphertext and key size of our scheme is more compact than that of

the existing ACE schemes, our scheme enjoys better scalability.
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List of Notations

Some notations used throughout this thesis are listed below, other special ones will

be defined when they are first appeared.

` A security parameter;

1` The string of ` ones;

∀ For all;

∃ There exists;

Z The set of all integers;

Z+ The set of all positive integers;

Zp The set consists of the integers modulo p;

Z∗p The multiple group of integers modulo p;

G A set G or a group G when the binary operation is specified

in the context;

|G| The cardinality of the set G or the order of the group G;

{u} a set with elements including u;

ε(`) A negligible function on `;

ord(a) The order of an element a in a group specified in the context;

a||b The concatenation of the string a and the string b;

a
R← G, a ∈R G a is selected from G uniformly at random;

A(x)→ y y is computed by running the algorithm A on input x;

a ∈ A (a /∈ A) a is (not) in the set A.

A
⋃

B The union of sets A and B;

S The simulator in the security model;

C The challenger in the security proof;

A The adversary in the security model;

O One oracle in the security proof;

Pr[E] The probability when event E occurs;

AdvA The advantage of A when it wins the game.
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List of Abbreviations

The following abbreviations are used throughout this thesis, other special ones will

be defined when they are first used.

PPT Probabilistic polynomial time;

DL Discrete Logarithm;

CDH Computational Diffie-Hellman;

DDH Decisional Diffie-Hellman;

GDH Generalized Diffie-Hellman;

DHD Diffie-Hellman Decision;

GDDHE General Decision Diffie-Hellman Exponent;

k-CCA k-Collision Attack Assumption

s-RSA Strong RSA;

ZPK Zero-knowledge Proof;

ZKPK Zerok-knowledge proof of Knowledge;

PKE Public Key Encryption;

PKG Private Key Generator;

IND-CCA2 Indistinguishability against Adaptive Chosen Ciphertext At-

tacks;

IND-CPA Indistinguishability against Adaptive Chose Plaintext At-

tacks;

EU-CMA Existentially Unforgeable under Chosen-message Attacks;

SEU-CMA Strong Existentially Unforgeable under Chosen-message At-

tacks;
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Chapter 1

Introduction

1.1 Background

Communication Network. Basically, a communication network is a set of nodes,

electrical devices mainly, connected by various types of transmission medium such

as twisted pair, fiber optic and even the air. Examples of such communication

networks include telephone networks, computer networks, and also the Internet.

Since the nodes in a communication network are interconnected with great flexibility

and reasonable redundancy, it allows information to be transmitted successfully

among nodes located in various geographical points and thus facilitates the flow

of information. The communication network provides two primary functionalities

for users, one is to gather a large volume of information efficiently, and another

is to share their information easily. Those two functionalities form the basis of

many existed network-based services, such as e-mail and FTP, and therefore nourish

an unlimited number of future network-based applications such as mixture reality

(MR), tele-surgery, etc.

Public Key Encryption. Introduced by Diffie and Hellman in [DH76], the no-

tion of public key encryption, PKE for short, provides us with new direction when

we find tools to keep the transmitted information confidential in the communica-

tion network. Unlike the symmetric key encryption, or secret key encryption, the

two keys, the public key and secret key respectively, in the PKE are not the same.

The public key can be published publicly and the secret key should be kept private.

Furthermore, it is infeasible to compute the secret key from its corresponding public

key. In a PKE scheme, a message sender encrypts a message under its communi-

cator’s public key , which is received from and authenticated by the PKI. Then,

the generated ciphertext is sent to the receiver. Latter, the receiver can recover

the plaintext from the given ciphertext using its own secret key. PKE relieves the

key distribution and management problems existed in symmetric key encryption.

1



CHAPTER 1. INTRODUCTION 2

However, the execution of a PKE algorithm is more costly comparing to that of a

symmetric key encryption algorithm, and it takes immerse expense to maintain a

robust PKI in the public key encryption scheme. Thus, in practical applications,

the PKE is usually used to transmit secret keys confidentially between parties and

the symmetric key encryption is latter applied to exchange a bulk of data, such kind

of encryption mode is thus called hybrid encryption.

Some standard PKE schemes, such as the RSA encryption [RSA83], the ElGamal

encryption [Gam85] and the Cramer-Shoup encryption [CS98a], can only provide the

functionality of message confidentiality. There also exists some PKE schemes which

preserve extra functionalities. For example, the broadcast encryption scheme [FN93]

enables a message sender to send a encrypted information to multiple recipients.

The identity-based encryption scheme [Sha84, BF01] allows users to use unique

information about the identity of the receiver as the pubic key rather than to receive

authenticated public key from the PKI. The public-key encryption with keyword

search scheme [BCOP04] empowers one user with the capability to search encrypted

keywords from the original encrypted data without compromising its confidentiality.

The signcryption scheme [Zhe97] combines the functionalities of both the public key

encryption and digital signature in a logical single step, it enjoys extra benefits

with respect to computational costs and communication overheads comparing to

the traditional sign-then-encrypt approach.

Research Problem. In many network applications, keeping the exchanged mes-

sage confidential may be the primary concern but is not the only concern. For

example, in e-voting or e-cash systems, the user privacy of the participants should

also be protected. We introduce a new notion named conditional privacy preser-

vation in this thesis. Unlike the conventional user privacy definition which only

focuses on protecting users’ personal information from being leaked, our conditional

one requires that not only one user’s privacy is preserved but also its legitimation

can still be publicly verified. Also, the anonymity of this user can only be revoked

by its corresponding communicator. One obvious benefit of our new notion is that it

enables some entities in the communication network to act as a cryptographic “fire-

wall” to filtrate information not sent from legitimated users, which further reduces

the communicational and computational cost in the network. Thus, we think our

conditional privacy preservation definition is more desirable than the conventional

one in practice.

Our conditional privacy preservation property is different from that mentioned

in [RH07, LLZ+08, ELO13, HBCC13] even they are all named conditional privacy

preservation and they all require anonymous message authentication. The main dif-

ference is that the ones in previous papers all need a trusted third party (TTP) to
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trace the private information, e.g., position, of one certain user. However, in our def-

inition, it is the corresponding receiver of a message who has the capability to trace

the personal information of the message sender. Thus, comparing to the conditional

privacy preservation property defined before, our one should be more realistic since

it is usually hardly and costly to maintain a TTP. Moreover, we extend our condi-

tional privacy preservation property to capture more desirable features. For exam-

ple, in our paper [YMY17], the communication blacklist checking is included in that

property, it enables a node to check whether the communication channel between

the sender and intended receiver of a given message is blocked without breaching

the users’ conditional privacy. In [YM19], the receiver’s capability is enhanced to

not only trace the exact sender of a message but also convince anyone that it is

well-behaved during the process of finding that user without leaking its privacy. In

[YM18], we gave an unique ACE construction which provides message confidential-

ity and user conditional privacy to some extent. In this work, the intended receivers

of an ACE ciphertext can ascertain that the sender of that ciphertext is coming

from a group but cannot identify it exactly. Besides, our construction also enjoys

high reliability and scalability comparing to existing ACE schemes because of the

distributed sanitizing algorithm and hierarchical structure of user keys respectively.

Communication schemes which preserve the two security properties, message

confidentiality and user conditional privacy preservation, simultaneously are useful

in many real-life network applications. For example, in the camera surveillance

system, the location of one specific camera should be kept private to resist certain

location-based network attacks. Additionally, this camera’s legitimation should be

verifiable to enable it to send encrypted information to the server. Besides, the server

should be empowered with the capability to retrieve the locations of the cameras

to index all the received encrypted information. And also in the DNA database

system, one searcher may not want to leak either any of its personal information or

its searched content to anyone except the database manager during searching the

database. Also, it should be able to authenticate itself to the database manager to

be ascertained that it has the privilege to access the database. Furthermore, since

the database manager may charge the searcher for this database service, it should

have the capability to trace the exact sender of each encrypted query.

In this thesis, we are aiming at proposing encryption schemes implemented

in communication networks which provide the functionality of conditional privacy

preservation as explained before, and we find there exists no PKE schemes with such

functionality before our works.

The Research Gap. We studied some existed primitives and found they all have

deficiencies in solving our research problem. For instance, the primitive group sig-
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nature [CvH91] provides the user with the capability to authenticate its legitimation

among a group of users including itself, that is, it guarantees the user privacy during

the authentication. However, the group manager in the scheme is the only authority

which can revoke the anonymity of the actual signer of a signature, and the revoca-

tion phase needs the participation of the trusted authority. The ring signcryption

[HSMZ05a] provides properties such as message confidentiality, user authentication

and user privacy, but it is infeasible for the receiver to retrieve the actual sender of a

ciphertext in this primitive. Latter, some techniques [FS07, LASZ14, LLM+07] have

been proposed to address the issue how to trace the signer in the ring signature.

However, those techniques can hardly be applied in the ring signcryption schemes.

Besides, in most existing ring signcryption schemes, the legitimation of the signer of

a given ciphertext is not publicly verified and can only be checked by its intended

receiver, which further makes this primitive inadequate to be a promising solution

to our research problem.

The Access Control Encryption(ACE) scheme, first proposed in [DHO16], pro-

vides another approach to maintain the two properties, message confidentiality and

user conditional privacy preservation, simultaneously. In one ACE scheme, the in-

formation flow is controlled in such a manner that only specified parties are allowed

to communicate freely according to the given access control policy, even when some

of them are misbehaving. With this primitive, the message sent from one party is

confidential to parities who is not its communicators, and the intended receivers of a

message can only confirm that the sender of that message is eligible to communicate

with them, but can hardly identify that party. The cryptographic primitive ACE

seems like a promising solution to our research problem, while existing ACE schemes

have deficiencies in the aspects of system reliability and scalability.

Explicitly, there must exist a sanitizer in existing ACE schemes [DHO16, FGKO17,

TZMT17] to ensure that the access control strategies can be enforced successfully,

thus the security of the sanitizer should be considered carefully and thoroughly. In

previous works, the minimum security requirement of the sanitizer is that it should

be semi-trusted. We argue that the sanitizer should also be extremely reliable, other-

wise, none of the access control policies of the ACE scheme would be guaranteed fur-

ther. Furthermore, existing ACE constructions can hardly be implemented directly

in large-scale networks since none of their ciphertext size is compact. For example,

the complexity of the ciphertext size of the ACE schemes in [DHO16, FGKO17] are

exponential and polylogarithmic respectively in terms of the numbers of identities

n in the system under standard cryptographic assumptions.
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1.2 Contribution of This Thesis

The main contributions of our thesis are made to the following aspects.

1. Communication Schemes with User Conditional Privacy. In our first work, we

formalize the notion of user conditional privacy preservation and propose a

privacy preserving source-verifiable encryption scheme which maintains mes-

sage confidentiality and user conditional privacy concurrently. We also give a

server-aided variant of the construction of our scheme.

In the second work, apart from discussing user conditional privacy, we consider

a more complex scenario where a user should be able to prove the legitima-

tion of the communication channel between it and its communicator without

leaking their privacy. We find such scenario is realistic when there exists a au-

thority in the system which maintains a publicly published blacklist to block

communication channels between specific message senders and receivers. We

present a group-based source-destination verifiable encryption scheme with

blacklist checking which can be used in the scenario. Our construction utilizes

the zero-knowledge proof of membership and also zero-knowledge of inequality

techniques to handle the two aforementioned issues.

Our two aforementioned works all give answers to the problem how to pre-

serve the user conditional privacy, however, those two solutions have the same

insufficiency. Namely, since the receiver in the proposed schemes is the only

parity which can revoke the anonymity of the sender of a given ciphertext,

and no one else in the system has the capability to verify whether the receiver

behaves honestly during revealing the identity of the sender, it can manipu-

late the origination of one ciphertext successfully. We address this issue in

our third work. We develop a secure communication scheme applied between

the surveillance camera and the server. With our scheme, the server can give

a proof to convince others the origination of a ciphertext without leaking its

content. Such property enables the server to build a searchable database using

the camera’s identifier as index and also enables the message auditor to check

the ciphertext and its origination stored in the database without any dispute.

2. Access Control Encryption. The newly proposed primitive Access Control En-

cryption, ACE for short, provides data confidentiality and also user conditional

privacy to some extent. Namely, the sanitizer, which is an indispensable party

in the ACE system, is in charge of the communication channel and ensures

that only a legitimated user from one layer can send encrypted messages to

users in the upper layer. Moreover, it cannot identify the exact identity of the

sender but find the specific layer this user lays in.
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In our fourth work, we give the first ACE scheme construction where the ci-

phertext size is compact. Moreover, the resulted scheme keeps not only the

ciphertext size but also the key size of each users in the ACE compact. One

more significant contribution of this work is giving a decentralized implementa-

tion of the sanitizer in ACE system to restrain its capability and also increase

its reliability. Unlike previous scheme with only one sanitizer, our construction

distributes the sanitizing functionality of the origin ACE among n sanitizers,

it is impossible for one of the sanitizers in our construction to produce a new

access policy, so our construction imposes restriction on the capability of the

sanitizer. Besides, as one message sender in our ACE construction can choose

t out of n sanitizers itself to collaboratively produce a valid sanitized cipher-

text, even some of the n sanitizers cannot provide service or off-line, the whole

ACE system can never encounter the single-point-failure and still work as nor-

mal. So, our construction improves the reliability of the sanitizer and even the

robustness of the whole ACE system.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2, we first summarize the miscellaneous notations used throughout

this thesis. Then, we introduce some basic knowledge about the abstract algebra

such as group, field and bilinear maps. Furthermore, we review the computational

complexity theory and some well studied complexity assumptions. Finally, we de-

scribe some basic cryptographic tools such as hash functions, zero-knowledge proofs

used as building blocks in our proposed schemes presented in the thesis.

In Chapter 3, we propose a privacy-preserving source verifiable encryption scheme

guaranteeing message confidentiality and user conditional privacy simultaneously in

communication networks. Furthermore, we define three models to capture the desir-

able properties preserved by our scheme and prove its security in the random oracles

model.

In Chapter 4, we consider user conditional privacy preservation in a more com-

plex scenario. Namely, apart from keeping user conditional privacy, we also try to

address the issue of how to prove the legitimation of the communication channel

between a message sender and its intended communicator. We present a encryption

scheme and define security models for it, latter we prove its security with the help

of random oracle.

In Chapter 5, we explore the security issues existed in security surveillance

systems, we propose important and desirable security and privacy features that

should be achieved by such systems. Latter, to achieve all the security goals, we
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present a secure communication scheme applied between the surveillance camera and

the server. We present formal security models to define these security requirements

and give formal security proofs in the random oracle model.

In Chapter 6, we present an access control encryption (ACE) scheme which

enjoys advantages over previous works in several aspects such as key and cipher-

text size. Our scheme is also believed to be the first implementation of ACE with

decentralized sanitizers. We also define our extended no-write rule model to allow

the corruption of some sanitizers in our ACE system. We prove the security of our

scheme under models define in this chapter.

We conclude our thesis in Chapter 7.



Chapter 2

Preliminaries

To make our thesis self-contained, we introduce miscellaneous notations, basic no-

tions including abstract algebra, computational complexity and assumptions, and

cryptographic tools which will be used throughout this thesis in this chapter. For

more detailed cryptography theory, readers are recommended to the books [Mao03,

LK14].

2.1 Miscellaneous Notations

In this thesis, a set, usually denoted by a capital, is a collection of distinct elements,

if the number of elements in that set is finite, we call it a finite set, otherwise, it is

an infinite set. For a finite set X, the two notations x
R←− X, x ∈R X can all be used

to denote that x is selected randomly and uniformly from the set X, so we can use

them interchangeably. We use the notation |X| to represent the cardinality of set

X, which equals to the number of elements in X. Conventionally, the blackboard

bold is used to represent some special sets of numbers. For example, the set of all

prime numbers, all natural numbers, all integers and all real numbers are denoted

by P,N,Z and R respectively. Given a positive integer p, the notation Zp denotes

a set consisting of integers modulo p, that is Zp = {0, 1, 2, · · · , p − 1}, by [p], we

denote a set of integers {1, 2, · · · , p}. Given two strings a, b, we denote by a||b the

concatenation of the string a and b.

We denote by ` the security parameter and 1` the string of ` ones. A function

ε : Z → R is said to be negligible if for all k ∈ Z, there exists one element z ∈ Z
such that ε(x) ≤ 1

xk
for all x > z. Unless otherwise specified, by ε, we always

denote a negligible function. By p(x)
R← Zp[x], we denote the polynomial p(x) is

randomly selected from the polynomial ring Zp[x] consisting of the polynomials that

coefficients are from the finite field Zp.

8
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2.2 Abstract Algebra

In this section, some basic abstract algebra structures including groups, rings and

bilinear maps are reviewed.

2.2.1 Groups

Definition 2.1 (Group) A group, usually denoted by (G, ◦), consists of a non-

empty set G and a binary operation ◦ over elements in G, it should satisfy the

following four properties.

• Closure: ∀a, b ∈ G, a ◦ b ∈ G.

• Associativity: ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).

• Identity: ∃e ∈ G, ∀a ∈ G, a ◦ e = e ◦ a = a ∈ G.

• Inverse: ∀a ∈ G, ∃a′ ∈ G, a ◦ a′ = a′ ◦ a = e.

The order of one group (G, ◦) is defined as the number of elements in G and thus

denoted by |G|. (G, ◦) is a finite group if its order is finite, otherwise, it is infinite.

For simplicity, a group (G, ◦) can be denoted as G when the binary operation ◦
is specified in the context. Namely, we say G is an additive group if the binary

operation ◦ is specified as addition +, an example of the additive group is Zp. While

G is a multiplicative group when the binary operation ◦ is specified as multiplication

·, a simple multiplicative group is Z∗p.
For the benefit of differentiating the two types of groups, we use different nota-

tions to represent the identity and inverses in them. When G is an additive group,

the additive identity e is denoted as 0 and the inverse of a ∈ G is denoted as −a.

When G is a multiplicative groups, the multiplicative identity e is denoted as 1 and

the inverse of a ∈ G is denoted as a−1.

Definition 2.2 (Abelian Group) A group (G, ◦) is an abelian group if the fol-

lowing property is satisfied.

• Commutativity: ∀a, b ∈ G, a ◦ b = b ◦ a.

Definition 2.3 (Order of A Group Element) By ord(a), we denote the order

of a in (G, ◦). Given a group (G, ◦) with identity e and an element a ∈ G, let

ai = a ◦ a · · · a ◦ · · · a︸ ︷︷ ︸
i

, if there exists a positive integer j satisfying aj = e and al 6= 1

for all positive integers l < j, then we say j is the order of a in (G, ◦), that is,

ord(a) = j. If there exists no positive integers j such that aj = e, then we say the

order of a in (G, ◦) is infinite.
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Definition 2.4 (Cyclic Group) A group (G, ◦) is a cyclic group if there exists an

element g ∈ G, for every h ∈ G, there exists a positive integer i such that gi = h.

The element g can then be called as a generator of (G, ◦), and the group (G, ◦) can

be represented as 〈g〉, or we say the group (G, ◦) is generated by g.

Notice that definition 2.4 also applies to groups with other operations, such as

addition.

2.2.2 Rings and Fields

Definition 2.5 (Ring) A ring, usually denoted by (G,+, ·), consists of an abelian

group (G,+) and a binary operation · over elements in R, it satisfies the following

four properties.

• Closure under multiplication: ∀a, b ∈ G, a · b ∈ G.

• Associativity of multiplication: ∀a, b, c ∈ G, (a · b) · c = a · (b · c).

• Multiplicative identity: ∃e ∈ G, ∀a ∈ G, a · e = e · a = a ∈ G.

• Distributivity: ∀a, b, c ∈ G, a·(b+c) = (a·b)+(a·c), (a+b)·c = (a·c)+(b·c).

Definition 2.6 (Communicative Ring) A ring (G,+, · ) is communicative if the

following property is satisfied.

• Commutativity of multiplication: ∀a, b ∈ G, a · b = b · a.

Definition 2.7 (Field) A communicative ring (G,+, · ) is a field if (G \ {0}, · )
forms a group.

2.2.3 Bilinear Maps

Let G1, G2 and Gτ be three multiplicative cyclic groups with the same large prime

order p. Let g, h be the generators of G1,G2 respectively. A bilinear map is a map

e : G1 ×G2 → Gτ satisfying the following properties.

• Bilinearity: ∀a, b ∈ Zp,∀x ∈ G1,∀y ∈ G2, e(x
a, yb) = e(x, y)ab

• Non-Degeneracy: e(g, h) 6= 1Gτ , where 1Gτ represents the identity of Gτ .

• Computability: ∀x ∈ G1,∀y ∈ G2,, the element e(x, y) in Gτ can always be

efficiently computed.

Definition 2.8 (Bilinear Groups) A bilinear group system, denoted by (G1,G2,

Gτ , e), consists of three multiplicative cyclic groups G1,G2,Gτ and a bilinear map

e : G1 × G2 → Gτ . This group also requires the group action in G1, G2 can be

computed efficiently and |G1| = |G2| = |Gτ | = p.
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2.3 Computational Complexity and Complexity

Assumptions

Since the security of cryptographic schemes constructed in modern cryptography are

mainly based on the computational complexity, in this section, we first introduce

some important notions in this area and then present some intractable assumptions.

More details about the complexity theory can be found in book [Gol03].

2.3.1 Turing Machine and Algorithm

In complexity theory, a Turing machine, first presented by Alan Turing in 1936, is

a hypothetical machine which can be used to simulate any computer algorithm no

matter how complicate it is. An algorithm works like a manual which clearly specifies

the instructions needed to solve a class of problems. Once executed, it starts from

an initial state and input, proceeds through a number of successive states and finally

terminates at the end state and produces an output. An algorithm is deterministic if

its outputs are always the same when the same particular input is given in multiple

executions. If the algorithm employs a certain degree of randomness such as using

random bits as its auxiliary input during the execution, it is called a randomized

algorithm or a probabilistic algorithm. In this case, either the running time or

the output of this algorithm are random variables defined by the involved random

bits. A Turing machine is deterministic if it simulates a deterministic algorithm,

otherwise, it is a probabilistic Turing machine.

A probabilistic algorithm is efficient if its running time is bounded by a polyno-

mial p(·) defined by the length of its input. In this case, it is called a probabilistic

polynomial-time (PPT) algorithm. In our thesis, all algorithms involved in the

schemes should be PPT algorithms. Besides, the security models defined in our

thesis also model the adversaries and oracles as PPT algorithms.

2.3.2 Problem Complexity Classes

Definition 2.9 (P Problem) L is a P problem if it is solvable in polynomial time.

That is, there exists a deterministic Turing machine M and a polynomial p(·) such

that

• on input a problem instance x, M halts after at most p(|x|) steps, and

• M(x) = 1 if and only if x ∈ L.

P is the collection of all problems that can be solved in polynomial time.
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Definition 2.10 (NP problem) L is a NP problem if L has solutions which can

be efficiently tested for validity in polynomial time. That is, given a Boolean relation

RL ⊂ {0, 1}∗×{0, 1}∗ in which each of its elements is a pair consisting of a problem

instance of L and its solution, there exists a deterministic Turning machine M and

a polynomial p(·) such that

• on input a problem instance and its solution pair (x, y) such that |y| ≤ p(|x|),

M halts after at most p(|x|) steps, and

• M(x, y) = 1 if and only if x ∈ L, (x, y) ∈ RL. Here y is also called a witness

of membership of x ∈ L.

NP is a problem set consisting of all problems whose solutions can be tested for

validity in polynomial time.

Definition 2.11 (NP-complete problem) A problem is said to be NP-complete

if it is in NP and every problem in NP is polynomially reducible to it. A problem

L is polynomial reducible to another problem L′ if there exists a polynomial-time

computable function f such that x ∈ L if and only if f(x) ∈ L′.

Even the answer to the problem whether the two problem sets, N andNP , are equal

is still uncertain at present, it is widely believed that P 6= NP . In that case, every

algorithm trying to solve a problem L ∈ NP will have a super-polynomial running

time in the worst case. Since NP-complete problems are harder than problems in

NP , so NP-complete problems have definitely super-polynomial-time complexity

in the worst case. That is to say, there exists no PPT algorithm which can solve

a NP or NP-complete problem. For simplicity, we say the NP or NP-complete

problems are hard to any existed algorithms when P 6= NP .

2.3.3 Computational and statistical indistinguishability

One important notion in complexity theory is the indistinguishability of two prob-

ability distributions. Given two probability distributions Ω1(`) and Ω2(`) which

are defined over the same finite set Ω and the same security parameter `, this two

distributions are said to be computational indistinguishable if there exist no PPT

distinguisher which can tell the difference between them. We say they are statisti-

cally indistinguishable if no distinguisher, even with infinite computational power,

can tell them apart. In this part, we give formal definitions of this two notions.

Definition 2.12 (computational indistinguishability) We say that two proba-

bility distributions Ω1(`) and Ω2(`) defined above are computationally indistinguish-
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able if, for all PPT algorithms A,∣∣∣∣ Pr
x∈Ω1(`)

[A(x) = 1]− Pr
x∈Ω2(`)

[A(x) = 1]

∣∣∣∣ ≤ ε(`).

Definition 2.13 (statistical indistinguishability) We say that two probability

distributions Ω1(`) and Ω2(`) defined above are statistically indistinguishable if

∑
z

∣∣∣∣ Pr
x∈Ω1(`)

[x = z]− Pr
x∈Ω2(`)

[x = z]

∣∣∣∣ ≤ ε(`).

Conventionally, if two probability distributions are statistically distinguishable, they

are computationally distinguishable. Unless otherwise specified, by indistinguisha-

bility, we mean that it is computationally indistinguishable.

2.3.4 Hard Problems and Complexity Assumptions

In this part, we summarize some hard problems and their related complexity as-

sumptions which are pervasively used in the security proofs given in this thesis.

Definition 2.14 ( Discrete Logarithm(DL) Assumption [Odl84]) Let G = 〈g〉
and G(1`) → (p,G) where ` is the security parameter. Given (g, y) ∈ G2, we say

that the discrete logarithm assumption holds on G if there exists no PPT adversary

A which can compute a x ∈ Zp such that y = gx with non-negligible advantage, that

is

AdvDLA = Pr [y = gx, x =: A(p, g, y,G)] ≤ ε(`),

where ε is a negligible function defined before, the probability is taken over the random

choice of y ∈ G and the bits consumed by the adversary A.

Definition 2.15 (Computational Diffie-Hellman(CDH) Assumption [DH76])

Let G be a cyclic multiplicative group of prime order p where |p| = ` and ` is the

security parameter. Let a, b ∈R Zp, and g ∈R G. Given g, ga and gb, we say the

CDH assumption holds on G if there exists not PPT algorithm A which can compute

gab with non-negligible advantage, that is

AdvCDHA = Pr[gab =: A(g, ga, gb)] ≤ ε(`),

where ε is a negligible function defined before, the probability is taken over the random

choices of a, b ∈ Zp and the bits consumed by the adversary A.

In [Mau94], the relationship between the DL assumption and CDH assumption

is discussed in detail. There also exists a decisional variant of the CDH problem
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named DDH problem, and many encryption schemes such as the ElGamal encryption

scheme [Gam85] and Cramer-Shoup encryption schemes [CS98a] are based on this

problem.

Definition 2.16 (Decisional Diffie-Hellman(DDH) problem [Bon98]) Let G
be a cyclic multiplicative group of prime order p where |p| = ` and ` is the secu-

rity parameter. Let a, b ∈R Zp, and g, Z ∈R G. Given two probability distributions

DDDH = {(g, ga, gb, gab)} and DR = {(g, ga, gb, Z)}, we say the CDH assumption

holds on G if there exists not PPT algorithm A which can distinguish the two dis-

tributions DDDH and DR with non-negligible advantage, that is

AdvDDHA = |Pr[1 =: A(D ∈R DDDH)]− Pr[1 =: A(D ∈R DR)]| ≤ ε(`),

where ε is a negligible function defined before, the probability is taken over the random

choices of a, b ∈R Zp, g, Z ∈R G and the bits consumed by the adversary A.

Definition 2.17 (k-Collision Attack Assumption(K-CAA)[MSK02]) Let G
be a cyclic multiplicative group of prime order p where |p| = ` and ` is the security

parameter. For an integer k, and one element x randomly chosen from Zp, gx ∈
G, given g, gx ∈ G, h1, h2, · · · , hk ∈ Zp,g

1
x+h1 , g

1
x+h2 , · · · , g

1
x+hk ∈ G as inputs, the

problem solver needs to output element g
1

x+h for some h /∈ {h1, h2, · · · , hk}. We say

the k-CCA holds in G if there exists no PPT algorithm A which can solve the k-CCA

problem with non-negligible probability, that is

Advk−CCAA = Pr[g
1

x+h =: A(g, gx, h1, h2, · · · , hk ∈ Zq, g
1

x+h1 , g
1

x+h2 , · · · , g
1

x+hk )] ≤ ε,

where h /∈ {h1, h2, · · · , hk} and the probability is over the random choice of the

generator g in G, the random choice of h1, h2, · · · , hk ∈ Zq and the random bits

consumed by A.

Definition 2.18 ((f, g, F )-GDDHE Assumption [Del07]) Given a bilinear group

system B = (p,G1,G2,GT , e(·, ·)) and let f, g be two co-prime polynomials with pair-

wise distinct roots, of respective orders t and n. Let g0, h0 be one generator of G1

and G2 respectively. the (f, g, F )-GDDHE problem is, given the tuple

( g0 , gγ0 , g
γ2

0 , · · · , g
γt−1

0 , g
γ·f(γ)
0 , g

k·γ·f(γ)
0 ) ∈ G1,

( h0 , hγ0 , h
γ2

0 , · · · , h
γ2n

0 , h
k·g(γ)
0 ) ∈ G2 and

T ∈ GT

to decide whether T is equal to e(g0, h0)k·f(γ) ∈ GT or is a random element in GT .

We say the (f, g, F )-GDDHE Assumption holds if there exists no PPT algorithm A
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which can solve the (f, g, F )-GDDHE problem with non-negligible probability, that

is

AdvGDDHEA (f, g, F ) = |Pr[e(g0, h0)k·f(γ) =: A(f, g, F )]−

Pr[T ∈ GT/{e(g0, h0)k·f(γ)}, T =: A(f, g, F )]| ≤ ε(`)

The probability is taken over the random choice of all the group elements in G1,G2

and all the random bits consumed by A.

Definition 2.19 (Strong RSA(s-RSA) Assumption [FO97]) Let ` be the se-

curity parameter and G(1`) be a group generator whose output is a group with

composite order which has length ` and consists of two prime factors of length

(` − 2)/2. The strong RSA problem is, given G ← G(1`), z ∈ G/{±1}, to find

a pair (u, e) ∈ G × Z such that ue = z and e > 1. We say the strong RSA as-

sumption holds if there exists no PPT algorithm A which can find a solution to the

problem with non-negligible probability, that is

Advs−RSAA = Pr[z = ue ∧ e > 1 : A(G, z) = (u, e)] ≤ ε(`)

The probability is taken oven all the random bits using by A,G` and the uniformly

random choice of z.

Definition 2.20 (Generalized Diffie-Hellman(GDH) Problem [BBR99]) Let

` be the security parameter and FG be a probabilistic polynomial-time algorithm

which takes 1` as input and outputs N = PQ where P,Q are two n-bit prime num-

bers and P ≡ Q ≡ 3(mod 4), let ~a =< a1, a2, · · · , ak > be any sequence of k ≥ 2

elements of [n]. Given N ← FG(1`), one quadratic-residue g ∈ Z∗N and a k-bit input

x = x1x2 · · ·xk, to compute

hN,g,~a(x) = g
∏
xi=1 ai(mod N).

The restriction is that the value

hRN,g,~a(x
′) = g

∏
x′
i
=1 ai(mod N).

for any x′ = x′1x
′
2 · · ·x′k ∈ {0, 1}k/{x} is known.

Definition 2.21 (GDH Assumption [BBR99]) Given a generalized Diffie-Hellman

problem instance (N, g, x, {hRN,g,~a}) where N, g, x,~a are predefined above and {hRN,g,~a}
is the collection of all elements hRN,g,~a(x

′) = g
∏
x′
i
=1 ai(mod N) for any x′ = x′1x

′
2 · · ·x′k

∈ {0, 1}k/{x}, there exists no polynomial time algorithm A which can find a solution
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to such instance with non-negligible probability, that is

AdvGDHA = Pr[A(N, g, x, {hRN,g,~a}) = g
∏
xi=1 ai(mod N)] ≤ ε(`)

The probability is taken over the random choice of all the group elements and the

random bits using by A,FG

Definition 2.22 (CDH in Composite Group (CDHCG)) When k = 2,~a =

(a, b), x = 11, the GDH assumption can be valued as the Computational Diffie-

Hellman assumption in composite group(CDHCG). That is,

AdvCDHCGA = Pr[A(N, g, ga, gb) = gab(mod N)] ≤ ε(`).

The probability is taken over the random choice of the group elements and the random

bits using by A,FG.

Definition 2.23 (Diffie-Hellman Decision Assumption(DHD)[ACJT00a])

Let ` be

the security parameter and G(1`) be a group generator which generates groups with

composite order n such that |n| = `. Given one group G ∈ G(1`), n′ be the divisor

of G’s order of length `− 2. Define the following two sets

DH(G) := {(g1, y1, g2, y2) ∈ G4|

ord(g1) = ord(g2) = n′, logg1 y1 = logg2 y2}

Q(G) := {(g1, y1, g2, y2) ∈ G4|

ord(g1) = ord(g2) = ord(y1) = ord(y2) = n′}

of Diffie-Hellman and arbitary 4-tuples, respectively.

The DHD assumption states that given a specific G =< g > where (g|n) = 1, a

4-tuples T ∈ G4, there exists no probabilistic polynomial time algorithms A which

can discover whether T ∈ DH(G) or T ∈ Q(G) with non-negligible advantage over

random guess for sufficiently large `. Namely,

AdvDHDA = Pr[1 := A(T ∈R DH(G))]− Pr[1 := A(T ∈R Q(G))] ≤ ε(`).

The probability is taken over the random choice of all the group elements and the

randomness used by A.
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2.4 Cryptographic Tools

In this section, we review some basic cryptographic tools used in the constructed

scheme and the security proofs presented in our thesis.

2.4.1 One-way Function and Cryptographic Hash Function

When we say a function f is a one-way function, it means that f is computationally

easy to compute but computationally hard to invert. Explicitly, for the one-way

function f , there exists a PPT algorithm which can compute f(x) efficiently when

given one input x chosen from the co-domain of f . However, when given a image y

chosen from the domain of f , there exists no PPT algorithm which can find a x such

that f(x) = y successfully with non-negligible probability, where the probability is

taken over the choices of y and the randomness consumed by the algorithm. Since

the existence of one-way functions always imply the existence of efficient processes

which is hard to inverse, and the security of many cryptographic schemes are basing

on those processes, the one-way function plays an important role in modern cryp-

tography. One promising candidate of the one-way function is the hash function.

Introduced by Carter and Wegman in [CW79], the universal classes of hash

functions can be divided into tree types. Basically, a hash function H : {0, 1}∗ →
{0, 1}λ is a deterministic function which maps a bit string with any length to another

bit string with fixed length λ. According to [Mao03], a hash function should preserve

the following three properties:

1. Mixing Transformation. Given any input, the output of H should be computa-

tionally indistinguishable from any uniform binary string in {0, 1}λ;

2. Pre-image Resistance. Given an output y ∈ {0, 1}λ, it is computationally

infeasible to find its corresponding pre-image x such that y = H(x);

3. Collusion Resistance. It is computationally infeasible to find x1 6= x2 such that

H(x1) = H(x2).

The cryptographic primitive hash function works as a indispensable ingredient in

modern cryptography and has been used as a building block in many cryptographic

tools such as encryption scheme [FOPS01], digital signature scheme [BR93], message

authentication code (MAC) scheme [BCK96].

2.4.2 Random Oracle Model

The main topics of modern cryptography are about defining security notions and

proposing schemes which are proven to be secure regarding to those notions. In some
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instances, it is more desirable to construct schemes and then prove their security in

more idealized computation models. The well-known random oracle is one of such

models.

A random oracle, usually denoted by O, can be viewed as a powerful and ide-

alized hash function which preserves three properties: efficient, deterministic and

uniform output. Explicitly, given any input to a random oracle, its correspond-

ing output is efficiently computable. When provided with the same input multiple

times, the random oracle would always output the same result. Furthermore, the

output of a random oracle is uniformly distributed over its output space.

Formalized by Bellare and Rogaway in [BR93], the notion of random oracle

model is an idealized model of cryptography hash functions where all parties have

the privilege to access to it. In this model, the hash functionH is modeled as a magic

box where the hash value H(x) is completely random and unknown before querying

the oracle when given an input x. More precisely, in a security proof, the simulator

S maintains a hash list H of pairs {(w, h)}, which is initially empty, to answer hash

queries made by the adversary A. When A wants to “see” the hash value of x, it

has to ask S with this query. When the simulator receives x, it first searches the

list to find whether there already exists such an entry (w, h) that x = w. If yes, S
responds A with the hash value h, otherwise, S randomly uniformly chooses a value

h as the hash value H(x) of x and sends it back to A, then it appends the newly

created pair (x, h) to the list H for later use.

When we are proving the security of a scheme in the random oracle, we still

need to construct a so-called security reduction. It shows you how to construct an

algorithm to break one certain well-studied computational assumption by interacting

with an adversary A which can break the scheme. During the proof, the random

oracle can be simulated by S as part of the reduction. Since the random oracle is

fully controlled by S, it can be programmed to answer A with any input as long

as the outputs are uniformly randomly distributed. Such simulation enables the

simulator to embed the hard problem into the random oracle and thus makes the

security proof more simple. As a result, the schemes designed in the random oracle

model are much more efficient than those designed in the standard model.

Notably, once the random oracle is initialized with a concrete hash function, the

aforementioned advantages would not be preserved further. Canetti et al. [CGH04]

have shown that cryptosystems proven secure in the random oracle model are not

necessarily secure in the stand model.
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2.4.3 Zero-knowledge Proofs

In general, a zero-knowledge proof (ZPK), introduced by Goldwasser, Micali and

Rackoff [GMW86], is a two-party interactive protocol which is applied between one

prover P and one verifier V . It can be used by a prover to convince a verifier

that a statement is true without leaking any extra information except the validity

of the statement. Similarly, when a prover holds a secret and wants to prove its

ownership of the secret without revealing it, the prover can use a zero-knowledge

proof of knowledge (ZKPK) to convince a verifier of the truth without leaking any

extra information about the secret. Zero-knowledge proofs have been introduced

and defined formally in [FFS88].

Definition 2.24 Let (P ,V) be an interactive proof system where the interactive

machine P and V model the prover and verifier respectively. (P ,V) is said to be a

zero-knowledge protocol for proof of membership in a language L if it satisfies the

following conditions:

1. Completeness: For all language elements x ∈ L, the honest prover P will

convince the honest verifier V to accept, except with negligible probability.

2. Soundness: For all x /∈ L, any cheating prover P∗ will be unable to convince

the honest verifier to accept, except with negligible probability known as the

soundness error. Depending on the types of cheating for which this guarantee

is made, we have different notions of soundness.

3. Zero-Knowledge: For all x ∈ L, for every PPT interactive verifier V∗, there

exists a PPT algorithm S known as the simulator, such that for every x ∈ L
the two variables < P ,V∗ > (x) and S(x) are indistinguishable to a distin-

guisher or the environment. Where < P ,V∗ > (x) denotes the output of the

interactive machine V∗ after interacting with P on common input x and S(x)

the output of the machine S on input x. Depending on the classes of environ-

ments against whom these random variables remain indistinguishable, we have

different notions of zero-knowledge.

According to [GMW86], all languages in NP should have zero-knowledge proofs

assuming the existence of one-way functions.

In this part, we also describe some zero-knowledge proof systems of the discrete

logarithm. Our description follows the
∑

-protocol [CDS94] manner. That is, when

the prover wants to show its knowledge on some discrete logarithm statements to

the verifier, the two parties involve in the following 3-move interaction:

1. The prover commits itself to a commitment t and sends it to a verifier.
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2. Upon receiving t, the verifier sends back a challenge c to the prover.

3. The prover finally responds a response s to the verifier .

To empower the prover with the capability of producing such proof system itself or,

literally, make such proof system non-interactive, the Fiat-Shamir transformation

[FS86] can be applied in the second step of the proof system. Namely, the prover

can produce the challenge c itself with the only constraint that the commitment t

should be properly produced in advance.

Conveniently, we use the notation ZPK{(x1, x2, · · · , xn) : st}, introduced by

[JM97], to denote a zero-knowledge proof system. This notation shows that the

prover has the knowledge of a tuple of values (x1, x2, · · · , xn) such that the statement

st holds. Obviously, here the elements listed in the round bracket are those only

known to the prover and being proved, while other parameters in st are known to

both the prover and the verifier. By using such notation, we give the following

several zero-knowledge proof systems of some discrete logarithms statements:

* Proof system 1. ZPK{(a, b) : H1, (g, h, Z1, Z2) ∈ G4;Z1 = ga ∧ Z2 = hb}
[CS03a]

For the prover, to prove the knowledge of two integers a, b such that Z1 = ga

and Z2 = hb, it computes the following values:

1. w1, w2
R←− Zp, t1 = gw1 , t2 = hw2 ,

2. c = H1(g||h||t1||t2),

3. s1 = w1 − c · a, s2 = w2 − c · b.

Finally, ZPK{(a, b) : H1, (g, h, Z1, Z2) ∈ G4;Z1 = ga ∧ Z2 = hb} = (c, s1, s2).

A verifier computes t′1 = gs1Zc
1, t′2 = hs2Zc

2 and accepts the given proof if and

only if c = H1(g||h||t′1||t′2).

* Proof system 2. ZPK{(a) : H2, l1, l2, (g, y) ∈ G2; y = ga ∧ (a ∈ {2l1 , · · · , 2l1 +

2l2})} [CFT98, FO97, Bou00]

For the prover, to prove the knowledge of a such that y = ga and also a lies

in the interval {2l1 , · · · , 2l1 + 2l2}, it computes the following values:

1. w
R←− {0, 1}l2+k, t = gw

2. c = H2(g||y||t),

3. s = w − c(a− 2l1).

Finally, ZPK{(a) : H2, l1, l2, (g, y) ∈ G2; y = ga ∧ (a ∈ {2l1 , · · · , 2l1 + 2l2})} =

(c, s).

For a verifier, it computes t′ = gs−2l1cyc and accepts the given proof if and

only if c = H2(g||h||t′).
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* Proof system 3. ZPK{(x) : H3, (g, h, y, z) ∈ G4; y = gx, log gy 6= log hz}
[CS03a]

For the prover, to prove the knowledge of x such that y = gx and log gy 6=
log hz, it does the following procedures;

1. It chooses a
R←− Zp and then sets α = a, β = ax.

2. It computes st1 = yα

gβ
, st2 = zα

hβ
.

3. It chooses w1, w2
R←− Zp and sets the commitment t1 = yw1 1

gw2
, t2 =

zw1 1
hw2

.

4. It computes the challenge c = H3(g||h||y||z||t1||t2).

5. It generates the corresponding responses as s1 = w1 − cα, s2 = w2 − cβ.

ZPK{(x) : H, (g, h, y, z) ∈ G4; y = gx, log gy 6= log hz} = (st1, st2, c, s1, s2)

For a verifier, to verify such a given proof, it first checks whether st1 =

1 and st2 6= 1, then it accepts the given proof if and only if

c = H3(g||h||y||z||y
s1(st1)c

gs2
||z

s1(st2)c

hs2
).

Notably, the group G used in aforementioned proof systems is generated by a group

generator G(·) on input the security parameter `. It is not specified and its group

order p can be either a prime or a composite number, the only restriction is that

the discrete logarithm problem should be hard in G. Also, for simplifying the

description, the hash functions used in above proof systems are not clearly defined,

in case of any dispute happened to it, we state that three hash functions used in

the above proof systems can be H1 : {0, 1}∗ → ZP ,H2 : {0, 1}∗ → {0, 1}l2+k,H3 :

{0, 1}∗ → ZP respectively.

2.4.4 Shamir’s Secret Sharing

Given a secret s, Shamir’s secret sharing scheme [Sha79] enables the secret holder to

divide it into n pieces (s1, . . . , sn) using a k− 1 degree polynomial, the secret holder

can then distribute the n pieces among n users so that each of the users only has

a unique secret piece. The Shamir’s secret sharing scheme ensures that the origin

secret s can only be recovered using polynomial interpolation when at least k users

join together, and it is infeasible to reveal any information about x when knowing

at most k−1 secret pieces. This is the reason why this scheme is also called a (k, n)

Threshold Secret Sharing Scheme. Mathematical details about how to recover s are

given as follows.
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Given a user group S = {U1, . . . , Un}, let Fq be a finite field of order q where

q > n and n is the number of users in S. Assuming each user in S is associated

with a public unique element ui ∈ Fq. To share a secret s among users in S, the

secret holder first chooses a random k − 1 degree polynomial p(x) = s+
∑k−1

j=1 ajx
j

where aj ∈R Fq. Then each user in S is given a secret share si = p(ui). When k

users form a user set A ⊂ S, then we reconstruct the k − 1 degree polynomial as

p(x) =
∑

Ui∈A ∆A
i si where ∆A

i =
∏

U`∈A∧i 6=`
x−u`
ui−u`

, then we can recover the secret

s = p(0).

2.4.5 Public-Key Encryption

Similar to the symmetric encryption scheme, the public-key, or asymmetric, encryp-

tion (PKE) scheme can also be used to ensure message confidentiality in unreliable

communication channels. Unlike the symmetric encryption scheme where the en-

cryption and decryption key are the same, the two keys in the PKE are different

and usually relative. However, it is infeasible to compute the decryption key from

the public encryption key.

Definition 2.25 (PKE) Formalized by [DH76], a public key encryption (PKE)

scheme can be defined by the following four algorithms.

• Setup(1`). On input 1`, this setup algorithm outputs the public parameters

params.

• KeyGen(1`). Taking 1` as input, the key generation algorithm outputs a secret-

public pair (sk, pk).

• Enc(params, pk,m). On input params, pk and a message m chosen from the

message space specified in params, the encryption algorithm outputs a cipher-

text CT .

• Dec(params, sk, CT ). The decryption algorithm takes params, sk and the ci-

phertext CT as input and outputs the original message m.

Definition 2.26 (Correctness) The correctness of one public key encryption is

ascertained if

Pr

 Setup(1`)→ params;

Dec(params, sk, CT )→ m KeyGen(1`)→ (sk, pk);

Enc(params, pk,m)→ CT

 = 1,

where the probability is taken over the randomness consumed by all algorithms in

the scheme.
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Definition 2.27 (IND-CCA2) The indistinguishability against adaptive chosen

ciphertext attacks (IND-CCA2) [RS91] is a strong standard security notion for the

PKE scheme. It can defined by the following game executed between a challenger C
and an adversary A.

• Setup. Taking the security parameter ` as input, C executes Setup(1`) to gen-

erate the public parameters params, then it sends parames to A.

• KeyGen. C also executes KeyGen(1`) to generate a secret-public key pair (sk, pk),

then it sends the public key pk to A.

• Phase 1. In this phase, A can query the decryption oracle adaptively multiple

times. When A submits a ciphertext CT to C, C responds A with the origin

message m when CT = Enc(param, pk,m), otherwise, it responds A with

nothing.

• Challenger. When A decides to complete the Phase 1, it randomly chooses

two messages m0 and m1 from the message space such that |m0| = |m1|, and

then submits them to C. Upon receiving the two messages, C randomly selects

b ∈ {0, 1} and computes CT ∗ = Enc(params, pk,mb). Finally, C sends the

challenge ciphertext CT ∗ to A.

• Phase 2. In this phase, A can still query the decryption oracle adaptively.

While the only restriction is that A cannot query the challenge ciphertext CT ∗

in this phase.

• Guess. A outputs its guess b′ on b and wins the game if b′ = b.

A PKE scheme is (T, q, ε(`))-indistinguishable against adaptive chosen ciphertext

attacks, or IND-CCA2 secure, if there exists no PPT adversary A making q decryp-

tion queries which can win the aforementioned game with non-negligible advantage,

that is,

AdvIND−CCA2
A =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ ε(`),

where ε(`) is a negligible function with input ` and the advantage is taken over all

the randomness consumed in the game.

The indistinguishability against adaptive chosen plaintex attacks (IND-CPA) is an-

other security notion for PKE which is weaker than IND-CCA2. Those two models

are similar and the only difference between them is that A is not allowed to query

the decryption oracle in the IND-CPA game. Here, we omit the description of the

detail of this model and only give the conclusion.
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Definition 2.28 (IND-CPA secure) A PKE scheme is (T, ε(`))-indistinguishable

against adaptive chosen plaintext attacks, or IND-CPA secure, if there exists no PPT

adversary A which can win the aforementioned IND-CPA game with non-negligible

advantage, that is,

AdvIND−CPAA =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ ε(`).

Where A’s advantage is taken over all the random bits consumed in the aforemen-

tioned game.

2.4.6 Digital Signature

Similar to the handwritten signature which provides user authentication and non-

repudiation in our daily life, the digital signature, first proposed by Diffie and Hell-

man in [DH76], can provide those properties in the network communication. Explic-

itly, one user can authenticate itself to anyone by issuing a valid digital signature on

certain public message using its own signing key. Besides, when a signature on one

message is generated already, the signer of that signature cannot deny this behavior

forever.

Definition 2.29 (Digital Signature) Formalized by [GMR88], a digital signature

can be defined by the following four algorithms.

• Setup(1`). On input 1`, this setup algorithm outputs the public parameters

params.

• KeyGen(1`). Taking 1` as input, the key generation algorithm outputs a secret-

public pair (sk, pk).

• Sign(params, sk,m). The signature algorithm takes params, sk and a message

m chosen from the message space as input, and outputs a signature σ on m.

• Verify(params,m, pk, σ). On inputs params,m, pk, σ, the verification algo-

rithm outputs True if Sign(params,m, sk)→ σ, otherwise, it outputs False.

Definition 2.30 (Correctness) We say that a digital signature is correct if

Pr

 Setup(1`)→ params;

Verify(params,m, pk, σ)→ True KeyGen(1`)→ (sk, pk);

Sign(params, sk,m)→ σ.

 ≥ 1− ε(`)
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and

Pr

 Setup(1`)→ params;

Verify(params,m, pk, σ)→ False KeyGen(1`)→ (sk, pk);

Sign(params, sk,m)→ σ.

 < ε(`),

where ε(`) is a negligible function with input the security parameter ` and the prob-

ability is taken over all the random bits consumed in the scheme.

Definition 2.31 (EU-CMA) One basic security notion for the digital signature is

existential unforgeability under adaptive chosen message attacks (EU-CMA) [GMR88].

This security model can be formally defined by the following game executed between

a challenger C and an adversary A.

• Setup. Taking the security parameter ` as input, C executes Setup(1`) to gen-

erate the public parameters params, then it sends parames to A.

• KeyGen. C also executes KeyGen(1`) to generate a secret-public key pair (sk, pk),

then it sends the public key pk to A.

• Query. In this phase, A can query the signing oracle adaptively. When A
queries C with the message m, C executes Sign(params, sk,m) to generate a

signature σ on m and responds A with σ.

• Output. When A decides to complete the Query phase, it outputs a message-

signature pair (m∗, σ∗). A wins the game if Verify(params,m∗, pk, σ∗) →
True and m∗ has never appeared as queried message in the previous Query

phase.

A digital signature scheme is (T, q, ε(`))-existentially unforgeable against adaptive

chosen message attacks, or EU-CMA secure, if there eixsts no PPT adversary A
which can win the aforementioned game with non-negligible advantage, that is,

AdvEU−CMA
A = Pr [Verify(params,m∗, pk, σ∗)→ True] ≤ ε(`),

where the advantage of A is taken over all the random bits consumed in the game.

Definition 2.32 (SEU-CMA) There also exists a more strong security notion

named strongly existential unforgeability under an adaptive chosen message attack

(SEU-CMA) for digital signature scheme. It is defined by the following game exe-

cuted between a challenger C and an adversary A.

• Setup. Taking the security parameter ` as input, C executes Setup(1`) to gen-

erate the public parameters params, then it sends parames to A.
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• KeyGen. C also executes KeyGen(1`) to generate a secret-public key pair (sk, pk),

then it sends the public key pk to A.

• Query. In this phase, A can still query the signing oracle adaptively. Assuming

A queries the signing oracle q times, each time when it sends a message mi

chosen randomly from the message space to C, it gets a signature σi on mi as

response for i = 1, 2, · · · , q.

• Output. A outputs a message-signature pair (m∗, σ∗). A wins the game if

(m∗, σ∗) /∈ {(m1, σ1), (m2, σ2), · · · , (mq, σq)} and Verify(params,m∗, pk, σ∗)→
True.

A digital signature scheme is (T, q, ε(`))-strongly existentially unforeable against

adaptive chosen message attacks, or SEU-CMA secure, if there exists no PPT ad-

versary A which can win the above game with non-negligible advantage, that is,

AdvSEU−CMA
A = Pr [Verify(params,m∗, pk, σ∗)→ True] ≤ ε(`),

where the advantage of A is taken over all the random bits consumed in the game.

2.5 Chapter Summary

In this chapter, we introduced the fundamental knowledge in cryptography includ-

ing basic notions, miscellaneous notations and general cryptographic tools which

are widely used throughout this thesis. For readers who still feel confusing with

the meaning of one certain notation or abbreviation when it is encountered in the

following chapters, they are more recommended to refer to the List of Notations or

List of Abbreviations part for a quick review. We will present our published works

one by by from the next chapter.
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Chapter 3

A Privacy-Preserving Source

Verifiable Encryption Scheme

It is critical to guarantee message confidentiality and user privacy in communica-

tion networks, especially for group communications. We find previous works seldom

consider the two aspects at the same time and some trivial solutions cannot remain

secure under strong security models. In order to address the aforementioned prob-

lem properly, we propose a privacy-preserving source-verifiable encryption scheme.

With our scheme, the sender can convince anyone of its legitimation among a set

of users chosen by itself without leaking its privacy. Moreover, only the intended

receiver can retrieve the original message and the identity of the sender from a given

ciphertext. Considering the security of our scheme, we define three security models

which capture the message confidentiality, the user privacy and the user imperson-

ation resistance respectively. We prove that our scheme maintains all the three

aforementioned properties under the random oracles model.

3.1 Introduction

There are many practical network scenarios where content of messages and privacy

of users should be protected concurrently during the communication. For example,

in mobile ad hoc networks (MANETs) [RLL09], due to the mobility of communi-

cation nodes and the nature of wireless communications, user privacy and message

confidentiality are essential requirements for mission critical communications. An-

other mobile scenario, where the above two security considerations should be taken

into account, is the mobile phone sensing application [ZCZ16]. In order to provide

customized services, a typical mobile sensing application may need to aggregate

sensitive information from users for analysis. A simple example is the health-care

sensing application which collects information including physical location, health in-

28
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dices such as weight, heart rate and blood pressure from users. Obviously, protecting

user privacy is the most important task for that application. Message confidentiality

and user privacy issues also exist in data mining systems [Zha08] and the on-line

navigation systems [CYHL14] during the user data collection stage. As shown above,

a solution which can address the message confidentiality and user privacy simulta-

neously is desirable in many real-life applications.

Preventing content of messages from being eavesdropped or modified can be

achieved using cryptographic tools such as encryption and digital signature. Also,

there are cryptographic primitives that can provide user privacy properly, such as

the ring signature [RST01], the group signature [ACJT00b], etc. It seems that our

problem can be solved by simply combining two cryptographic primitives which

provide the message confidentiality and user privacy respectively. However, below

we present an example to illustrate that maintaining the message confidentiality and

the user privacy at the same time is not a trivial task.

Assuming there is a ring signature scheme RIN and an IND-CCA2 secure en-

cryption scheme EN , where the signing and verification algorithms of the RIN are

denoted by Sig and Ver respectively, the encryption and decryption algorithms of the

EN are denoted by Enc and Dec respectively. Let the public key of the receiver be

pk and the signing key of user Ui as ski, then user Ui computes c1 = Encpk(m), c2 =

Sigski(c1), and sends the message tuple (c1, c2) to the receiver. According to the

properties provided by RIN and EN , any party within the group can compute

a ring signature and anyone can check the validity of this ring signature without

knowing the actual signer. In addition, it is hard for anyone to create a valid ring

signature on any message for any group without knowing a secret key which belongs

to a user of that group. It seems that this solution maintains the message confiden-

tiality and user privacy properties. However, such a scheme cannot achieve message

confidentiality in the IND-CCA2 model [BDPR98a]. When the challenge ciphertext

(c1, c2) is sent to the adversary, it can use another signing key skj of user Uj in the

ring to sign c1, which is the first component of the given challenge. That is, the

adversary generates c2
′ = Sigskj(c1). The adversary then gets a new tuple (c1, c2

′).

When it provides this tuple to the decryption oracle, it can definitely guess which

message is encrypted with probability 1 in the IND-CCA2 game. Hence, this solu-

tion cannot achieve IND-CCA2 security towards the message confidentiality. From

the above example, we can say that simply combining two schemes with message

confidentiality and user privacy cannot work.
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3.1.1 Related Work

To solve user privacy problems in ad hoc groups, Dodis, Kiavias, Nocolosi and Shoup

[DKNS04] proposed anonymous identification schemes in multi-user setting. Their

schemes allow participants from a user population to form ad-hoc groups, and then

prove membership anonymously in such groups. They also provided a formal model

for their scheme and designed a generic scheme based on any accumulator with one-

way domain as well as an efficient implementation of such accumulator based on

the Strong RSA Assumption. Their anonymous identification schemes have some

salient features, one of them is that their schemes can be generally and efficiently

amended in order to allow the recovery of the signer’s identity by an authority, if

it is desired. Besides, by using the Fiat-Shamir transformation, they also obtained

constant-size, signer-ambiguous group and ring signatures (provably secure in the

random oracle model) from their identification schemes.

In Eurocrypt 2015, Groth and Kohlweiss [GK15] constructed one-out-of-mangy

proofs to address the user privacy problem in multi-user environment. Their proof

is actually a 3-move public coin special honest verifier zero-knowledge proof, or
∑

-

protocol, for a list of commitments having at least one commitment that opens to

0. It is not required for the prover to know openings of the other commitments.

The proof system is efficient, particularly, in terms of communication requiring only

the transmission of a logarithmic number of commitments. The authors used their

proof system, by applying the Fiat-Shamir transformation, instantiate both ring

signatures and zerocoin, a novel mechanism for bitcoin privacy. They used the

proposed
∑

-protocol as a linkable ad-hoc group identification scheme where the

users have public keys where are indeed commitments and demonstrate knowledge

of an opening for one of the commitments to unlinkably identify themselves (once).

Some more concrete solutions to the user privacy problem can be found in

[RLL09, ZCZ16, Zha08, CYHL14]. In [RLL09], Ren et al. proposed a novel uncon-

ditionally secure source anonymous message authentication scheme (SAMAS) that

enables messages to be released without relying on any trusted third parties. While

providing source privacy, the proposed scheme also provided message content au-

thenticity. The author then proposed a novel communication protocol for MANET

that can ensure communication privacy of both communication parties and their

end-to-end routing. For solving user privacy issues in mobile phone sensing, Zhang,

Chen and Zhong [ZCZ16] presented an efficient protocol that allows an untrusted

data aggregator to periodically collect sensed data from a group of mobile phone

users without knowing which data belongs to which user. Assuming there are n

users in the group, their protocol achieved n-source anonymity in the sense that

the aggregator only learns that the source of a piece of data is one of the n users.
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Besides, they also considered a practical scenario where users may have different

source anonymity requirements and provided a solution based on dividing users

into groups. Zhan [Zha08] provided solutions for privacy-preserving collaborative

data mining problems, in particular, the author illustrated how to conduct privacy-

preserving naive Bayesian classification which is one of the data mining tasks. In

[CYHL14], Chim et al. made use of the idea of the anonymous credential to ensure

that all driver’s privacy cannot be breached.

We find the above works towards the user privacy problem seldom consider

keeping the message confidentiality property at the same time. Besides, almost

all the proposed solutions ensure no one in the system can compromise the users’

privacy. Privacy-preserving solutions of this kind would incur problems in reality.

One of the problems is that users can deny their previous behavior during the

communication for nobody can identify them, moreover, as the message receiver

cannot ascertain who is the actual sender, it is inconvenient for him to directly

send his message back to the sender securely when a response is needed. From what

we have discussed, we consider that the conditional user privacy-preserving property

should be more realistic in real-life applications, which means that a message sender’s

privacy can only be revealed by the intended message receiver.

The cryptographic primitive verification encryption is often used to deal with

privacy problems. After the notion of verifiable encryption was invented by Stadler

[Sta96], many concrete schemes have been constructed [BFPV11, Ate04, CS03b,

CD00, Bao00]. The verifiable encryption scheme can be used as a building block

to solve many problems, such as [HM12, Fuc10], where the realization of practical

revocable anonymous credentials using verifiable encryption was discussed. Also in

[GDM02, PCS03, TV09], the authors used verifiable encryption to solve variants of

the fair-exchange problem, and in [KPW97, CD00], verifiable encryption was applied

to build separable group signatures and signature sharing schemes. The verifiable

encryption can also be used in key escrow systems [Mao97] and file-sharing systems

[HP10] to provide desirable properties.

However, we cannot derive a solution from a verifiable encryption scheme for

the reason that, in a verifiable encryption scheme, we encrypt the identity of the

user rather than the message which we want to keep absolutely confidential. Besides,

when we extend the verifiable encryption into group setting by applying the one-out-

of-many proof system [GK15], we need to consider the impersonation attack where

an unauthorized user may masquerade as one member of the legitimated group.

3.1.2 Contribution

In this chapter, we make the following contributions.
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1. To maintain message confidentiality and user privacy concurrently, we propose

a privacy preserving source-verifiable encryption scheme. Our scheme provides

conditional privacy for message encryptors, which means that the message

encryptor’s identity cannot be disclosed by other users except the intended

receiver. We find this kind of user privacy is more practical in many real

applications. Besides, a prover can prove its legitimation in a set of users

chosen by itself. Our scheme is flexible and efficient when the size of the

chosen set is small.

2. Further, we analyze the security of our scheme in detail. For message confi-

dentiality, we prove our scheme is IND-CCA2 secure under the random oracle

model. Besides, we also define the security models for the user privacy and

impersonation resistance respectively, and prove that our scheme maintains all

the aforementioned security properties under our models.

3.1.3 Chapter Organization

The rest of the chapter is organized as follows: In Section 3.2, we give the formal def-

inition of our privacy-preserving source-verifiable encryption scheme, we also define

three security models in this section for the purpose of proving the security of our

scheme. Our concrete construction of the scheme is presented in detail in Section

3.3. In Section 3.4, we prove the security of our scheme under the previously defined

models respectively. We also give a short discussion of a server-aided variant of our

scheme in Section 3.5. At the end of this chapter, we make our conclusion and point

out our future work.

3.2 Definitions and Security Models

Definition 3.1 (Privacy-preserving Source-verifiable Encryption) Our pri-

vacy preserving source-verifiable encryption scheme, consisting of a list of polynomial

time algorithms (Setup, Gen, Enc, Ver, Dec), is described as follows.

• Setup(1k): On input 1k, it outputs a system parameters PM. As PM is regarded

as default input to all the following algorithms, we omit it.

• Gen(·): For a user Ui, he runs the key generation algorithm, on input PM, to

get his unique identity IDi, a secret si and a public-private key pair (pki, ski).

Assuming all users’ identities and public keys can be distributed properly among

others in the group, Ui would finally get a user identity set ID and a public

key set PK.
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• Enc(m, IDi, si, pkj, IDi): For an encryptor who holds his own identity IDi

and an identity set ID, if he wants to send a message securely to Uj, he

first chooses a subset IDi from ID, note that IDi should include IDi and

|IDi| ≥ 2. Ui encrypts a message m chosen from the message space M by

executing the Enc algorithm, which takes (m, IDi, pkj, IDi) and IDi’s secret

si as inputs. Finally, the encryptor gets the ciphertext ct.

• Ver(ct): Everyone can be a verifier in our scheme upon knowing PM and receiv-

ing a ciphertext ct. The verification algorithm Ver is deterministic, after the

execution of it, a verifier outputs accept if ct satisfies certain rules, otherwise,

it outputs reject.

• Dec(ct, skj): The decryption algorithm should only be executed by the decrytor

and is also deterministic. Before the decryptor retrieves m and the encryptor’s

identity IDi from a given ciphertext ct, he first executes Ver to verify the

validity of it, and only when Ver outputs accept, the decryptor then continues

to decrypt ct.

We require that a privacy-preserving source-verifiable encryption scheme should have

the following three security properties: message confidentiality, user privacy and

user impersonation resistance. In order to capture those requirements, we define

the following three security models.

Definition 3.2 (Modified IND-CCA2) Setting the security parameter as k,

given our privacy-preserving source-verifiable encryption scheme, a polynomial n(·),

a PPT adversary A and a challenger S, let’s consider the following game played

between A and S:

• Setup: First, Setup, which takes 1k as input, is run by S to produce the system

parameter PM. Given a polynomial n(·), S runs Gen, with PM as input, n(k)

times. After all executions are properly finished, S gets a public key set PK, a

private key set SK, a user secret set S and an identity set ID, where |PK| =
|SK| = |ID| = |S| = n(k). The adversary A is given PM, ID and PK.

• Corruption phase: In order to make A more powerful, he is permitted to corrupt

users from the identity set ID. Namely, A can get the secret of a user after

taking the identity of that user as the queried message.

• Decryption phase 1: A can also ask decryption queries adaptively to S, when

A provides S a valid ciphertext, S needs to return the corresponding plaintext

of this ciphertext to A.



CHAPTER 3. PRIVACY PRESERVING SVE 34

• Challenge phase: A chooses two messages m0,m1 from M, two identities IDi,

IDj from ID as the sender and receiver’s identity respectively and a subset

IDi from ID such that IDi ∈ IDi, |IDi| ≥ 2. A then sends them to S.

Upon receiving those information, S randomly chooses a bit b from {0, 1} and

encrypts mb using the encryption algorithm of our scheme, which takes m,

IDi, secret si of IDi, pkj, IDi as inputs. The corresponding ciphertext is

given to A as the challenge ciphertext.

• Decryption phase 2: After receiving the challenge ciphertext, A can still query

the decryption oracle with the only restriction that the queried ciphertext must

be different from the challenge one.

• Guess phase: At the end of the game, A outputs the guess b′ from {0, 1} about

b. If b′ = b, then A succeeds in the game, otherwise A fails.

Remark: A is allowed to ask hash queries under the random oracle model.

According to the defined model, let Adv denote the probability that A wins the

above game over random guess, then Adv =
∣∣Pr [b′ = b]− 1

2

∣∣.
Definition 3.3 (User Privacy) Setting the security parameter as k, then given

our privacy-preserving source-verifiable encryption scheme, a PPT adversary A and

a challenger S, let’s consider the following game played by A and S:

• Setup phase: First, the algorithm Setup, which takes 1k as input, is run by S
to produce a system parameter PM. Given a polynomial n(·), S runs Gen, with

PM as input, n(k) times. After all executions are properly finished, S gets a

public key set PK, a private key set SK, a user secret set s and an identity

set ID, where |PK| = |SK| = |ID| = |s| = n(k). The adversary A is given

PM, ID and PK.

• Corruption phase: In order to make A more powerful, he is permitted to corrupt

users from the identity set ID. Namely, A can get the secret of a user after

taking the identity of that user as the queried message.

• ID extraction phase 1: When A makes such kind of query, he submits a cipher-

text to S, then he gets the identity of the original encryptor of the submitted

ciphertext when the queried ciphertext is valid, otherwise, he gets nothing.

• Challenge phase: A chooses one message m, a subset IDi, an identity IDj /∈
IDi as the receiver’s identity and sends them to S, S randomly chooses a index

inx from the indexes of the chosen subset IDi, and encrypts m by taking IDinx,

sinx, PKj of IDj and IDi as inputs. The corresponding ciphertext is given to

A.
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• ID extraction phase 2: After receiving the challenge ciphertext, A can still ask

ID extraction queries adaptively with the constraint that the queried ciphertext

must not be identical to the challenge one.

• Guess phase: At the end of the game, A outputs his guess inx
′

from the indexes

of the chosen subset IDi about inx. If inx′ = inx, then A succeeds in the game,

otherwise A fails.

Remark: Under the random oracle model, A is allowed to ask hash queries.

According to the defined model, let Adv denote the probability that A wins the

above game over random guess, then Adv =
∣∣∣Pr [inx′ = inx]− 1

|IDi|

∣∣∣.
Definition 3.4 (User Impersonation Resistance) Setting the security parame-

ter as k, then given our privacy-preserving source-verifiable encryption scheme, a

polynomial n(·), a polynomial probabilistic time (PPT) adversary A and a challenger

S, let’s consider the following impersonation game played by A and S:

• Setup phase: First, the algorithm Setup, which takes 1k as input, is run by S
to produce a system parameter PM. Given a polynomial n(·), S runs Gen, with

PM as input, n(k) times. After all executions are properly finished, S gets a

public key set PK, a private key set SK, a user secret set s and an identity

set ID, where |PK| = |SK| = |ID| = |s| = n(k). The adversary A is given

PM, ID and PK.

• Corruption phase: In order to make A more powerful, he is permitted to corrupt

users from the identity set ID. Namely, A can get the secret of a user after

taking the identity of that user as the queried message. Here let CID denote

the corruption set.

• Encryption query phase: In this phase, we denote the uncorrupted user set as

UID, while UID = ID − CID. The adversary A chooses a message m from

M, two identities IDi, IDj from UID as the sender and receiver’s iden-

tity respectively and a subset UID′ from UID such that IDi ∈ UID′, IDj /∈
UID′, |UID′| ≥ 2, and then sends them to S. After receiving those informa-

tion, S takes m, IDi, si,PKj,UID′ as inputs of the Enc algorithm and sends

the generated ciphertext ct to A.

• Forgery phase: In this phase, A chooses a message m∗, an identity ID∗j as the

receiver and a subset UID∗ of UID, then it tries to forge a corresponding valid

ciphertext ct∗. It is required that (m∗,UID∗) cannot appear in any previous

encryption query.
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If the forgery produced by A in the forgery phase can be accepted by the verification

algorithm of our scheme, then A wins this game. Let Adv denote the probability

that A wins the predefined game, then Adv = Pr[Ver(ct∗) = 1].

3.3 Our Privacy-preserving Source-verifiable En-

cryption Scheme

With our scheme, only a group of legitimated users can encrypt the message taking

the receiver’s public key, its own secret and a chosen identity subset as inputs. Also

this encryptor can prove his legitimation to others. Upon receiving the ciphertext,

which includes a proof of the encrytor’s identity, a verifier can verify the legitimation

of the source of this ciphertext without decrypting it. Only the decryptor can retrieve

the origin message and the identity of the user who encrypts this message from the

ciphertext.

Setting the security parameter as k, we give a concrete construction of our

privacy-preserving source-verifiable encryption scheme as follows:

• Setup(1k): On input 1k, it produces a cyclic group G of large prime order p

with generator g. This algorithm also outputs a description of the message

space M = {0, 1}q and a ciphertext space C. G, p, g,M, C are considered as

the system parameter PM and default inputs to all the following algorithms.

• Gen(·): For one user Ui, when executing Gen(·) which takes 1k as input, he

himself randomly chooses his own secret si and private key SKi = xi from Zp
respectively and keeps them unknown to others, Ui then calculates IDi = gsi

and PKi = yi = gxi . Assuming the identity and public key of each user can

be distributed properly to all other users. Finally, Ui gets an identity set

ID = {ID1, . . . , IDn} and a public key set PK = {y1, . . . yn}, where n is the

number of members in the legitimated group. Each time when a new member

joins the group, ID, PK would be updated. Our scheme also applies three

collision-resistance hash functions: H1 : {0, 1}q ×G3 → Zp, H2 : G→ {0, 1}q,
H3 : {0, 1}∗ → Zp, where q denotes the length of the message.

• Enc(m, si, yj, IDi): When Ui wants to send a message m ∈ M to Uj, he

first chooses a identity subset IDi from ID. Note that IDi ∈ IDi, IDj /∈
IDi, |IDi| ≥ 2 should include his own identity. Ui takesm, si, PKj = yj, IDi
as inputs and does the following calculations:

r1
R←Zp, r2 = H1(m, gr1 , gsi , yr1j ),

C1 = gr1 , C2 = gr2 , C3 = ysij y
r2
j , C4 = m⊕H2(yr1j y

r2
j ).
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After (C1, C2, C3, C4) is generated, Ui executes the following procedures to

generate a proof:

– Ui chooses wi randomly from Zp and sets ai = gwi ,bi = ywij .

– For each identity, say gst , in IDi except gsi , Ui chooses ct, zt randomly

from Zp and sets at = gzt(gstC2)ct , bt = yztj (C3)ct .

– Ui sets c = H3(αi, βi, C1, C2, C3, C4), where αi = (. . . , ai, . . . , at, . . . ),

βi = (. . . , bi, . . . , bt, . . . ) and |αi| = |βi| = |IDi|.

– Ui sets ci = c −
∑

gst∈IDi except gsi
ct and zi = wi − ci(si + r2). Ui keeps the

tuple ({ci}, {zi}) where

{ci} = (. . . , ci, . . . , ct, . . . ), {zi} = (. . . , zi, . . . , zt, . . . ).

Ui appends the identity of the receiver, IDj, to IDi as its last element, and

then gets a new identity set IDij. Eventually, Ui gets the ciphertext ct =

(C1, C2, C3, C4, {ci}, {zi}, IDij).

• Ver(ct): A verifier executes the following verification algorithm to check the va-

lidity of a received ciphertext. In fact, everyone who holds the system parame-

ter PM can be a verifier. Upon receiving a ciphertext ct = (C1, C2, C3, C4, {ci},
{zi}, IDij), a verifier V does as follows:

– V first gets the subset IDi and the receiver’s identity IDj from IDij.
As V knows the public key set PK and user identity set ID, obviously,

he knows the corresponding public key yj of IDj, so he can re-compute

ai = gzi(gsiC2)ci as well as bi = yzij (C3)ci from {ci}, {zi}, C2, C3 for each

identity gsi ∈ IDi to get the two sets αi, βi.

– V checks whether the equation H(αi, βi, C1, C2, C3, C4) =
∑

ci∈{ci}
ci holds.

– If all the above checks are successfully completed, then V can make sure

that the encryptor of the received ciphertext is a legitimated user. Oth-

erwise, the verifier rejects the received ciphertext.

• Dec(ct, xj): When given a ciphertext ct = (C1, C2, C3, C4, {ci}, {zi}, IDij), one

user can easily find out whether he is the intended receiver by checking the

last identity in IDij. Uj, after finding out he is the decryptor, would do as

follows:

– Uj first executes the verification algorithm Ver to check whether the given

ciphertext is generated by a legitimated user, if not, Uj rejects it, other-

wise Uj continues.
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– Uj computes w = C3

1
xj /C2 and checks whether w is listed in IDi. If not,

Uj rejects the ciphertext, otherwise he continues.

– Uj calculates m′ = C4⊕H2((C1C2)xj) and then checks whether the equa-

tion C2 = gh1(m′,C1,w,(C1)xj ) holds, it not, Uj rejects the given ciphertext.

When all the above checks are successfully finished, Uj finally outputs w and

m′ as the sender’s identity and original message respectively.

3.4 The Security Proofs of Our Scheme

Theorem 3.1 Our privacy-preserving source-verifiable encryption scheme main-

tains message confidentiality under the previously defined modified IND-CCA2 model

assuming the DDH problem is hard in G when hash functions H1, H2, H3 are mod-

eled as random oracles. Concretely, if there is an adversary A which can break our

scheme with non-negligible probability ε, supposing A makes at most qH1,qH2,qH3

queries to the H1, H2, H3 hash oracles respectively, and qD queries to the decryption

oracle, then we can construct another algorithm B that solves the DDH problem in

G with advantage at least 1
n
(1− qD

2k
)ε, where k is the security parameter and n is a

constant.

Proof. We show how to construct an algorithm B that solves the DDH problem by

interacting with an adversary A of our scheme under our predefined model.

• Setup phase: On input 1k, B runs the Setup algorithm of our scheme to pro-

duce system parameters PM which includes G, p, g,M, C. B is given a DDH

tuple (ga, gb, Z). For a given polynomial n(·), set n = n(k). B runs the

key generation algorithm Gen(·) n times, except that B sets PKj = ga for

a randomly chosen j ∈ [1, n] and does not have the corresponding private

key xj. Namely, B gets an identity set ID = {ID1, . . . , IDn}, a user secret

set s = {s1, . . . , sn}, a public key set PK = {PK1, . . . , PKn} and a private

key set SK = {x1, . . . , xj−1, xj+1, . . . , xn}. B chooses three collision-resistance

hash functions: H1 : {0, 1}q × G3 → Zp, H2 : G → {0, 1}q, H3 : {0, 1}∗ → Zp
and sends them to A, H1, H2, H3 are fully controlled by B and are modeled as

random oracles. Finally, B gives A PM, ID and PK.

• Corruption queries: To make A more powerful, we first allow A to corrupt some

users of ID. Namely, when A wants to corrupt a user Ui of ID and sends IDi

to B, B needs to respond A with the corresponding secret si.

• H1-queries: A can issue queries to the hash function H1. In order to respond

those queries, B keeps a hash list H list
1 .
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When A asks the hash value of the v-th message tuple < mv, g
rv1 , gsvx , yrv1i >,

where gsvx ∈ ID and yi ∈ PK. B checks whether this tuple has appeared

before, :

– If yes, B responds A with the record h1v = H1(mv, g
rv1 , gsvx , yrv1i ).

– Otherwise, B chooses a random value h1v from Zp, and sets this value as

the hash of the queried message tuple, B responds A with h1v and adds

this message and hash value pair to the H list
1 . Further, B fills the third

column of this query row with value yh1vi yrv1i , B fills the forth column of

this query row with the symbol Φ, which denotes empty.

One row of H list
1 should be like:

(mv, g
rv1 , gsvx , yrv1i ) h1v yrv1i yh1vi Φ

where v ≤ qH1 .

• H2-queries: A can also ask H2 hash queries. To answer this kind of query, the

algorithm B maintains a H list
2 table which has two columns.

When the u-th query yru2j yru1j is made, B checks whether this tuple has ap-

peared before:

– If yes, B responds A with the corresponding record h2j = H2(yru2j ysuxj ).

– Otherwise, B chooses a random value h2u from {0, 1}q, where q is the

length of the message inM, and sets this value as the hash of the queried

message tuple, B responds with h2u and adds this message and hash value

pair to the H list
2 .

One row of H list
2 shows in Table 2:

yru2j yru1j h2u

Where u ≤ qH2 .

B updates another table T3 from the H list
1 and H list

2 tables whenever H list
1 or

H list
2 is updated. The process of updating T3 is as follows:

If there is a new row added to the H list
1 , we check the value yru2j yru1j in the first

column of the H list
2 table from the first to the last row.

– If the value yrv1i yh1vi in the third column of this new row is not empty and

there exists such a row in the H list
2 that making the aforementioned two

values equal, then we replace the corresponding H2 hash value Φ in the

H list
1 with the corresponding H2 value h2u in the H list

2 . Further, we add
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such a row to the T3 table, and then delete the corresponding row from

the H list
1 and also the H list

2 .

– Otherwise, the three tables keep unchanged.

If there is a new row added to the H list
2 , we check the value yrv1i yh1vi in the

third column of the H list
1 from the first to the last row.

– If yru2j yru1j in the first column of the new row is not empty, and there

exists such a row in H list
1 that making the aforementioned two values

equal, then we replace the corresponding H2 hash value Φ in the H list
1

with the corresponding H2 value h2u in the H list
2 . Further, we add such

a row to the T3 table, and then delete the corresponding row from the

H list
1 and also the H list

2 .

– Otherwise, the three tables keep unchanged.

....... ...... ...... ......

(mu, g
ru1 , gsux , yru1i ) h1u yru1i yh1ui h2u

....... ...... ...... ......

(mf , g
rf1 , gsfx , y

rf1
j ) h1f y

rf1
j y

h1f
j h2f

We can maintain such a table T3 as below, where yi, yj ∈ PK and gsux , gsfx ∈
ID. We denote the size of T3 as |T3|
As the H1 query and H2 query can be asked in an interleaving manner, so,

each time when H list
1 or H list

2 is updated, T3 would be updated by executing

the previous procedures.

• H3- queries: A can ask H3 queries. B creates a hash table H list
3 to respond

this kind of query. For the t-th query tuple (αt, βt, C1t, C2t, C3t, C4t), B acts as

following:

– B first check whether this tuple has appeared before, if yes, B responds

with the existing value h3t = H3(αt, βt, C1t, C2t, C3t, C4t) to A.

– Otherwise, B chooses a random value h3t from Zp , and sets it as the hash

value of the queried message tuple. B responds A with h3t and adds this

message and hash value pair to the H list
3 .

• Decryption queries phase 1: A can make decryption queries adaptively to B. If

a queried cihpertext received by B is (C1w, C2w, C3w, C4w, {ci}w, {zi}w, IDij),
B would first check whether the intended receiver is the user of which B does

not know the private key, here the user with identity IDj, by extracting the

receiver’s identity from IDij:
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– If no, B knows the receiver’s private key, he can decrypt the given cipher-

text by using the Dec algorithm and return the corresponding plaintext

to A.

– If yes, as B does not know the receiver’s private key, B would use T3 and

H list
3 to simulate the decryption process. B first executes the verification

algorithm Ver of our scheme to recompute the sets (αw, βw). Then B does

the following steps:

Step 1.

B checks:

∗ whether the tuple (αw, βw, C1w, C2w, C3w, C4w) has been asked in the

H3 phase;

∗ whether the H3 hash value of (αw, βw, C1w, C2w, C3w, C4w) equals to

the sum of the set {ci}w, that is h3w =
∑

ci∈{ci}
ci

If either of the above two checks fails, B rejects. Otherwise, B turns to

the following step,

Step 2.

B checks each row of the T3 table and tests whether there exists an i-th

row that can make the following four equations hold.

C1w = gri1 , C3w = ysixj yh1ij , C4w ⊕mi = h2i, C2w = gh1i .

if B can find such a row satisfying the above equations, B outputs the

message mi which can be found in the first column of the T3 table. Oth-

erwise, B rejects this query.

Remark: We use the component (C2w, C3w, {ci}w, {zi}w) of the cipher-

text in step 1 checking, and the component (C1w, C2w, C3w, C4w) in step

2 checking, so we use all parts of the given ciphertest to simulate the

decryption process when we do not know the intended receiver’s private

key.

Remark: We should note that, when the intended receiver’s private key is

unknown to us, there may be some valid ciphertexts which would be rejected

by our aforementioned decryption simulator. Here a valid ciphertext means,

when it appears, the decryptor of our scheme can decrypt it correctly and

return a valid message, while our decryption simulator cannot.

Assuming there are qD decryption queries asked during the decryption phase 1

and decryption phase 2. According to the encryption algorithm of our scheme,

a ciphertext is not valid until it is generated after querying all the three hash
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functions, and obviously, this kind of ciphertext can definitely be decrypted by

our decryption simulator correctly. However, if at least one of the three hash

functions is not asked when producing a ciphertext, this ciphertext may still

have probability to be a valid one while our decryption simulator would reject

it, the probability that it is still a valid ciphertext is at most 1
2k

, where k is

the security parameter. Let us consider the event that at least one of the qD

queried ciphertexts is valid but is rejected by our decryption simulator. Let

symbol fail denotes this event and symbol r(i) denote the event that the i-th

queried ciphertext is rejected but actually is a valid one, where 1 ≤ i ≤ qD.

Then the probability of this event, Pr[fail], is:

Pr[fail] = Pr[r(1) ∪ r(2)∪, . . . ,∪r(qD)]

= ≤ Pr[r(1)] + Pr[r(2)] + Pr[r(3)] + ....+ Pr[r(qD)]

=
qD
2k

Namely, with probability at most qD
2k

, the decryption simulator would reject

valid ciphertext(s). That is, with probability at least 1 − qD
2k

, B would do a

perfection simulation in the decryption phases.

• Challenge phase: After the decryption queries are properly answered, A chooses

two messages m0,m1 fromM, two identities IDi, IDj from ID as the sender

and receiver’s identity respectively and a subset IDi from ID such that IDi ∈
IDi, |IDi| ≥ 2, then sends them to B. Upon receiving those information, B
would first check whether the receiver’s identity is IDj, that is, the one B
does not know the corresponding private key. If not, B aborts the game

and outputs a random bit, otherwise B randomly chooses c ∈ {0, 1} and

encrypts mc using the Enc algorithm of our scheme. Namely, B asks H1 query

about the message tuple (mc, g
b, gsi , Z) to get r∗2 , asks H2 query about the

message tuple Zy
r∗2
j to get h2, asks H3 query for the purpose of generating

the proof tuple ({ci}∗, {zi}∗), and sets the ciphertext as (gb, gr
∗
2 , ysij y

r∗2
j ,mc ⊕

h2, {ci}∗, {zi}∗, ID∗ij), where h2 = H2(Zy
r∗2
j ), r∗2 = H1(mc, g

b, gsi , Z). B sends

the generated ciphertext to A as the challenge ciphertext. Then B adds the

message tuple ((mc, g
b, yA, Z), r∗2, Zy

r∗2 , h2∗) as a row to the T3 table.

• Decryption queries phase 2: In this phase, A can still ask decryption queries

with the only constraint that A cannot use the challenge ciphertext as one

of his queried messages. B answers the decryption queries using the same

procedures stated in the previous decryption queries phase 1.

• Guess phase: After the decryption queries phase 2 is finished, A would make
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a guess c′ ∈ {0, 1} about c, and sends his guess to B. B outputs 1 if and only

if c = c′, otherwise, it outputs 0.

Let’s consider the probability that our algorithm B would output 1, that is, A
succeeds in the previous game. We analyze this probability under the following two

different cases:

1. When Z 6= gab, easily, the probability Pr[c = c′] in this case should be 1
2

for

the reason that the challenger ciphertext is a random element from the view

of A, A cannot get any useful information from it.

2. When Z = gab and also the intended receiver’s identity is IDj, we find that

the challenge ciphertext produced by B is valid. According to our previous

analysis, our simulator would reject valid given ciphertext(s) with probability

at most qD
2k

during simulating the decryption process, which means that with

probability at least 1− qD
2k

, B would do a perfect simulation during the previous

game played by A and B. Also, with probability 1
n
, A would choose IDj as the

receiver’s identity. As A can break our scheme with non-negligible probability

ε, the challenge ciphertext is valid when the given tuple is a DDH tuple and

the receiver’s identity is IDj. In this case, the probability Pr[c = c′] should be

at least 1
2

+ 1
n
(1− qD

2k
)ε.

As ε is non-negligible, B can solve the DDH problem with advantage at least 1
n
(1−

qD
2k

)ε.

Theorem 3.2 Our privacy-preserving source-verifiable encryption scheme holds u-

ser privacy under the previously defined model assuming the DDH problem is hard

in G when hash functions H1, H2, H3 are modeled as random oracles. Concretely,

if there exists such an adversary A which can break our scheme with non-negligible

probability ε, supposing A makes at most qH1,qH2,qH3 queries to the H1, H2, H3 hash

oracles respectively, and qID ID extraction queries, then we can construct another

algorithm B that can solve the DDH problem in G with probability at least 1
n
(1− qID

2k
)ε,

where n is a constant.

Proof. We show how to construct an algorithm B that solves the DDH problem

by interacting with A under our predefined model. For the sake of simplifying the

description of this proof, we omit the procedures identical to those in the previous

security proof.

• Setup phase: This phase is the same as that in the previous security proof.

• Corruption queries: This phase is also identical to the corruption phase in the

previous security proof, let CID denote the set including all the identities of

the corrupted users.
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• H1,H2,H3-queries: When answering those three hash queries, B does the same

as in the previous message confidentiality proof, so we omit them.

• ID extraction queries phase 1: This phase is almost the same as the decryp-

tion queries phase 1 described in the previous message confidentiality security

proof except that B returns the identity of the user who generates the given

ciphertext. From what we have discussed before, if B knows the private key

of the receiver of a given ciphertext, he can definitely return the encryptor’s

identity to A, when B does not know the receiver’s private key, he can still find

the encryptor’s identity because our simulated decryption process can return

plaintext and identity of the encryptor of a given ciphertext. In this phase,

we still need to calculate the probability that B would make a perfect decryp-

tion simulation. From the previous calculation in the proof of the message

confidentiality, we know that this probability is at least 1− qID
2k

.

• Challenge phase: After the ID extraction queries are properly answered, A
chooses one message m, an identity Uj as the receiver’s identity and a subset

SID of the set ID, assuming the number of elements in SID is u. A sends

them to B, B randomly chooses a index inx from the indexes of the chosen

subset SID, and encrypts m using the public key of Uj and the secret of the

sender who has the chosen index inx. B asks H1 query about the message tuple

(m, gb, gsinx , Z) to get r2∗ , asks H2 query about the message tuple Zyr2∗j to get

h2∗ . and encrypts m as (gb, gr2∗ , ysinxj yr2∗j ,m⊕h2∗), B asks the H3 function for

the purpose of generating the proving tuple ({ci}∗, {zi}∗), B appends IDj to

SID as its last element and gets a new set SID∗. We represent the generated

tuple as (C∗1 , C
∗
2 , C

∗
3 , C

∗
4 , {ci}∗, {zi}∗,SID∗) for A. Then B adds the message

tuple ((m, gb, gsinx , Z), r2∗ , Zy
r2∗ , h2∗) as a row to the T3 table.

• ID extraction queries phase 2: In this phase, the algorithm B interacts with

A in the same way as we described in the decryption queries phase 2 of the

previous security proof.

• Guess phase: After finishing the ID extraction phase 2, A would make a random

index guess inx′ from the indexes of the chosen subset about the challenge

index inx, and sends his guess to B. Algorithm B outputs 1 if and only if

inx = inx′, otherwise, it outputs 0.

Let’s consider the probability that our algorithm B would output 1, that is, A
succeeds in the previous game. We assume the chosen subset SID has u identities,

we analyze this probability under the following two different cases:

1. When Z 6= gab, the probability Pr[inx = inx′] in this case should be 1
u

for the

reason that the challenger ciphertext is random from the view of A, A cannot
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get any useful information from it, the best choice for him is to make a random

guess.

2. When Z = gab and also the intended receiver’s identity is IDj, we can find that

the challenge ciphertext produced by B is valid. According to our previous

analysis, our simulator would reject valid given ciphertext(s) with probability

at most qID
2k

during simulating the ID extraction process, which means that

with probability at least 1 − qID
2k

, B would do a perfect simulation during

the previous game played by A and B. Also, with probability 1
n
, A would

choose IDj as the receiver’s identity. As A can break our scheme with non-

negligible probability ε, the challenge ciphertext is valid when the given tuple

is a DDH tuple and the receiver’s identity is IDj, in this condition, the prob-

ability Pr[inx = inx′] should be at least 1
u

+ 1
n
(1− qID

2k
)ε

As ε is non-negligible, B can determine whether the given tuple is a valid Diffie–

Hellman tuple with advantage at least 1
n
(1− qID

2k
)ε.

Theorem 3.3 Our privacy-preserving source-verifiable encryption scheme has user

impersonation resistance under the previously defined security model assuming the

DL problem is hard in G. That is, if there is an adversary A which can break our

scheme with non-negligible probability ε, then we can construct another algorithm

B to break the DL problem successfully with non-negligible probability (ε− 1
p
)2 · 1

n
,

where p is the order of group G and n is a constant.

Proof. We show how to construct an algorithms B that solves the DL problem in G
by interacting with the adversary A under our previously defined model.

• Setup phase: On input 1k, B runs the Setup algorithm of our scheme to produce

system parameters PM which includes G, p, g,M, C. B is given a DL problem

instance (g, ga). For a given polynomial n(·), set n = n(k). B runs the

key generation algorithm Gen(·) n times, except that B sets IDj = ga for a

randomly chosen j ∈ [1, n] and does not have the corresponding user secret

sj. Namely, B gets an identity set ID = {ID1, . . . , IDn}, a user secret set

s = {s1, . . . , sj−1, sj, . . . , sn}, a public key set PK = {PK1, . . . , PKn} and a

private key set SK = {x1, . . . , xn}. B chooses three collision-resistance hash

functions: H1 : {0, 1}q × G3 → Zp, H2 : G → {0, 1}q, H3 : {0, 1}∗ → Zp
and sends them to A, H1, H2, H3 are fully controlled by B and are modeled as

random oracles. Finally, B gives A PM, ID and PK.

• Corruption phase: In order to make A more powerful, A is permitted to corrupt

some users of the given set ID with the only restriction that A cannot corrupt

the user with the identity ga. Namely, A can get the secret of certain user
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after submitting the identity of that user as the queried message. However,

when the queried message is ga, B abort. Let CID denote the set containing

all the identities of the corrupted users, the uncorrupted user set UID can be

expressed as UID = ID − CID.

• Encryption queries phase: In this phase, A can issue encryption queries for

multiple, say qe, times. For each query, A randomly chooses a message m, a

subset SID of the UID and a identity gsu from SID, and submits them to

B, B can then do the encryption for A and return the corresponding cipher-

text to A. We should notice that when B do the encryption, the three hash

functions H1, H2, H3 act the same as what we have described in our message

confidentiality proof. During this phase, we consider the following two cases:

– When gsu 6= ga, as B knows the corresponding secret sx of the chosen

identity, he can choose IDv satisfying IDv ∈ UID, IDv /∈ SID as the

receiver’s identity and easily generate a ciphertext (C1, C2, C3, C4, {ci},
{zi},SID′) and send it to the adversary A as the response.

– When gsu = ga, the given message is m, in order to respond this query,

B chooses an identity IDv satisfying IDv ∈ UID, IDv /∈ SID as the

receiver’s identity, and then does the following simulation:

r1
R←G,

r2 = H1(m, gsu , gr1 , yr1),

C1 = gr1 ,

C2 = gr2 ,

C3 = (gsugr2)xv ,

C4 = m⊕H2((gr1gr2)xv).

After (C1, C2, C3, C4) is generated, B executes the following procedures

with the inputs (C1, C2, C3, C4) and the system parameters PM to simu-

late a proof for this ciphertext.

∗ For each identity gsi in SID, B chooses ci,zi randomly from Zp
and sets ai = gzi(gAiC2)ci , bi = yzi(C3)ci , B gets four sets, {ai} =

(. . . , ai, . . . , au, . . . ),{bi} = (. . . , bi, . . . , bu, . . . ), {ci = (. . . , ci,

. . . , cu, . . . ), {zi} = (. . . , zi, . . . , zu, . . . )

∗ B sets H3({ai}, {bi}, C1, C2, C3, C4) =
∑

ci∈{ci}
ci.

∗ B returns ({ci}, {zi}) as the proof value.

B appends IDv to SID as its last element and still denotes this new user

set as SID. Eventually, B sends (C1, C2, C3, C4, {ci}, {zi},SID) to A as
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the response. We can easily find that such a cipher-text can pass the

verification algorithm of our scheme.

• Forgery phase: In this phase, A chooses a message m′ and a subset UID′ of

the set UID, and try to forge a ciphertext of the chosen message and chosen

subset. Let (C
′
1, C

′
2, C

′
3, C

′
4, {ci}

′
, {zi}

′
,UID′) be the forgery, then A sends this

forgery, m‘ and the subset UIDS ′ to B.

We assume this forgery can be accepted by the verification algorithm of our scheme

with probability ε. From the construction of our scheme, we can find that the

corresponding proof value ({ci}
′
, {zi}

′
) can be regarded as the signature of the tuple

(C
′
1, C

′
2, C

′
3, C

′
4).

We consider the adversary algorithm A as a turning machine with random tape R′.

Now, for algorithm B, B rewinds the algorithm A with the same random tape R′,

that is, in the second time, B would do the same as A until the H3 query is asked

by A to generate the proof value in the forgery phase. According to the Forking

Lemma [PS96], if we give another different H3 response to A, A would generate

another valid tuple of proof values ({ci}∗, {zi}∗) with non-negligible probability. As

the same random tape R′ is used in the two rounds until the H3 response, the

generated ciphertexts should be the same after the execution of the two rounds.

That is, in the first round, the final forgery is (C
′
1, C

′
2, C

′
3, C

′
4, {ci}

′
, {zi}

′
,UID′), and

in the second round, (C
′
1, C

′
2, C

′
3, C

′
4, {ci}∗,

{zi}∗,UID′). Let |{ci}′| = |{ci}∗| = |{zi}′| = |{zi}∗| = |UID′| = l

From the conclusion given in [PS96], if the probability that A could make a correct

forgery is ε, then the probability that the forking lemma executes successfully should

be large than (ε− 1
p
)2, where p is the order of the chosen group G.

If the Forking Lemma executes successfully, that is, the two proof tuples ({ci}
′
, {zi}

′
)

and ({ci}∗, {zi}∗) are both valid toward a certain identity in the chosen subset UID′.
As H

′
3 =

∑
c
′
i, H

∗
3 =

∑
c∗i ,H

′
3 6= H∗3 , definitely, there exists at least one index i such

that c
′
i 6= c∗i .

With probability 1
n
, we have IDj ∈ UID′ and c′j 6= c∗j , then we have

z
′
j = w − c′j(a+ r2j)

z∗j = w − c∗j(a+ r2j)

In this case, B computes a = (z∗j − z
′
j)(c

′
j − c∗j)−1 − r2j, where r2j can be found

in the table H list
1 . So the probability that B can solve the DL problem is at least

(ε− 1
p
)2 1
n
.



CHAPTER 3. PRIVACY PRESERVING SVE 48

3.5 The Server-aided Variant of Our Scheme

According to our scheme, every involved parties needs to handle amount of mod-

ular exponentiation computations when executing the specified algorithms, which

restrains the scheme from being used by nodes with low capability. In order to

make our scheme more applicable to resource-constraint devices to which costly

computations such as modular exponentiations are unaffordable, we utilize the idea

of cut-and-choose technique and modify the scheme to a server-aided one. For the

ease of describing our server-aided variant, we first propose a server-aided modu-

lar exponentiation algorithm, our server-aided scheme simply takes the server-aided

modular exponentiation algorithm as subroutine.

3.5.1 The Server-aided Modular Exponentiation Scheme

Before describing our scheme, we assume the server is honest but curious. That

is, the sever behaves honest when do what the client tells it to do, but it also

wants to get more information than what the client gives it. Our server-aided

modular exponentiation scheme involves two parties, a client and server precisely,

and contains the following four polynomial time algorithms;

• SysSetup: Given a security parameter k as input, this algorithm outputs a

cyclic group G with large prime order q, where G is a subgroup of Z∗p, p is a

secure prime and q|p− 1.

• CPreCom: When a client is asked to compute Ua, where U ∈ G and a ∈ Z,

he first randomly chooses λ elements r1, r2, . . . , rλ ∈ Zp. For each element

ri in set {ri}, the client chooses l → {0, 1, 2, 3, 4, 5}, if l = 0, he copies ri

to a new set named CheckingSet, otherwise ri is kept intact. Additionally,

the client computes two elements rλ+1 = 1 −
∑

ri∈CheckingSet
ri mod p , rλ+2 =

a −
∑

ri∈CheckingSet
ri mod p and then copies them to sets {ri}, CheckingSet re-

spectively. Finally, the client permutes {ri} randomly and gets another set

{r′i}

• SerCom: Upon receiving the message tuple (U, {r′i}), the server computes Ri =

U r′i for each r′i ∈ {r′i} and then sends sets {r′i}, {Ri} back to the client.

• CpostCom: For the two sets {r′i}, {Ri}, the client first computes

U ′ =
∏

r′i∈(CheckingSet except rλ+2)

Ri and checks whether U = U ′. If yes, the client

outputs Ua =
∏

r′i∈(CheckingSet except rλ+1)

Ri, otherwise, the clients outputs a symbol

of false and drops the received values.
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3.5.2 Implementation Considerations of The Server-aided

Modular Exponentiation Scheme

Our server-aided modular exponentiation scheme embeds a subset sum problem,

which is defined previously, to make the result computing from the received val-

ues correct and checkable. That is, it enforces attackers to first solve the subset

sum problem when they intend to get more information from the transcript of the

interaction between the client and the server.

Form what we mentioned above, the first problem we need to consider is the

average number of times an attacker needed to solve a modified-Knapsack instance,

which is determined by parameter λ. Here we denote the average number of times

with the symbol NUM and assume the attacker only executes brute-force attack.

Assuming there are λ + 2 elements in set {ri} of our scheme and there are at least

2 elements in the CheckingSet set, then:

NUM = (
λ+2∑
i=2

1 + Ci
λ+2

2
)/(λ+ 1)

=
(λ+ 1 + 2λ+2 − (λ+ 2 + 1))

2(λ+ 1)

=
2λ+2 − 2

2(λ+ 1)

=
2λ+1 − 1

λ+ 1
.

Clearly, when the security parameter is k, to make the brute-force attack infeasible,

the parameter λ should be chosen reasonably large, for example, as close as k.

After considering the choice of λ, we further evaluate the computational effi-

ciency of our scheme comparing to modular exponentiation computation without

server-aided technique. Assuming a client is trying to compute Ua using our server-

aided technique, the client still has to calculate (|CheckingSet|+1) times of multipli-

cation utilizing our scheme, form the previous scheme we can find the average value

of |CheckingSet| should be λ
6
. When a user uses the fast multiplication technique,

the range of the number of times of multiplication needed by the client should be

[|a| − 1, 2(|a| − 1)] where |a| denotes the length of a’s binary representation. Here,

the average value should be 3(|a|−1)
2

. Through simple comparison, we find our server-

aided modular exponentiation scheme should be more efficient as long as |a| > λ
9
,

and we think this condition is easy to satisfy in the implementation.
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3.5.3 The Security of The Server-aided Modular Exponen-

tiation Scheme

Our server-aided modular exponentiation scheme holds two security properties, cor-

rectness and checkability respectively. We declare that the security of our server-

aided modular exponentiation scheme is based on the subset sum problem. Here,

we give a sketch of the description of the proof.

Proof. Our proposed scheme can do checkable and correct modular exponenti-

ation assuming the subset sub problem is hard. Namely, if there is an adversary

A which can break our scheme with non-negligible probability ε in polynomial time,

then it can itself compute U1 from the two sets {r′i}, Ri with ε in polynomial time.

Then, It can further choose correctly a subset Rsub of {r′i} such that
∑

r′i∈Rsub
r′i = 1

with probability ε in polynomial time. So given the set {r′i}, the target 1 and an

adversary A to our scheme, we can easily construct another PPT algorithm to solve

an instance of the subset sum problem with the same non-negligible probability ε as

that of A to our scheme. As the subset sum problem is NP-complete and there is no

PPT solution that can solve it, so our scheme is also secure.

3.6 Summary

In this chapter, we consider the problem of maintaining message confidentiality

and user privacy in communication networks. We show that achieving both security

properties simultaneously is not a trivial task if we aim to maintain a strong security

level for both properties. Moreover, we propose a new notion named conditional

privacy which requires that the intended receiver is able to recover the sender’s

identity. We argue that it is important in network communications when the receiver

wants to send a response to the sender. We define three security models to capture

the three security properties, message confidentiality, user conditional privacy and

user impersonation resistance respectively, and propose a concrete scheme that is

proven secure under the random oracle model.

We only considered the sender’s conditional privacy in this work. A natural

extension is to also consider the receiver’s conditional privacy. Here, by saying

receiver’s conditional privacy, we mean a message sender can convince others that

it is eligible to communicate with its corresponding communicator without leaking

the privacy of that user. We argue that this property is reasonably helpful when

where there may exist some access policies to prohibit some communication channels,

where each channel is established between two users. We leave it as our next work.



Chapter 4

Group-based Source-destination

Verifiable Encryption with

Blacklist Checking

In this chapter, we first consider the message sender and receiver’s conditional pri-

vacy in a more complex scenario where there exists a communication blacklist. Un-

like the full privacy preservation problem, our conditional one ensures that the

message sender’s as well as the intended receiver’s privacy are well preserved while

their legitimation can still be publicly verified. Besides, the actual sender of a en-

crypted message can only be identified by the intended receiver. Furthermore, when

numbers of communication channels are blocked by the authority, we also address

the issue of proving the legitimation of the communication channel between a sender

and its intended communicator. To the best of our knowledge, previous works only

solve partial of our former problem and there exists no thorough solution capturing

our aforementioned two problems simultaneously. With this chapter, we present a

encryption scheme which keeps not only the transmitted message confidential but

also the user conditional privacy preserved, our scheme also empowers the message

sender the capability to give a proof of the legitimation of the communication chan-

nel. We provide several security models for our scheme and prove its security with

the help of the random oracle.

4.1 Introduction

Background. The security concerns of the public key encryption are mainly fo-

cused on the secrecy of the encrypted data. Some well studied security models,

indistinguishably, or non-malleability, under chosen plaintext, or ciphertext attacks

(IND/NM-CPA/CCA) [DDN91, GM84, RS91], are examples catering to different
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security requirements of the encrypted data. However, since encryption schemes

are deployed in various hostile environments, the user privacy preservation prob-

lem should be considered seriously when attackers are more interesting in the exact

parties participated in the communication.

In fact, the user privacy preservation problem have been the subject of for-

mal studies in cryptographic literature, for example, the primitives ring signature

[RST01] and group signature [CvH91] are ideal tools to protect one message sender’s

privacy while still keeps it authenticated. In the area of basic public key encryption

(PKE), since the sender privacy preservation is thought to be an inherent prop-

erty, literature related to user privacy preservation are mainly about key-privacy

[BBDP01], or anonymity, which are notions the same as the receiver privacy preser-

vation property mentioned here. In this chapter, we particularly show our interest

on the user conditional privacy preservation property in PKE, which is different

from the conventional one. The conditional privacy preservation notion keeps not

only the privacy of the message sender but also its communicator well preserved.

Furthermore, it also ensures that the legitimation of both the message sender and

the receiver can be publicly verified. Besides, it also requires that only the intended

message receiver of a ciphertext can discover the actual message sender.

Apart from that, We take one step further by considering a more complex sce-

nario where the authority is allowed to block communication channels between spe-

cific message senders and receivers, and those blocked channels are publicly pub-

lished as blacklist by the authority. Under such condition, the message sender

should be empowered with capability to prove the legitimation of the communica-

tion channel between it and its communicator without leaking their privacy.

There exists primitive which can solve partial of our former problem. For exam-

ple, the ring signcryption [HSMZ05b] can keep the transmitted message confidential

and the legitimation of the message sender publicly verified but cannot maintain the

conditional privacy preservation property of the message receiver. However, there

is no thorough solution tackling all the two aforementioned problem properly.

Our Contribution. In this chapter, we present a group-based source-destination

verifiable encryption scheme with blacklist checking. Our solution utilize the zero-

knowledge proof of membership and also zero-knowledge of inequality technique to

handle the two previously mentioned problem respectively.

Considering the security concerns of our scheme, we define three security mod-

els, which capture the message confidentiality, the sender privacy preservation, the

receiver privacy preservation accordingly. We then give security proofs under our

predefined models with the help of the random oracle.
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Related Work. Among all the existed primitives, the most promising one related

to our problem is the ring signcryption, which was first proposed by Huang et al.

[HSMZ05b]. As it inherits properties from both the ring signature [RST01] and

public key encryption, this primitive provides anonymity, authenticity of the sender

along with the message confidentiality. Following works [DC06] of this primitive also

consider protecting the receiver’s privacy in the multi-recipient setting. Although

some ring signcrypiton schemes have been proven to be insecure latter, this primitive

remains to be a potential candidate when deals with problems about maintaining

message confidentiality and user privacy simultaneously. However, because of the

inherent property of the ring-based construction, this primitive always considers the

complete anonymous of the message sender rather than the user conditional privacy

preservation.

The user conditional privacy preservation is a more practical and attractive re-

search problem in real world applications comparing to the complete privacy preser-

vation and many existing works have considered it in some concrete scenarios. In

[LLZ+08], the authors addressed the issue on anonymous authentication for messages

with traceability between the on-board-units (OBUs) and roadside units (RSUs) in

vehicular ad hoc networks (VANETs), this conditional privacy preservation protocol

relies on the authority to trace the origin of the authenticated messages. Another

similar authentication with conditional privacy example can be found in [HBCC13],

where the authors considered not only user conditional privacy but forward user

revocation in wireless networks. In [ELO13], pseudonym techniques are used to

construct conditional privacy preservation methods protecting the privacy of users

in the NFC electronic payment environment.

The receiver privacy preservation, or key-privacy, problem was first formalized

by M. Bellare et al. in [BBDP01] and latter extended in [ABC+08]. In their paper,

the receiver’s privacy means that an eavesdropper, even in possession of a given

ciphertext and a list of public keys, can not tell which specific key is the one used

to generate the given ciphertext, this is the reason why they call this property key-

privacy or anonymity. The authors define practical security models about the key-

privacy and further state that although some classical encryption schemes, such as

the El Gamal scheme [Gam85] and the Cramer-Shoup scheme [CS98b], have already

provided such key-privacy property, encryption schemes with careless construction,

especially for those schemes with ciphertexts including the receivers’ public keys

such as broadcast encryption [GSY99], still cannot hold this requirement. Key-

privacy requirement is always considered in multi-receiver settings where multiple

intended receivers are conventionally included in the generated ciphertext for the

benefit that they can be easily identified by the message sender. In [HCW13] and also

[ZM15], the authors discussed key-privacy in multi-receiver encryption scheme and
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used extended receiver sets which include users who are not the intended receivers

to hide the real receiver set. The anonymous broadcast encryption in [BBW06] is

the first work considering receiver’s privacy in broadcast encryption schemes, where

a broadcast encryption scheme was constructed achieving anonymity and IND-CCA

security against static adversaries from a key-private, IND-CCA secure PKE scheme,

however, their technique is only analyzed in Random Oracle Model. Latter, Libert

et at. in [LPQ12] propose an anonymous broadcast encryption scheme with adaptive

security in the Standard Model.

Chapter Organization. The rest of Chapter 4 is organized as follows: Section 4.2

presents the formal definition of our source verifiable conditional privacy preserving

encryption scheme, this part also defines four security models for the purpose of

proving the security of our scheme. Our concrete construction of the scheme is

presented in detail in Section 4.3. In Section 4.4, we prove the security of our scheme

under the previously defined models respectively. At the end of this chapter, we give

a conclusion and describe our future work.

4.2 Definitions and Security Model

4.2.1 Definition of the GSVEBC

In a group-based source-destination verifiable encryption with blacklist checking

(GSVEBC) scheme, there are three types of participants, the message sender, ver-

ifier and receiver, involved. The sender creates and sends encrypted messages, or

ciphertexts, to its intended receivers, the verifier is a party which holds some block

rules, and it is the verifier that can verify whether a given ciphertext comes from

a given legitimated sender set and goes to a given legitimated receiver set without

knowing the exact sender and receiver of that ciphertext. Besides, the verifier can

also check whether the communication channel between the sender and receiver of

a given ciphertext is blocked basing on the its block rules, also without knowing

both of them. The receiver of a ciphertext is the only party who can decrypt that

ciphertext and recover the original message. We give a definition of our GSVEBC

scheme as follows;

Definition 4.1 (GSVEBC) A group-based source-destination verifiable encryp-

tion scheme with blacklist checking (GSVEBC) scheme consists of the following

polynomial time algorithms.

• Setup(1k): Taking 1k as input, this algorithm outputs the public parameter PM.
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• KeyGen(PM): For each user, this algorithm, on input PM, outputs a public key

pair (pk, sk). In order to make the notation more clear, let (pks, sks) denotes

a sender’s key pair and (pkr, skr) be a receiver’s key pair.

• Enc(PM,m, sks, pkr,PKS,PKR): This polynomial time algorithm can be exe-

cuted by every message sender. Given a message m,PM, two users’ public key

sets PKS,PKR, the message sender’s private key sks and the receiver’s public

key pkr, this algorithm outputs a GSVEBC ciphertext C.

• Ver(PM, C): The verification algorithm is deterministic. Taking PM and a

given PKESDVBRC ciphertext C as inputs, that algorithm would first check

whether the ciphertext comes from a given legitimated sender set and is sent

to a given legitimated receiver set. Note that the given legitimated sender and

receiver set can be included in the ciphertext C. After that, this algorithm

can also check whether the communication between the sender and receiver of

that given ciphertext C is permitted according to the block rules, which may

be included in PM or can be given by an authority to the verifier separately.

This algorithm returns a symbol ”True” if and only if all the above checks

are successfully complete, otherwise, it returns a symbol ”False”. For privacy

consideration, this algorithm is executed without the knowledge of the exact

sender and receiver of the ciphertext C.

• Dec(PM, C, skr): The decryption algorithm Dec is deterministic and executed

by the intended receiver. When a receiver gets C, he would first execute the

previous verification algorithm Ver, if Ver returns ”False”, he just drop this

message. Otherwise, the receiver executes Dec, which takes PM, C and the

receiver’s private key skR as inputs, and recovers the original message m.

Definition 4.2 (Message Confidentiality) To capture the message confidential-

ity property, considering the following game between a simulator S and an adversary

A:

• Setup phase: At the setup phase, the Setup algorithm of the scheme, which

takes 1k as input, is first run by S to produce the system parameter PM. Given

a polynomial n(·), S runs KeyGen, with PM as input, n(k) times. After all

executions are properly finished, S gets a public key set PK, a private key set

SK, where |PK| = |SK| = n(k). The adversary A is given PM and PK.

• Decryption phase 1: A can also ask decryption queries adaptively to S. That

is, when A provides S a valid ciphertext, S needs to return the corresponding

plaintext of this ciphertext to A.
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• Challenge phase: A chooses two messages m0,m1 fromM, two public keys pks,

pkr from PK as the sender and receiver’s public key respectively, two subsets

PKS,PKR from PK such that pks ∈ PKS, pkr ∈ PKR, |PKS| ≥ 2, |PKR| ≥ 2,

and then sends them to the simulator. Upon receiving those information, S
randomly chooses a bit b from {0, 1} and encrypts mb using the encryption

algorithm of our scheme, which takes mb, sks,pkr,PKS,PKR as inputs. After

that, the generated ciphertext is given to A as the challenge ciphertext.

• Decryption phase 2: After receiving the challenge ciphertext, A can still query

the decryption oracle adaptively with the only restriction that the queried ci-

phertext must be different from the challenge one.

• Guess phase: At the end of the game, A outputs the guess b
′

from {0, 1} about

b. If b
′
= b, then A succeeds in the game, otherwise A fails.

Remark: A is allowed to ask hash queries under the random oracle model.

According to the defined model, let AdvIND-CCA
A denote the probability that A wins

the above game over random guess, then

AdvIND-CCA
A =

∣∣∣∣Pr [b′ = b]− 1

2

∣∣∣∣

Definition 4.3 (Sender Anonymity) Setting the security parameter as k, then

given our scheme PKESDVBRC=(Setup, KeyGen, Enc, Ver, Dec), a polynomial n(·),

a polynomial probabilistic time (PPT) adversary A and a simulator S, let’s consider

the following game, which captures the sender privacy property, played by A and S:

• Setup phase: At the setup phase, the Setup algorithm of the scheme, which

takes 1k as input, is first run by S to produce the system parameter PM. Given

a polynomial n(·), the simulator runs KeyGen, with PM as input, n(k) times.

After all executions are properly finished, S gets a public key set PK, a private

key set SK, where |PK| = |SK| = n(k). The adversary A is given PM and

PK.

• Sender extraction phase 1: When A makes such kind of query, he submits a

ciphertext to S, then he gets the public key of the original encryptor of that

ciphertext when it is valid, otherwise, he gets nothing.

• Challenge phase: A chooses one message m from M, pkr from PK as the

receiver’s public key and two subsets PKS,PKR from PK such that pkr ∈
PKR, |PKS| ≥ 2, |PKR| ≥ 2, then sends them to S, S randomly chooses a



CHAPTER 4. GBSD 57

public key pks from the chosen subset PKS, and encrypts m by taking pks,

sks,pkr, PKS,PKR as inputs. The corresponding ciphertext is given to A as

challenge ciphertext.

• Sender extraction phase 2: After receiving the challenge ciphertext, A can still

ask sender extraction queries with the only constraint that the queried cipher-

text must not be identical to the challenge one, and the simulator behaves the

same as in the sender extraction phase 1.

• Guess phase: At the end of the game, A outputs his guess pk′s about the public

key of the sender from the chosen subset PKS. If pk′s = pks, then A succeeds

in the game, otherwise A fails.

Remark: Under the random oracle model, A is allowed to ask hash queries.

According to the defined model, let AdvSender-Anonymity
A denote the probability that A

wins the above game over random guess, then

AdvSender-Anonymity
A =

∣∣∣∣Pr [pk′s = pks]−
1

|PKS|

∣∣∣∣ ,
where |PKS| represents the size of the subset PKS

Definition 4.4 (Receiver Anonymity) Setting the security parameter as k, then

given our scheme PKESDVBRC=(Setup, KeyGen, Enc, Ver, Dec), a polynomial n(·),

a PPT (polynomial probabilistic time) adversary A and a simulator S, let’s consider

the following game, which captures the receiver privacy property, played by A and

S:

• Setup phase: At the setup phase, the Setup algorithm of the scheme, which

takes 1k as input, is first run by S to produce the system parameter PM. Given

a polynomial n(·), the simulator runs KeyGen, with PM as input, n(k) times.

After all executions are properly finished, S gets a public key set PK, a private

key set SK, where |PK| = |SK| = n(k). The adversary A is given PM and

PK.

• Receiver extraction phase 1: In this phase, when A submits ciphertext to S,

S needs to send back the public key of the receiver of that ciphertext to A as

response when it is valid. Otherwise, A gets nothing.

• Challenge Phase: In the phase, A randomly chooses a message m from M,

pks as the sender’s public key and two public key sets PKS, PKR such that

pks ∈ PKS, |PKS| ≥ 2, |PKR| ≥ 2. A then sends those information to S. S
randomly chooses pkr ∈ PKR as the receiver’s public key and encrypts message
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m using algorithm Enc, which takes m, sks, pks, pkr,PKS,PKR as inputs. S
sends the generated ciphertext as response to A.

• Receiver extraction phase 2: After the challenge phase, A can still ask S to

extract the public key of the receiver of a valid ciphertext for him adaptively,

the only restriction is that A cannot use the challenge ciphertext as a queried

message in this phase.

• Guess phase: At the end of the game, A would make a guess pk′r about the

receiver’s possible public key from the subset PKR. If pk′r = pkr, then A
succeeds in the game, otherwise A fails.

Remark:A is allowed to ask hash queries under the random oracle model.

According to the defined model, let AdvReceiver-Anonymity
A denote the probability that

A wins the above game over random guess, then

AdvReceiver-Anonymity
A =

∣∣∣∣Pr [pk′r = pkr]−
1

|PKR|

∣∣∣∣ ,
where |PKR| represents the size of the chosen subset PKR.

4.3 Our Concrete Construction

We first give a group-based source-destination verifiable encryption scheme but with-

out blacklist checking, then we extend this scheme to one with blacklist checking.

4.3.1 A Simple Construction without Blacklist Checking

Setting the security parameter as k, our scheme works as follows;

• Setup(1k): On input 1k, it produces a cyclic group G of large prime order q

with generator g, where G is a subgroup of Z∗p and q|p − 1. This algorithm

also outputs a description of the message spaceM = {0, 1}q and a ciphertext

space C. G, q, g,M, C are considered as the system parameter PM and default

inputs to all the following algorithms. PM also includes two collision resistance

hash functions: H1 : {0, 1}q ×G3 → Zq, H2 : G→ {0, 1}q.

• KeyGen(·): For one user, Ui for example, he randomly chooses xi ∈ Zq as

his private key and computes yi = gxi ∈ G as his corresponding public key.

Assuming the public key set PK contains all user’s public key.

• Enc(m, sks, pkr,PKS,PKR): When a sender, Ui, wants to send a message

to a receiver, Uj, for the purpose of illustrating our scheme more clear, lets
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Si,Ri denotes the sender Ui and receiver Uj’s secret key sks, skr respectively,

accordingly, the sender and receiver’s public key should be pks = gSi and

pkr = gRj . Given a message m ∈M, the sender encrypts m as follows;

r1
R←Zp,

C1 = gr1 , C2 = gSi·r1 , C3 = gRj ·r1 , C4 = gRj ·Si

r2 = H1(m, gSi , gRj , C1, C2, C3, C4), C5 = gr2 ,

C6 = m⊕H2(gRj ·(r1+r2)).

After that, the sender chooses a subgroup PKS ⊂ PK, which includes the

sender’s public key gSi , and then prove its legitimation in that group. Here,

we utilize the zero-knowledge proof to deal with the group membership issue.

That is, the sender needs to do a proof like:

pf(Si : logg g
Si = logC1

C2 = loggr1 (gSi)r1 ∧ gSi ∈ PKS).

To do such a proof, the sender does as follows;

– For each public key gxl ∈ PKS except gSi , the sender chooses challenge

and response cl, zl randomly from Zq respectively, then it computes two

commitments

αl = gzl(gxl)cl , βl = (C1)zl(C2)cl .

– For the sender’s own pubic key gSi , it chooses wi ∈ Zq and sets the

commitments as

αi = gwi , βi = (C1)wi .

Let {α} denote commitments set {. . . αl . . . αi . . . } and {β} denote com-

mitments set {. . . βl . . . βi . . . }, where |α| = |β| = |PKS|. The sender

computes its challenge and response as:

h = H3({α}, {β}, C1, C2, C3, C4, C5, C6),

ci = h−
∑

gxl∈PKS

cl, zi = wi − ciSi.

– The sender sets the challenges set as {c} = {. . . ci . . . cl . . . } the responses

set as {z} = {. . . zi . . . zl . . . }, and value this two sets {c}, {z} as the proof

value.

The sender needs still to prove to the verifier that the generated ciphertext

goes to a legitimated receiver. To do this, the sender chooses a receiver subset

PKR ⊂ PK, which includes the receiver’s public key and have to do a proof
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like:

pf(r1 : logg C1 = loggRj C3 ∧ gRj ∈ PKR),

the sender generates the proof as follows;

– For each public key gxt ∈ PKR except the intended receiver’s public key

gRj , the sender chooses challenge and response ĉt, ẑt randomly from Zq
respectively, then it computes two commitments

α̂t = gẑt(C1)ĉt , β̂t = (gxt)ẑt(C3)ĉt .

– For the intended receiver’s pubic key gRj , it chooses ŵj ∈ Zq and sets the

commitments as

α̂j = gŵj , β̂j = (gRj)ŵj .

Let {̂α} denote commitments set {. . . α̂t . . . α̂j . . . } and {̂β} denote com-

mitments set {. . . β̂t . . . β̂j . . . }, where |{̂α}| = |{̂β}| = |PKR|. The sender

computes its challenge and response as:

ĥ = H3({̂α}, {̂β}, C1, C2, C3, C4, C5, C6), ĉj = ĥ−
∑

gxt∈PKR

ĉt, ẑj = ŵj− ĉjr1

– The sender sets the challenges set as {̂c} = {. . . ĉj . . . ĉt . . . } the responses

set as {̂z} = {. . . ẑj . . . ẑt . . . }, and value this two sets {̂c}, {̂z} as the proof

value.

After the two proofs are finished, the final ciphertext should be CT = (C1, C2,

C3, C4, C5, C6,PKS, {c}, {z},PKR, {̂c}, {̂z}).

• Ver(CT ): Every user can act as the verifier. Upon receiving a given ciphertext

like the above format CT = (C1, C2, C3, C4, C5, C6,PKS, {c}, {z},PKR, {ĉ},
{ẑ}), a verifier does the following steps to verify the validity of the ciphertext:

– For the ciphertext components (C1, C2, C3, C4, C5, C6,PKS, {c}, {z}), the

verifier recomputes

α
′

l = gzl(gxl)cl , β
′

l = (C1)zl(C2)cl for each gxl ∈ PKS

and gets two sets {α′} = {. . . α′l . . . }, {β
′} = {. . . β ′l . . . }, then it checks

whether the equation

H3({α′}, {β ′}, C1, C2, C3, C4, C5, C6) =
∑
cl∈{c}

cl
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holds. If no, it returns a symbol of false and drops this ciphertext, oth-

erwise it continues to the next step.

– For the ciphertext components (C1, C2, C3, C4, C5, C6,PKR, {̂c}, {̂z}), the

verifier further computes

α̂′t = gẑt(C1)ĉt , β̂′t = (gxt)ẑt(C3)ĉt for each gxt ∈ PKR.

Then it gets two sets

{̂α′} = {. . . α̂′t . . . α̂′j . . . }, {̂β′} = {. . . β̂′t . . . β̂′j . . . }.

The verifier finally checks whether the equation

H3({̂α′}, {̂β ′}, C1, C2, C3, C4, C5, C6) =
∑
ĉt∈{̂c}

ĉt

holds. If no, the verifier returns a symbol of false and drops this cipher-

text, otherwise it returns a symbol of true relay this ciphertext to the

receiver set.

• Dec(CT,Rx): This decryption algorithm are executed by all the possible re-

ceivers of a given ciphertext. When given a copy of the ciphertext CT =

(C1, C2, C3, C4, C5, C6,PKS, {c}, {z},PKR, {̂c}, {̂z}), all possible receivers in

set PKR do as following:

– All possible receivers in PKR would first execute the verification algo-

rithm Ver of our scheme as a subroutine. If Ver returns false, they drop

CT and returns a symbol of failure, otherwise they continue to the next

step.

– Each user Ux in PKR uses its secret key Rx to check whether equation

CRx
1 = C3 holds. If not, it drops CT and returns a symbol of failure,

otherwise, this user goes to the next step.

– For each of the users whose secret key satisfying the above equation, it

first gets the public key, which is denoted by gs
′
, of the original sender of

the given CT by computing

gs
′
= (C5)Rx

−1

,

then it recover the encrypted message, denoted by m′, as

m′ = C6 ⊕H2((C1C5)Rx).
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Table 4.1: The Blocklist

< . , . >
< gS, gR >
< . , . >

After getting gs
′

and m′, it would check whether the equation

C5 = gH1(m′,gs
′
,gRx ,C1,C2,C3,C4)

holds, if yes, this user outputs gs
′

as the public key of the message sender

and m′ as the original message. Otherwise, this user drops CT and

returns a symbol of failure.

4.3.2 Our Concrete Construction with Blacklist Checking

Basing on the former scheme, We give another construction to empower our scheme

with blacklist checking capability. Here, for simplicity, a block rule can be expressed

as < pks, pkr >, where the former one is one specific sender’s and the other is one

specific receiver’s public key respectively, and is used to disable the communication

from one message sender to one receiver. Assuming the blacklist, BL for short,

includes several block rules and is publicly accessible, our scheme assures that a

verifier can check whether a given ciphertext should be rejected according to the

BL.

By applying the technique of zero-knowledge proof of inequality of two discrete

logarithms, which was proposed in [CS03a], we find a way to extend our original

scheme to a scheme with blacklist checking, which only add a set of proof values to

the original one. Because those two schemes are pretty similar, we only give explicit

description of the most different part between them.

Our public key encryption scheme with source-destination verifiability and block

rules checking (PKESDVBRC) consists of the following polynomial time algorithms.

• Setup(1k): This algorithm acts the same as the previous scheme.

• KeyGen(·):This algorithm is also identical to the aforementioned scheme.

• Enc(m, sks, pkr,PKS,PKR): Apart from the encryption process of the encryp-

tion scheme of the previous scheme, here the sender also needs to generate a

proof to convince the verifier that the generated ciphertext should not be

blocked according to the block rules. Assuming there is a blacklist like fol-

lows;

For each block rule, < gS, gR > for example in Table 4.1, in the blacklist, the
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message sender needs to prove that a ciphertext does not come form a user

with identity gS or go to a user with identity gR. That is, according to our

scheme, the message sender should produce a proof

pf((Si, r1) : logC1
C2 6= logg g

S ∨ logg C1 6= loggR C3)

for this rule. Assuming there is a message sender with identity gSi and one

ciphertext generated by that sender is sent to a receiver with identity gRj , the

message sender generates such a proof pf for that ciphertext basing on the

following different types of ciphertext;

– If logC1
C2 = logg g

S and logg C1 6= loggR C3, that is gSi = gS and gRj 6=
gR:

∗ The message sender chooses δ randomly from Zp and sets γ = Si · δ,
then it tries to give a proof like

pf((γ, δ) : St0 = gγ/(gS)δ 6= 1 ∨ St1 = (gr1)γ/(gSir1)δ = 1).

As the above proof is to release the truth that gSi 6= gS, so the

message sender needs to simulate such a proof. That is, the message

sender first chooses a challenge CH ∈ Zq and two responses e0, e1 ∈
Zq respectively, and sets the two commitments

COM0 = St0
CH(g)e0/(gS)e1 , COM1 = St1

CH(gr1)e0/(gSir1)e1 .

∗ The message sender chooses δ̂ randomly from Zp and sets γ̂ = r1 · δ̂,
then gives a real proof

pf((γ̂, δ̂) : Ŝt0 = (gR)γ̂/(gRjr1)δ̂ 6= 1 ∨ Ŝt1 = (g)γ̂/(gr1)δ̂ = 1).

That is, the message sender first chooses two elements ŵ0, ŵ1 ∈ Zq
and computes the two commitments

ĈOM0 = (gR)ŵ0/(gRjr1)ŵ1 , ĈOM1 = (g)ŵ0/(gr1)ŵ1 .

The sender then computes a hash value

X = H3(COM0, COM1, ĈOM0, ĈOM1)

and sets the challenge of this proof as ĈH = X − CH, the two
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responses should be

ê0 = ŵ0 − ĈH × γ̂, ê1 = ŵ1 − ĈH × δ̂

respectively.

∗ After all the required values are properly computed, let pf denote

the proof values, then

pf = (St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1).

– If logC1
C2 6= logg g

S and logg C1 = loggR C3, that is gSi 6= gS and gRj =

gR:

∗ The message sender chooses δ̂ randomly from Zp and sets γ̂ = r1 · δ̂,
and it tries to give a proof like

pf((γ̂, δ̂) : Ŝt0 = (gR)γ̂/(gRjr1)δ̂ 6= 1 ∨ Ŝt1 = (g)γ̂/(gr1)δ̂ = 1).

As the above proof is to release the truth that gRj 6= gR, so the

message sender needs to simulate such a proof. That is, the message

sender first chooses a challenge ĈH ∈ Zq and two responses ê0, ê1 ∈
Zq respectively, and sets the two commitments

ĈOM0 = Ŝt0
ĈH

(gR)ê0/(gRjr1)ê1 , ĈOM1 = Ŝt1
ĈH

(g)ê0/(gr1)ê1 .

∗ The message sender chooses δ randomly from Zp and sets γ = Si · δ,
then it gives a proof

pf((γ, δ) : St0 = (g)γ/(gS)δ 6= 1 ∨ St1 = (gr1)γ/(gSir1)δ = 1).

That is, the message sender first chooses two elements w0, w1 ∈ Zq
and computes the two commitments

COM0 = (g)w0/(gS)w1 , COM1 = (gr1)w0/(gSir1)w1 .

The sender then computes a hash value

X = H3(COM0, COM1, ĈOM0, ĈOM1)

and sets the challenge of this proof as CH = X − ĈH, the two
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responses should be

e0 = w0 − CH × γ, e1 = w1 − CH × δ

respectively.

∗ After all the required values are properly computed, let pf denote

the proof values, then

pf = (St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1)

– If logC1
C2 6= logg g

S and logg C1 6= loggR C3, that is gSi 6= gS and gRj 6=
gR:

∗ The message sender chooses δ randomly from Zp and sets γ = Si · δ,
then it gives a proof like

pf((γ, δ) : St0 = (g)γ/(gS)δ 6= 1 ∨ St1 = (gr1)γ/(gSir1)δ = 1).

That is, the message sender first chooses two elements w0, w1 ∈ Zq
and computes the two commitments

COM0 = (g)w0/(gS)w1 , COM1 = (gr1)w0/(gSir1)w1 .

The sender then chooses a challenge of this proof CH ∈ Zq, the two

responses should be

e0 = w0 − CH × γ, e1 = w1 − CH × δ

respectively.

∗ The message sender chooses δ̂ randomly from Zp and sets γ̂ = r1 · δ̂,
then it gives a proof like

pf((γ̂, δ̂) : Ŝt0 = (gR)γ̂/(gRjr1)δ̂ 6= 1 ∨ Ŝt1 = (g)γ̂/(gr1)δ̂ = 1).

That is, the message sender first chooses two elements ŵ0, ŵ1 ∈ Zq
and computes the two commitments

ĈOM0 = (gR)ŵ0/(gRjr1)ŵ1 , ĈOM1 = (g)ŵ0/(gr1)ŵ1 .

The sender then computes a hash value

X = H3(COM0, COM1, ĈOM0, ĈOM1)
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and sets the challenge of this proof as ĈH = X − CH, the two

responses should be

ê0 = ŵ0 − ĈH × γ̂, ê1 = ŵ1 − ĈH × δ̂

respectively.

∗ After all the required values are properly computed, let pf denote

the proof values, then

pf = (St0, St1, CH, e0, e1, Ŝt0, Ŝt1, ĈH, ê0, ê1).

Assuming there are n rules in the blacklist, the message sender needs to gen-

erate n proofs accordingly using the technique we described above. Let {pf }
denote the collection of all the n proofs ,then the full ciphertext CT should be

(C1, C2, C3, C4, C5, C6,PKS, {c}, {z},PKR, {̂c}, {̂z}, {pf })

• Ver(CT ): During the execution of this algorithm, a verifier would first do the

same as what in the verification algorithm of the previous scheme. Further-

more, to check the block rules, for each proof (St0, St1, CH, e0, e1, Ŝt0, Ŝt1,

ĈH, ê0, ê1) in {pf } and its corresponding rule < gS, gR >, the verifier com-

putes

COM ′
0 = St0

CH(g)e0/(gS)e1 , COM ′
1 = St1

CH(gr1)e0/(gSir1)e1 ,

ĈOM
′
0 = Ŝt0

ĈH
(gR)ê0/(gRjr1)ê1 , ĈOM

′
1 = Ŝt1

ĈH
(g)ê0/(gr1)ê1)

and then checks whether the equation

CH + ĈH = COM ′
0 + COM ′

1 + ĈOM
′
0 + ĈOM

′
1

holds. If yes, the verifier turns to the next proof in the list {pf }, otherwise it

drops this ciphertext. The verifier would relay the ciphertext if all the proofs

in {pf } are successfully checked.

• Dec(CT,Rj): This algorithm shares no difference from that in the the previous

scheme.

4.4 Security Proofs

Theorem 4.1 Our scheme maintains message confidentiality under the previously

defined message confidentiality model assuming the DDH problem is hard in G when
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hash functions H1, H2, H3 are modeled as random oracles. Concretely, if there is an

adversary A which can break our scheme with non-negligible probability ε, supposing

A makes at most qH1,qH2,qH3 queries to the H1, H2, H3 hash oracles respectively, and

qD queries to the decryption oracle, then we can construct another algorithm B that

solves the DDH problem in G with advantage at least 1
n
(1 − qD

2k
)ε, where k is the

security parameter and n is a constant.

Proof. We show how to construct an algorithm B that solves the DDH problem by

interacting with an adversary A of our scheme under our predefined model.

• Setup phase: On input 1k, B runs the Setup algorithm of our scheme to produce

system parameters PM which includes G, p, g,M, C and the block rule list

BRL. B is then given a DDH tuple (ga, gb, Z). For a given polynomial n(·),
set n = n(k). B runs the key generation algorithm Gen(·) n times, except

that B sets pkj = ga for a randomly chosen j ∈ [1, n] and does not have

the corresponding private key xj. Namely, B gets a public key set PK =

{pk1, . . . , pkn} and a private key set SK = {x1, . . . , xj−1, xj+1, . . . , xn}. B
chooses three collision-resistance hash functions: H1 : M× G5 → Zp, H2 :

G → {0, 1}|M|, H3 : {0, 1}∗ → Zp and sends them to A, H1, H2, H3 are fully

controlled by B and are modeled as random oracles. Finally, B gives A PM

and PK.

• H1-query phase: A can issue queries to the hash function H1. In order to re-

spond those queries, B keeps a hash table H table
1 . When A asks the hash value

of the v-th message tuple (m, gSi , gRj , gr1 , (gSi)r1 , (gRj)r1 , gSi·Rj)v, B checks

whether this tuple has appeared before, :

– If yes, B responds A with the record h1v.

– Otherwise, B chooses a random value h1v from Zp, and sets this value as

the hash value of the queried message tuple, B responds A with h1v and

adds this message and hash value pair to the H table
1 .

• H2-query phase: A can also ask H2 hash queries. To answer this kind of query,

the algorithm B maintains a H table
2 table which has two columns.

When the u-th query (gRj ·(r1+r2))u is made, B checks whether this tuple has

appeared before:

– If yes, B responds A with the corresponding record h2j.

– Otherwise, B chooses a random value h2u from {0, 1}|M|, where |M| de-

notes the length of the message in M, and sets this value as the hash of

the queried message tuple, B responds with h2u and adds this message

and hash value pair to the H table
2 .
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• H3-query phase: A can ask H3 queries. B creates a hash table H table
3 to respond

this kind of query. For the t-th query tuple < {0, 1}∗ >t, B acts as following:

– B first check whether this tuple has appeared before, if yes, B responds

with the existing value h3t to A.

– Otherwise, B chooses a random value h3t from Zp , and sets it as the hash

value of the queried message tuple. B responds A with h3t and adds this

message and hash value pair to the H table
3 .

Remark: The three hash oracles can be asked interchangeably.

• Decryption query phase 1: A can make decryption queries adaptively to B. To

respond such kind of query, B itself first constructs a table H table with four

columns from H table
1 table and H table

2 table. For each queried message and hash

value pair, denoted by ((m, gSi , gRj , gr1 , gSi·r1 , gRj ·r1 , gSi·Rj), h1v), in the table

H table
1 , B would process it as below until every pair in H table

1 table is searched:

– B first computes gRj ·r1 · gRj ·h1v , and searches table H table
2 to find whether

there exist a queried message and hash value pair in table H table
2 such that

the value gRj ·r1 · gRj ·h1v computed form H table
1 and the queried message

value in H table
2 are equal.

– If B can find such a queried message and hash value pair, then this

queried message and hash value pair in H table
1 and the corresponding

queried message and hash value pair in H table
2 are first concatenated as a

new row with four elements and this new row is added to the table H table.

After that, the two queried message and hash value pairs are deleted from

their corresponding hash table respectively, then B jumps to the next row

of H table
1 table and acts as above.

– If B cannot find such a queried message and hash value pair, B just jumps

to the next row of H table
1 table and acts as above.

Notice that H table should be updated timely when either the H table
1 or H table

2

is changed. The updating procedure is the same as the procedure the H table is

constructed. Assuming each row of the H table has the format like ((m, gSi , gRj ,

gr1 , gSi·r1 , gRj ·r1 , gSi·Rj), h1v, g
Rj ·r1 · gRj ·h1v , h2v).

When a queried cihpertext received is (C1, C2, C3, C4, C5, C6,PKS, {c}, {z},
PKR, {̂c}, {̂z}, {pf }), B responds this decryption query using H table

3 and H table:

– B would execute the Ver algorithm first. According to the scheme, B
needs to search the H3 list several times during the execution of the Ver

algorithm. If there exists not such values in the H3 list that making
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the received ciphertext acceptable, which means the ciphertext can pass

the Ver algorithm executed by B, B drops it and returns nothing to A.

Otherwise, B continues to the next step.

– Assuming H table has t rows, B first checks whether there exist rows in

H table such that queried messages in the first column of that row including

(C1, C2, C3, C4) part of the given ciphertext, if not, B drops it and returns

nothing to A.

– If there have rows in H table satisfying the above checking, for each of

them, B further checks whether all the following equations hold;

C5 = gh1v ,m = C6 ⊕ h2v.

– If there exists a row that fulfilling all the above checking, then B checks

the first column of that row and sends m in this column to A. Otherwise,

B drops it and returns nothing to A.

Remark: We should note that there may be some valid ciphertexts which would

be rejected by our aforementioned decryption simulator, especially when the

intended receiver of a given ciphertext is the user with identity IDj. Here a

valid ciphertext means, when it appears, the intended receiver can decrypt it

correctly and return the corresponding plaintext, while our decryption simu-

lator cannot.

Assuming there are qD decryption queries asked during the decryption phases.

According to the encryption algorithm of our scheme, a ciphertext is not valid

until it is generated after querying all the three hash functions, and obviously,

this kind of ciphertext can definitely be decrypted by our decryption simulator

correctly. However, if at least one of the three hash functions is not asked when

producing a ciphertext, this ciphertext may still have probability to be a valid

one while our decryption simulator would reject it. Clearly, the probability

of this case should be at most 1
2k

, where k is the security parameter. Let us

consider the event that at least one of the qD queried ciphertexts is valid but

is rejected by our decryption simulator. Let symbol fail denote this event and

symbol r(i) denote the event that the i-th queried ciphertext is rejected but

actually is a valid one, where 1 ≤ i ≤ qD. Then the probability of this event,

Pr[fail], is:

Pr[fail] = Pr[r(1) ∪ r(2)∪, . . . ,∪r(qD)]

≤ Pr[r(1)] + Pr[r(2)] + Pr[r(3)] + ....+ Pr[r(qD)]

=
qD
2k
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Namely, with probability at most qD
2k

, the decryption simulator would reject

valid ciphertext(s). That is, with probability at least 1 − qD
2k

, B would do a

perfect simulation in the decryption phases.

• Challenge phase: After the decryption queries are properly answered, A chooses

two messages m0,m1 fromM, two public keys pki, pkj from PK as the sender

and receiver’s public key respectively and two subsets SPK,RPK from PK
such that pki ∈ SPK, pkj ∈ RPK, |SPK|, |RPK| ≥ 2, then sends them to B.

Upon receiving those information, B would first check whether the receiver’s

public key is pkj = ga, that is, the one B does not know its corresponding

private key. If not, B aborts the game and outputs a random bit, otherwise

B randomly chooses c ∈ {0, 1} and encrypts mc using the Enc algorithm.

Namely, B asks H1 query about the message tuple (mc, g
Si , ga, gb, gSi·a, Z, gSi·b)

to get r∗2 , asks H2 query about the message Z · gb·r∗2 to get h∗2, asks H3

query for the purpose of generating the proof tuples, and sets the ciphertext

as (gb, gSi·a, Z, gSi·b, gr
∗
2 ,mc ⊕ h∗2,SPK, {c}, {z},RPK, {̂c}, {̂z}, {pf }), where

h∗2 = H2(Z ·gb·r∗2 ), r∗2 = H1(mc, g
Si , ga, gb, gSi·a, Z, gSi·b). B sends the generated

ciphertext to A as the challenge ciphertext. Then B adds the message tuple

((mc, g
Si , ga, gb, gSi·a, Z, gSi·b), r∗2, Z · gb·r

∗
2 , h∗2) as a new row to the H table table.

• Decryption queries phase 2: In this phase, A can still ask decryption queries

with the only constraint that A cannot use the challenge ciphertext as one

of his queried messages. B answers the decryption queries using the same

procedures stated in the previous decryption queries phase 1.

• Guess phase: After the decryption queries phase 2 is finished, A would make

a guess c′ ∈ {0, 1} about c, and sends his guess to B. B outputs 1 if and only

if c = c′, otherwise, it outputs 0.

Analysis. Let’s consider the probability that our algorithm B would output 1, that

is, A succeeds in the previous game. We analyze this probability under the following

two different cases:

1. When Z 6= gab, easily, the probability Pr[c = c′] in this case should be 1
2

for

the reason that the challenger ciphertext is a random element from the view

of A, A cannot get any useful information from it.

2. When Z = gab and also the intended receiver’s identity is IDj, we find that

the challenge ciphertext produced by B is valid. According to our previous

analysis, our simulator would reject valid given ciphertext(s) with probability

at most qD
2k

during simulating the decryption process, which means that with

probability at least 1− qD
2k

, B would do a perfect simulation during the previous
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game played by A and B. Also, with probability 1
n
, A would choose pkj as

the receiver’s public key. As A can break our scheme with non-negligible

probability ε, the challenge ciphertext is valid when the given tuple is a DDH

tuple and the receiver’s public key is pkj. In this case, the probability Pr[c = c′]

should be at least 1
2

+ 1
n
(1− qD

2k
)ε.

As ε is non-negligible, B can solve the DDH problem with advantage at least 1
n
(1−

qD
2k

)ε. Here we finish our proof. �

Theorem 4.2 Our proposed scheme holds sender privacy under the previously de-

fined model assuming the DDH problem is hard in G where hash functions H1, H2, H3

are modeled as random oracles. Concretely, if there exists such an adversary A
which can break our scheme with non-negligible probability ε, supposing A makes at

most qH1,qH2,qH3 queries to the H1, H2, H3 hash oracles respectively, and qse sender

extraction queries, then we can construct another algorithm that solves the DDH

problem in G with probability at least 1
n
(1− qse

2k
)ε.

Proof. We show how to construct B which solves the DDH problem by interacting

with A under our predefined model. For the sake of simplifying the description

of this proof, we omit the procedures identical to those in the previous message

confidentiality security proof.

• Setup phase: This phase is the same as that in the previous security proof.

• H1,H2,H3-queries phase: When answering those three hash queries, B does the

same as himself in the previous security proof.

• Sender extraction queries phase 1: This phase is almost the same as the de-

cryption queries phase 1 described in the previous security proof except that

B returns the identity of the user who generates the given ciphertext. As

what we have discussed before, we still need to calculate the probability that

B would make a perfect decryption simulation in this phase. From the pre-

vious analyze in the proof of the message confidentiality, we know that this

probability is at least 1− qID
2k

.

• Challenge phase: After the sender extraction queries are properly answered, A
chooses one message m fromM, pkj from PK as the receiver’s public key and

two subsets SPK,RPK from PK such that pkj ∈ RPK, |SPK|, |RPK| ≥ 2.

A sends them to B. Upon receiving those information, B would first check

whether the intended receiver is the user with public key pkj = ga, if not, B
aborts the game and returns a random bit. Otherwise, B randomly chooses a

index inx from the indexes of the chosen subset SPK, and encrypts m using
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public key pkj and the secret of the sender who has the chosen index inx. B
asks H1 query about the message tuple (m, gSinx , ga, gb, gSinx·a, Z, gSinx·b) to get

r∗2, asks H2 query about the message Z ·gb·r∗2 to get h∗2, asks H3 query in order to

generate all the required proofs. Eventually, B sends the generated ciphertext

(gb, gSinx·a, Z, gSinx·b, gr
∗
2 ,m ⊕ h∗2,SPK, {c}, {z},RPK, {̂c}, {̂z}, {pf }) to A as

the challenge ciphertext. Then B adds the message tuple ((mc, g
Sinx , ga, gb,

gSinx·a, Z, gSinx·b), r∗2, Z · gb·r
∗
2 , h∗2) as a new row to the H table table.

• Sender extraction queries phase 2: In this phase,A can still ask sender extraction

queries with the only constraint that A cannot use the challenge ciphertext

as one of his queried messages. B interacts with A in the same manner as we

described in the decryption queries phase 2 of the previous security proof.

• Guess phase: After finishing the sender extraction phase 2, A would make a

random index guess inx′ from the indexes of the chosen subset about inx,

and sends his guess to B. Algorithm B outputs 1 if and only if inx = inx′,

otherwise, it outputs 0.

Analysis. Let’s consider the probability that our algorithm B would output 1, that

is, A succeeds in the previous game. We analyze this probability under the following

two different cases:

1. When Z 6= gab, the probability Pr[inx = inx′] in this case should be 1
|SPK| for

the reason that the challenger ciphertext is random from the view of A, A
cannot get any useful information from it, the best choice for him is to make

a random guess.

2. When Z = gab and also the intended receiver’s identity is IDj, we can find that

the challenge ciphertext produced by B is valid. According to our previous

analysis, our simulator would reject valid given ciphertext(s) with probability

at most qse
2k

during simulating the sender extraction process, which means that

with probability at least 1 − qse
2k

, B would do a perfect simulation during the

previous game played by A and B. Also, with probability 1
n
, A would choose

pkj as the receiver’s public key. As A can break our scheme with non-negligible

probability ε, the challenge ciphertext is valid when the given tuple is a DDH

tuple and the receiver’s public key is pkj, in this condition, the probability

Pr[inx = inx′] should be at least 1
|SPK| + 1

n
(1− qse

2k
)ε

As ε is non-negligible, B can determine whether the given tuple is a valid DDH tuple

with probability at least 1
n
(1− qse

2k
)ε. Here we finish our proof. �

Theorem 4.3 Our scheme holds receiver privacy under the predefined security mo-

del assuming the DDH problem is hard in G when hash functions H1, H2, H3 are
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modeled as random oracles. That is, if there is an adversary A which can break our

scheme with non-negligible probability ε, assuming A asks qH1 , qH2 , qH3 queries to

H1, H2, H3 respectively and qre receiver extraction queries during the game, then we

can construct another algorithm B which breaks the DDH problem with probability
1
n
(1− qre

2k
)ε, where n is a constant.

Proof. The proof of theorem 3 is nearly identical to that of theorem 2 except that

we require that the sender of the challenge ciphertext should be the one with public

key ga. �

4.5 Summary

In this chapter, we consider the user conditional privacy preservation problem, which

is stated clearly at the beginning of our thesis, in a more complex scenario. When

facing with the scenario where the authority can block the communication channels

among several users by publishing a blacklist as public parameter, we also need to

address the issue of proving the legitimation of the communication channel between

it and its communicator. To solve the aforementioned two problems, we propose a

group-based source-destination verifiable encryption scheme with blacklist checking.

In order to discuss the security of our scheme, we further define three security mod-

els to capture the message confidentiality, sender privacy preservation and receiver

privacy preservation properties accordingly, and then give three formal proofs under

the predefined models with the help of the random oracle.

The technique used to protect users’ privacy in our work may suffer from the

so called cross-comparison attack and the joint conspiracy attack mentioned in

[KBK+11] and [AMM99] respectively. Thus, our next work should focus on looking

for another advanced privacy preservation method to make our scheme more secure

under some specific attacks.



Chapter 5

Publicly Verifiable Secure

Communication with User and

Data Privacy

Security surveillance system plays an important role in the society. However, how

to securely send the sensitive information from the surveillance node to the server is

a critical issue which should be well addressed. In this chapter, to develop a secure

communication scheme applied between the surveillance camera and the server, we

propose the important and desirable security and privacy features that should be

achieved by such systems, and present a secure scheme that can achieve the security

goals. Our scheme ensures that encrypted datagrams not sent from the surveillance

cameras can be filtrated by a public message filter while data and sender privacy is

still well preserved for encrypted data sent from legitimated cameras. Furthermore,

the server in our scheme is the only entity who can reveal the real sender given

a ciphertext produced by it and give a proof to convince others the origination

of that ciphertext without leaking its content. Such property enables the server

to build a searchable database using the camera’s identifier as index and also the

message auditor to check the ciphertext and its origination stored in the database

without any dispute. We provide the formal security models to define these security

requirements and give formal security proofs in the random oracle model.

5.1 Introduction

Background. Security surveillance system is pervasively applied in many do-

mains. For example, the transportation cameras are installed in intersections or

along the highways to monitor whether a deriver is over-speeding or violating some

other traffic regulations. Another example is the home security surveillance system

74
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where cameras are installed to detect whether your home is invaded by someone who

does not have the authorization. In a security surveillance system, a surveillance

node records sensitive information of its monitored area at a specific frequency or

when misbehavior is detected in that area, then it sends the information to a central

server. The server processes those information using automated programs, stores

them in a searchable database in case of any dispute and triggers further actions

under certain condition. For example, the server in the transportation surveillance

system would send a speeding ticket to a driver, and in the home security surveil-

lance system, the server would send an alert to the householder when the camera

in that house detects an intrusion behavior. Due to the sensitivity of information

captured by security surveillance cameras, the problem of how to securely send the

sensitive information from the surveillance node to the server is critical and needs to

be treated and addressed seriously. In this chapter, we are focusing on designing a

secure communication scheme applied between the surveillance node and the server

in the security surveillance system.

Our System Model. Before discussing the aforementioned problem in detail, we

first give a brief description of our security surveillance system model. Specifically,

our surveillance system model consists of a surveillance server, a message auditor, a

message filter and a number of surveillance nodes located in different areas.

As illustrated in Fig.5.1., the surveillance nodes in different locations are re-

sponsible for capturing sensitive information and sending them to the surveillance

server via the public network. To reduce the server’s cost on analyzing meaningless

information, a message filter is enforced to ensure only information sent from the

surveillance nodes can bypass it and be received by the server. The surveillance

server takes the role of analyzing the information and triggering further actions de-

pending on the analyzed result. After the information is processed, it needs to be

stored in a searchable database in case of any dispute happened in the future. A

message auditor is also necessary to ascertain that the original data sent by a camera

is intact when it is retrieved latter.

System Security Requirements. Basing on the surveillance model described

above, we summarize the security requirements in this system. Those requirements

include:

• Message confidentiality. Obviously, when a surveillance node captures a

misbehavior, it needs to send the sensitive information to the server without

leaking its content.



CHAPTER 5. PVSCUDP 76

Figure 5.1: The security surveillance system model

• Message public verifiability. The message filter should be able verify

whether one encrypted message is sent from a legitimated surveillance node

without requiring any extra information, which means that the encrypted mes-

sage should be publicly verifiable before it is processed by the surveillance

server.

• Node privacy. The exact location of the surveillance node is also a crucial

information to that node and then can be viewed as the unique identifier of

it. We require that this information should be included in the transmitted

encrypted message and cannot be discovered by any other users except the

server. The server can reveal the identity of one certain node and build the

searchable database using the node’s location as index. Since the encrypted

message are transmitted over the public network, there may exist misbehaved

nodes which have the capability to intercept the encrypted message sent from

specific surveillance nodes when the origination of that encrypted message is

known, this is another reason why camera privacy is necessary.

• Node authentication. Since the message filter is empowered with the capa-

bility to filtrate messages not sent from surveillance nodes, each node should

be able to authenticate its legitimization to the message filter.
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• Node non-repudiation. The property node non-repudiation states that if

a surveillance node have sent a message to the server, it cannot deny this

behavior latter. It appears that defining this requirement in our model is

not that straight-forward, so we divide it into three sub-requirements, namely,

the outsider impersonation resistance, the insider impersonation resistance

and receiver cheating resistance. Intuitively, if all the three requirements are

satisfied in our scheme, then the non-repudiation requirement is also satisfied.

• Data Privacy. Given an encrypted message and its corresponding proof

produced by the server, the message auditor and other users can verify the node

non-repudiation property of that encrypted message, while the verification

would not leak anything about the content of the sensitive information.

Potential solution and its insufficiencies. It seems that the signcryption scheme

is promising to provide some of those aforementioned security requirements.

The primitive signcryption, first proposed in the seminal work [Zhe97], is a cryp-

tographic tool which combines the functionalities of both the public key encryption

scheme and signature scheme in a logical single step. When trying to provide de-

sirable properties such as message confidentiality, integrity, non-repudiation and

authentication simultaneously, the signcryption scheme enjoys extra benefits with

respect to computational costs and communication overheads comparing to the tra-

ditional sign-then-encrypt approach. The security of signcryption scheme had never

been discussed in detail until a formal security model in the multi-user setting was

given by Baek et al. in [BSZ02], and since then, many efficient signcryption schemes

which are proven secure have been proposed in [MM03, LYW+07, HRS14, EZ15].

However, we find that existing signcryption schemes are insufficient to address all

the security goals above.

Specifically, the verification of the ciphertext in existing signcryption schemes

such as [BD98, GLZ99, Ma06, SVR10] still requires extra information, which is given

after the ciphertext is processed by its receiver. For example in [SVR10], the public

keys of the sender and intended receiver of the given ciphertext are the required extra

information. The ciphertext in signcryption schemes such as [LYW+07, HRS14] can

be publicly verified to ascertain whether it is generated by one specific user, so the

user’s privacy cannot be properly preserved. In existing signcryption schemes such

as [LQ04, LHZM10], the assurance of non-repudiation needs the involvement of the

ciphertext and its corresponding plaintext, which causes the compromise of message

privacy.

Related work. The problem how to publicly verify the ciphertext of a signcryp-

tion have been discussed decades ago. In [BD98], Bao et. al. proposed the first
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signcryption scheme with public verifiability. However, in their scheme the cipher-

text cannot be verified until its corresponding plaintext is given, which incurs the

lost of the data privacy, this problem also exists in [Ma06]. Gamage et. al. pre-

sented a publicly verifiable signcryption used in firewalls in [GLZ99], while their

scheme only consider single-user setting and the verification of the ciphertext still

needs the signcrypter’s public key, which incurs the lost of the user privacy, the

scheme in [SVR10] and [Aim11] also has the same drawback as that in [GLZ99].

The primitive ring signature [RST01], group signature [CvH91] and ring sign-

cryption [HSMZ05a] all provide the user with the capability to authenticate its legiti-

mation among a group of users including itself, that is, those primitives all guarantee

the user privacy during the authentication. However, each of them has insufficiency

in revealing the anonymity of the user who produces a given signature or cipher-

text. Specifically, in ring signatures schemes such as [FS07, ALSY06, ALSY13],

one signer’s anonymity can be revoked by everyone unless it issues signatures twice

or more, such anonymity revocation would not work when the user is not always

well-behaved. In the ring signature proposed in [LLM+07], only a set of trusted

authorities is allowed to revoke the anonymity of the real signer, in group signature

schemes, the group manager is the only authority which can revoke the anonymity

of the signer of a given signature, the revocation of the anonymity of the signer in

those schemes need the participation of the trusted authority, and it is costly to

maintain its availability. The problem how to revoke the anonymity of the sign-

crypter of a ciphertext in ring signcryption schemes is seldom considered so far, the

only two work [ZYZZ08, LST08] present a ring signcryption scheme in which the

actual signcrypter can prove to others that a ciphertext is generated by itself when

such proof is needed, that is, only the signcrypter itself of a ciphertext can revoke

its own anonymity.

Our Contribution. Motivated by the insufficiencies of existing signcryption sche-

mes and the user and data privacy requirements in the security surveillance system,

we present our publicly verifiable secure communication scheme with user and data

privacy. This work contributes to the development of secure communication in the

security surveillance system in the following two aspects.

1. The integrity and authentication of the ciphertext in our secure communi-

cation scheme are publicly verifiable and the verification does not need any

extra information except the public parameters. This property benefits our

scheme in enabling the message filter to filtrate information sent not from the

surveillance nodes without requiring any secret.

2. Since the surveillance node in our secure communication scheme is authenti-
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cated as a member of a group of legitimated nodes rather than a specific one,

the node’s privacy is still preserved while its legitimation is authenticated.

Besides, the surveillance server in our scheme can reveal the identity of the

node given a ciphertext produced by it and also give a proof to convince others

about the origin of that ciphertext, and this proof would not leak any infor-

mation about the plaintext, namely, the data privacy is also preserved. With

this property, only the surveillance server can build the searchable database

using the nodes’ location as index, which is desirable in the surveillance sys-

tem. Also, the message auditor and other users can retrieve the ciphertexts

stored in the searchable database conveniently and verify the non-repudiation

property of a ciphertext latter without requiring any secret or learning the

underlying plaintext.

5.2 Scheme Definition and Security Models

5.2.1 Defining the Scheme

Our scheme is applicable among a group of users and a trusted group authority

denoted by TGA. It can be defined with the following polynomial-time algorithms:

• Setup: The Setup algorithm is executed by the group authority TGA. On input

the security parameter, the algorithm outputs the group public parameter PM.

PM should include a user certificate repository CR which is initially empty.

• Registration: This Registration algorithm is executed between one group user

Ui ∈ {U} and the TGA. When Ui wants to join a group managed by the TGA,

the algorithm works as following;

– Ui first produces its own signcrypiton key and unsigncryption key pair

(siki, unski), then Ui commits to the key pair (siki, unski) and produces

the commitment (pki, comski). Ui further generates a zero knowledge

proof zkpki showing it knowledge of (siki, unski) with respect to the

commitment comski.

– Ui sends rmi = (pki, comski, zkpki) to TGA.

– Upon receiving the message tuple rmi sent from Ui, TGA first verifies

zkpki to check whether Ui satisfies certain group qualification qul defined

in PM, if yes, TGA computes Ui’s unique certificate ui from rmi and

updates CR to include pki, ui as this user Ui’s personal certificate, then

it sends ui back to Ui. Otherwise, TGA rejects such registration request

and responds Ui with a message saying “REGISTRATION REJECT ”.
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• Signcrypt: To send a message m to Uj on behalf of a group, Ui executes this

Signcrypt algorithm, which takes (siki, ui, pkj,m) as inputs, and outputs a

ciphertext σi. For simplicity, we say Ui is the signcrypter of σi.

• Verify: Given a ciphertext σi and the public parameter PM, this Verify algo-

rithm outputs “1” if the signcrypter of σi satisfies the group qualification qul

stated in PM, otherwise, it outputs “0”. This algorithm can be executed by

anyone possessing PM and a ciphertext, it enables one party to check whether

a given ciphertext is generated by a registered user of the legitimated group

without revealing this user’s privacy.

• Unsigncrypt: When Uj receives a ciphertext σi, it executes the Unsigncrypt

algorithm with inputs (σi, unskj) to recover the plaintext m when Uj is the

intended receiver of σi, otherwise, the algorithm outputs a symbol ⊥.

• Open: Given a ciphertext σi, the intended receiver Uj of σi can also trace the

real signcrypter of σi using algorithm Open when Unsigncrypt(σi, unskj) 6= ⊥.

Taking (σi, unskj) as inputs, Open outputs the personal certificate u′i of the

signcrypter of σi and also a zero-knowledge proof pkidj showing that Uj does

not cheat when executing this algorithm. Here, this algorithm enables the

intended receiver of σi to not only disclose the privacy of the signcrypter of

σi but also convince other users that it acts honest during finding the actual

signcrypter of σi.

• Justify: On input the tuple (σi, u
′
i, pkidj), this Justify algorithm would output

the symbol “1” if the user with certificate u′i is the actual signcrypter of σi,

otherwise, it outputs “0”.

5.2.2 Formal Security Notions

Definition 5.1 (Message Confidentiality) To define the security of our scheme

with respect to message confidentiality, we refer to the standard definition of indis-

tinguishability under adaptive chosen ciphertext attack (IND-CCA2) for public key

encryption scheme[CS03c, BDPR98b], and present the following m-IND-CCA2 game

played between a challenger C and an adversary A.

• Setup: The challenger C takes the security parameter λ as input and runs

the Setup, Registration algorithms of our scheme to generate the group public

parameter PM and t users’ keys. C sends PM, {U}, CR to the adversary A,

where {U} is the collection of all the t users and CR is the user certificate

repository including all t registered users’ personal certificate.
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• Query phase 1: In this phase, A can perform a number of queries bounded by

a polynomial in an adaptive way, that is, each query can be depended on the

responses to the previous queries. There are five types of queries which can be

asked and each of them can be described as below.

– Signcryption key query: A can select a user Ui from {U}, C needs to find

its corresponding signcryption key siki and sends it back to A.

– Unsigncryption key query: A can select a user Ui from {U}, C needs to

find its corresponding unsigncryption key unski and sends it back to A.

– Signcrypt query: A chooses a message m and two users Ui, Uj ∈ {U} such

that (pki, ui), (pkj, uj) ∈ CR as the message sender and receiver respec-

tively, then A sends them to C. C computes σi = Signcrypt(siki, ui, pkj,m)

and sends σi back to A.

– Unsigncrypt query: A chooses a ciphertext σi and a user Uj ∈ {U}, then

it sends (σi, Uj) to C. By first executing Verify(σi,PM) and then

Unisigncrypt(σi, unskj), C responds A with the resulting plaintext of σi if

σi is a valid ciphertext and Uj is the intended receiver of σi, otherwise C
returns nothing to A.

– Open query: A chooses a ciphertext σi and a user Uj ∈ {U}, then it

sends (σi, Uj) to C. If σi is a valid ciphertext and Uj is the intended

receiver of σi, C responds A with ui, which is the unique certificate of the

signcrypter of σi, as well as a proof pkidj, which convinces others that Uj

behaves honest when executing Open algorithm. otherwise C responds A
with nothing.

• Challenge: After A decides to end the Query phase 1, it outputs two plaintexts

m0,m1 satisfying |m0| = |m1| and two users Ui, Uj ∈ {U} as the message

sender and receiver respectively. It requires that Uj should not appear in any

unsigncryption key queries in the Query phase 1, then it sends the chosen tuple

(m0,m1, Ui, Uj) to C. Upon receiving the tuple, C picks a random bit b from

{0, 1} and computes σ = Signcrypt(siki, ui, pkj.mb) and returns this challenge

ciphertext to A.

• Query phase 2: In this phase, A can still ask a polynomially bounded number

of queries adaptively again, and C acts the same as in the above Query phase

1. Here, the restriction is that it cannot make unsigncryption key query on Uj

and also cannot make an Unsigncrypt query on the tuple (σ, Uj) where σ is the

challenge ciphertext and Uj is its intended receiver.
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• Guess: After A decides to end the Query phase 2, it has to output a guess b′.

It wins the aforementioned game if b′ = b.

Let Pr[b = b′] denote the probability that A wins the game and Advm−IND−CCA2A the

advantage of A when it wins the game, then

Advm−IND−CCA2A = 2|Pr[b = b′]− 1|.

We say our scheme is m-IND-CCA2 secure if Advm−IND−CCA2A ≤ negl(λ) for any PPT

adversary A where negl(λ) is a negligible function in λ.

Definition 5.2 (Sender Anonymity) To define the security of our scheme with

respect to sender anonymity, we present the following an-CCA2 game, which is very

similar to the previously defined m-IND-CCA2 one, played between a challenger C
and an adversary A,

• Setup: The challenger C takes the security parameter λ as input and runs the

Setup, Registration algorithms of our scheme to generate the public parameter

PM and t users’ keys. C sends PM, {U}, CR to the adversary A, where {U} is

the collection of all the t users and CR is a user certificate repository including

all t registered users’ personal certificate.

• Query phase 1: In this phase A interacts the same with C as what they do in

the Query phase 1 of the previous message confidentiality security model.

• Challenge: After A decides to end the Query phase 1, it outputs one message

m and one user Uj ∈ {U} as the intended receiver. It requires that Uj should

not appear in any unsigncryption key queries in the Query phase 1, then it

sends the chosen tuple (m,Uj) to C. Upon receiving the tuple, C chooses one

index b ∈ [t] and sets user Ub ∈ {U} as the signcrypter, then it computes

σ = Signcrypt(sikb, ub, pkj,m) and returns this challenge ciphertext to A.

• Query phase 2: In this phase, A can still ask a polynomially bounded number

of queries adaptively again, and C acts identical to what it does in the above

Query phase 1. Here, the only restriction is that it cannot make unsigncryption

key query on Uj and also cannot make an Unsigncrypt query on the tuple (σ, Uj)

where σ is the challenge ciphertext and Uj is its intended receiver.

• Guess: After A decides to end the Query phase 2, it has to output a guess

b′ ∈ [t]. It wins the aforementioned game if b′ = b.
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Let Pr[b = b′] denote the probability that A wins the game and Advan−IND−CCA2A the

advantage of A when it wins the game, then

Advan−IND−CCA2A = 2|Pr[b = b′]− 1

t
|.

We say our scheme is an-CCA2 secure if Advan−IND−CCA2A ≤ negl(λ) for any PPT A
where negl(λ) is a negligible function in λ.

Definition 5.3 (Outside User Impersonation Resistance) To define the se-

curity of our scheme with respect to the property that one user outside the system

cannot impersonate a legitimated user successfully, we adapt the standard security

definition of existential unforgeability under adaptive chosen message attack (UF-

CMA)[GMR88, PS96] for signature schemes to our scheme setting and present the

following O-UF-CMA game played between a challenger C and an adversary A,

• Setup: The challenger C takes the security parameter λ as input and runs

the Setup, Registration algorithms of our scheme to generate the group public

parameter PM and t users’ keys. C sends PM, {U} to the adversary A, where

{U} is the collection of all the t users. Here, as an outsider, A should not

have CR.

• Query phase: In this phase, A can perform a number of queries bounded by a

polynomial in an adaptive way. As an outsider, A can ask all types of query

mentioned in previous models except the signcryption key query.

• Forgery: After A decides to end the Query phase, it tries to forge a ciphertext

σ with Uj as the message receiver, it requires that Uj ∈ {U}, then it sends the

forgery (σ, Uj) to C. A wins the game if Verify(σ,PM) = 1.

Let Pr[A wins] denote the probability that A wins the above game and AdvO−UF−CMA
A

the advantage of A when it wins the game, then

AdvO−UF−CMA
A = Pr[A wins].

We say our scheme is O-UF-CMA secure if AdvO−UF−CMA
A ≤ negl(λ) for any PPT A

where negl(λ) is a negligible function in λ.

Definition 5.4 (Inside User Impersonation Resistance) To define the secu-

rity of our scheme with respect to the property that a legitimated user in the system

cannot impersonate another one successfully, we adapt the standard definition of ex-

istential unforgeability under adaptive chosen message attack (UF-CMA) for signa-

ture scheme to our scheme setting and present the following I-UF-CMA game played

between a challenger C and an adversary A,
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• Setup: The challenger C takes the security parameter λ as input and runs

the Setup, Registration algorithms of our scheme to generate the group public

parameter PM and t users’ keys. C sends PM, {U}, CR to the adversary

A, where {U} is the collection of all the t users and CR is a user certificate

repository including all t registered users’ personal certificate. In this phase,

A needs to choose one user Ui ∈ {U} as the user it wants to challenge before

the Forgery phase and sends it back to C.

• Query phase: The types of queries can be asked in this phase is identical to that

in the Query phase 1 of the previous message confidentiality security model.

• Forgery: After A decides to end the Query phase, it tries to forge a ciphertext

σ with Uj as its receiver, it requires that Uj ∈ {U}, then it sends the forgery

(σ, Ui, Uj) to C. A wins the game if Verify(σ,PM) = 1,Unsigncrypt(σ, unskj) 6=
⊥ and the signcryption key of Ui is never queried in Query phase:.

Let Pr[A wins] denote the probability that A wins the game and AdvI−UF−CMA
A the

advantage of A when it wins the game, then

AdvI−UF−CMA
A = Pr[A wins].

We say our scheme is I-UF-CMA secure with respect to the sender impersonation

resistance property if AdvI−UF−CMA
A ≤ negl(λ) for any PPT A where negl(λ) is a

negligible function in λ.

Definition 5.5 (Receiver Cheating Resistance) To define the security of our

scheme relating to receiver cheating resistance property, we present the following (R-

UF-CMA) game, which is similar to the predefined (I-UF-CMA) game, played between

a challenger C and an adversary A,

• Setup: The challenger C takes the security parameter λ as input and runs

the Setup, Registration algorithms of our scheme to generate the group public

parameter PM and t users’ keys. C sends PM, {U}, CR to the adversary

A, where {U} is the collection of all the t users and CR is a user certificate

repository including all t registered users’ personal certificate.

• Query phase: This phase shares no difference with the Query phase 1 of the

previous message confidentiality security model.

• Challenge: After A decides to end the Query phase, it chooses a message m,

one users Uj as the intended receiver and then sends them to C. Upon receiving

the tuple (m,Uj), C chooses a user Ui satisfying Ui ∈ {U} and i 6= j, then it

computes σ = Signcrypt(siki, ui, pkj,m). C sends (σ, Uj) back to A.



CHAPTER 5. PVSCUDP 85

• Forgery: When A receives σ, it is asked to forge a tuple (σ, ul, zkidj), We say

A wins the game if Justify(σ, ul, zkidj) = 1 ∧ ul 6= ui.

Notice. In the challenge and forgery phase, we do not put any restriction on Ui, Uj,

Ul, that is, the signcryption and unsigncryption key queries on those users are all

allowed in our model.

Let Pr[A wins] denote the probability that A wins the game and AdvR−UF−CMA
A the

advantage of A when it wins the game, then

AdvR−UF−CMA
A = Pr[A wins].

We say our scheme is R-UF-CMA secure with respect to the receiver cheating resis-

tance property if AdvR−UF−CMA
A ≤ negl(λ) for any PPT adversary A where negl(λ)

is a negligible function in λ.

5.3 Our Concrete Construction

In this section we give a concrete construction of our proposed scheme. Consisting

of the following algorithms (Setup,Registration, Signcrypt,Verify,Unsigncrypt,Open,

Justify), our scheme can be described in detail as;

• Setup: Assuming there exists a trusted group authority TGA which takes the

security parameter λ = (δ, ˆ̀, `1, `2, k) satisfying δ > 1, `2 < `1, `2 � `1 −
ˆ̀+`1

4

as input, it requires that any user who wants to register as a legitimated group

member should choose its secret in such a manner that the chosen secret should

be a prime which lies in {2`1 , · · · , 2`1+2`2−1}, and TGA values this requirement

as the group membership qualification qul. TGA also initiate a user certificate

repository CR to include all registered users’ personal certificates which can

be used to uniquely identify them. TGA also chooses two large enough prime

numbers p, q such that p ≡ q ≡ 3(mod 4), and then produces a multiplicative

group Z∗n and one quadratic-residue g of that group such that n = pq, |g| = `g,

TGA also gets a cyclic group G =< g >, it is required that |n| = `n > `1.

TGA further chooses a random element z ∈ Z∗n and two hash functions H1 :

{0, 1}∗ → {0, 1}k,H2 : G→ {0, 1}`. It define the message space M := {0, 1}`

and ciphertext space CT := G6×{0, 1}`×{0, 1}k×{0, 1}δ(`2+k)×{0, 1}δ(`g+`1+k),

and then sets PM = (λ, qul, CR, n, g, z,M, CT ,H1,H2).

• Registration: When a user, denoted by Ui, wishes to be a group member, it

interacts with the TGA to complete the following registration procedures;

– Ui first chooses xi ∈ [n] and two prime numbers ei, êi ∈ {2`1 , · · · , 2`1 +

2`2 − 1} randomly such that ei, êi 6≡ 1 (mod 8) and ei 6≡ êi( mod 8). Ui
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computes z̃i = zêi ,ẽi = eiêi, pki = gxi where |z̃i| = ˜̀, and then generates

the following two zero-knowledge proofs

p1 = ZPK{(ei, êi, xi) : zẽi = z̃i
ei ∧ z̃i = zêi ∧ pki = gxi ∧

(2`1 − 2δ(`2+k)+1) < ei < (2`1 − 2δ(`2+k)+1) ∧

(2`1 − 2δ(`2+k)+1) < êi < (2`1 − 2δ(`2+k)+1)},

p2 = ZPK{(ei, êi) : ẽi = eiêi ∧ ei ∈ primes(λ) ∧ êi ∈ primes(λ)}.

Here the details about how to produce the proof values p1, p2 are given in

[CM99], so we omit the description.Then, Ui then sends (z̃i, ẽi, pki, p1, p2)

to TGA.

– Upon receiving the message tuple sent from Ui, TGA first verifies the two

proof value p1, p2 by executing the corresponding verification algorithm

described in [CM99] to check whether the secrets chosen by Ui satisfies

the requirement defined in qul, that is, to check whether ei, êi are prime

numbers and also ei, êi ∈ {2`1 , · · · , 2`1 + 2`2 − 1}.

– If the both verification algorithms output “1”, TGA computes ui = z̃
1
ẽ

and sets ui as Ui’s unique certificate, then TGA sends ui back to Ui.

Otherwise, TGA ends the registration procedures and returns a symbol

saying “REGISTRATION REJECT.”

– After receiving ui from TGA, Ui checks whether the equation (ui)
ei = z

holds, if yes, Ui keeps it as its unique certificate and finishes this regis-

tration algorithm.

– Each time when a new user register itself as a legitimated group member

successfully, this user Ui stores two keys, its signcryption key siki = ei

and unsigncryption key unski = xi, secretly. After that, TGA updates the

certificate repository CR to include this new user’s personal information

(pki, ui).

• Signcrypt: To signcrypt a message m ∈ {0, 1}` on the group’s behalf and send

the ciphertext to user Uj, Ui does the following procedures;

– It chooses w1, w3 ∈R {0, 1}`g and computes

w2 = H1(g||z||yjeiw1w3||m),

c1 = gw2w3 , c2 = gw1w2w3 , c3 = yj
w2w3 ,

c4 = uiyj
w1w2w3 , c5 = geiw1w3 , c6 = geiw1w2w3 ,

c7 = m⊕H2(yj
eiw1w2w3),
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where ei, ui is Ui’s signcryption key and unique certificate respectively, yj

is Uj’s public key.

– It chooses r1, r3 ∈R {0, 1}δ(`2+k), r2, r4 ∈R
{0, 1}δ(`g+`1+k) and computes

t1 =
(c4)r1

(c3)r2
, t2 =

(c2)r1

(c1)r2
, t3 = (c1)r4 , t4 = (c2)r3 .

– It computes c0 = H1(g||z||t1||t2||t3||t4||c5||c6||c7).

– It computes s1 = r1−c0(ei−2`1), s2 = r2−c0eiw1, s3 = r3−c0(ei−2`1), s4 =

r4 − c0eiw1.

In fact, the tuple (c0, s1, s2, s3, s4) is the proof values of a zero-knowledge proof,

that is,

(c0, s1, s2, s3, s4) = ZPK{(α, β) : z =
(c4)α

(c3)β
∧

1 =
(c2)α

(c1)β
∧ c6 = (c1)β ∧ c6 = (c2)α ∧

(2`1 − 2δ(`2+k)+1) < α < (2`1 − 2δ(`2+k)+1)},

where α = ei, β = eiw1. The resulting ciphertext is CT = (c1, c2, c3, c4, c5, c6,

c7, c0, s1, s2, s3, s4).

• Verify: CT = (c1, c2, c3, c4, c5, c6, c7, c0, s1, s2, s3, s4) can be publicly verified by

anyone holding the public parameter PM through the execution of this Verify

algorithm. A user with PM verifies whether CT is valid with the following

procedures;

– It recomputes

t′1 =
zc0(c4)s1−c02`1

(c3)s2
, t′2 =

(c2)s1−c02`1

(c1)s2
,

t′3 = (c1)s4(c6)c0 , t′4 = (c2)s3−c02`1 (c6)c0 .

– It computes

c′0 = H1(g||z||t′1||t′2||t′3||t′4||c5||c6||c7)

– If c′0 = c0, then CT is valid, otherwise, it is invalid.

• Unsigncrypt: When CT is sent to Uj which is its intended receiver or unsign-

crypter, it does as following to recover the message m using its unsigncryption

key xj;
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– Uj first executes the Verify algorithm to check whether CT is valid, if not,

Uj rejects it, otherwise, it continues.

– Uj computes m′ = c7
(c6)xj

.

– Uj recomputes w′2 = H1(g||z||(c5)xj ||m′) and checks whether the equation

c6 = (c5)w
′
2 holds.

– If yes, Uj outputs m′ as the plaintext, otherwise, it rejects CT .

• Open: One user Uj can reveal the unique certificate of the original signcrypter

of CT as long as Uj is its intended receiver. Besides, Uj also has the capability

to convince anyone else that it cannot cheat when recovering the certificate.

It does as following;

– Uj computes u′i = c4
(c2)xj

and sets u′i as the certificate of the signcrypter

of CT .

– Uj produces the proof values for the zero-knowledge proof ZPK{(xj) :

c3 = (c1)xj ∧ c4
u′i

= (c2)xj}. Namely, Uj first chooses a random element

w0 ∈R {0, 1}`g , then it computes c′ = H1((c1)w0 ||(c2)w0||CT ), s′ = w0 −
c′xj. So ZPK{(xj) : c3 = (c1)xj ∧ c4

u′i
= (c2)xj} = (c′, s′), Uj publishes the

tuple (CT, u′i, c
′, s′).

• Justify: When there exists any dispute about the signcrypter of CT given

the tuple (CT, u′i, c
′, s′), one user can easily check whether Uj is cheating by

executing this Justify algorithm. Justify(CT, u′i, c
′, s′) = 1 when the following

equation

c′ = H1((c1)s
′
(c3)c

′||(c2)s
′
(
c4

u′i
)c
′||CT )

holds. Anyone can be convinced that Uj is not cheating when Justify outputs

“1”.

5.4 Security Proofs

Theorem 5.1 Our secure communication scheme is m-IND-CCA2 secure with re-

spect to the message confidentiality property under our predefined model assuming the

Computational Diffie-Hellman problem in composite group(CDHCG) is hard in the

chosen group system (G, g, n) when the hash functions H1,H2 are modeled as random

oracles. Concretely, if there is an adversary A which can break m-IND-CCA2 secu-

rity with non-negligible probability ε, supposing A makes at most qH2,qis, qo queries

to the H2 oracle, Unsigncryption key oracle and Open oracle respectively, then we can

construct another algorithm C solving the Computational Diffie-Hellman problem in

composite group (CDHCG) with probability 2ε
tqH2

, where t is an integer.
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Proof. Assuming there exists an adversary A which can break the m-IND-CCA2

security of our group signcryption scheme with non-negligible probability ε, then we

show how to construct another algorithm C solving the CDHCG problem from A, C
and A interacts as below.

• Setup: C is first given a group system (G, g, n), where n = pq, p, q are large

safe primes, G =< g >, (g|n) = 1, `g = |g| ≤ ` = |n|, and also a CDHCG

problem instance (g, ga, gb). C then executes the Setup algorithm and sends

the public parameter PM to A. Assuming there exists t users in the user group

{U}, C chooses one user Uj ∈ {U} and sets its signcryption key as sikj = ej

and its certificate tuple as (uj = z
1
ej , pkj = ga), the unsigncryption key unskj

is unknown. For the rest of users in {U}/Uj, their keys and identifiers are

generated correctly following the Registration algorithm. Notice that after the

t users are all registered, the certificate repository CR should include all the t

users’ personal certificate, the user group set {U} should also be sent to A.

• Query phase 1: In this phase, A can ask C a polynomially bounded umber of

queries in an adaptive way, there are several types of query can be asked during

this phase and each type of them can be answered by C using the following

way.

– H1 query: At any time, A can query the random oracle OH1 and C
maintains a list LH1 , which is empty initially, to answer such kind of

queries. When A asks the oracle OH1 with a queried message denoted

by mH1 ∈ {0, 1}∗, C would first check whether this queried message has

already been asked before;

∗ If so, C retrieves the tuple (mH1 , hH1), which entry is the queried

message, in list LH1 and responds A with hH1 .

∗ Otherwise, C chooses a element hH1 randomly from {0, 1}k and sends

it back to C as the response, then C adds this new tuple (mH1 , hH1)

to LH1 .

– H2 query: A is also allowed to ask the hash oracle OH2 as it wants, the

technique A used to respond such hash query is similar to that described

in the H1 query. That is, C maintains a initially empty list LH2 and

checks whether a query with queried message mH2 has been asked before;

∗ If so, C retrieves the tuple (mH2 , hH2) in list LH1 and responds A
with hH2 .

∗ Otherwise, C chooses a element hH2 randomly from {0, 1}` and sends

it back to C as the response, then C adds this new tuple (mH2 , hH2)

to LH2 .
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– Signcryption key query: A can get the signcryption keys of several users

in {U}] by issuing such Signcryption key query. As C has the knowledge

of all the signcryption keys of users in {U}, when A chooses a user Ui ∈
{U} and sends it as the queried message to C, C can easily find the

corresponding signcryption key ei and sends ei as the response to this

query.

– Unsigncryption key query: A can also get the unsigncryption keys of several

users in {U} by issuing this Signcryption key query. WhenA chooses a user

Ui ∈ {U} as the queried user, C answers this query with his knowledge

of all the unsigncryption keys of users in {U} excepts the chosen user Uj.

That is, before deciding how to respond the query, C checks whether the

queried user Ui is the chosen user Uj;

∗ If so, C aborts and outputs a symbol ⊥.

∗ Otherwise, C responds A with the corresponding unsigncryption key

xi of Ui.

– Signcrypt query: A can ask C to signcrypt a message by issuing this Sign-

crypt query with the queried message denoted by (m,Ui, Ul) where m ∈M
and Ui, Ul ∈ {U} are acting as the signcryper and intended unsigncrypter

respectively. To signcrypt m on behalf of Ui and let the resulted message

be feasible to be unsigncrypted by Ul, C finds the signcryption key ei, user

identifier ui of Ui and the public key yl of Ul, then it executes the Signcrypt

algorithm of our scheme with inputs (ei, ui, yl.m) and sends the resulted

ciphertext CT = Signcrypt(ei, ui, yl.m) back to A as the response.

– Unsigncrypt query: A can ask C to unsigncrypt a ciphertext for it by issu-

ing this Unsigncrypt query with the queried message denoted by (CT,Ul)

where Ul is the unsigncrypter of CT . Basing on the given specific queried

message (CT,Ul) in each query, C uses the following two different ways

to answer it;

∗ When the given unsigncrypter of CT is not the chosen user Uj, that is,

Ul 6= Uj, C first executes the Verify algorithm of our scheme to check

whether CT is a valid ciphertext, C continues if CT is valid, otherwise

it rejects it and returns nothing to A. Then C would executes the

Unsigncryt algorithm to retrieve the encrypted message m′ from CT

because C knows the unsigncryption key of Ul in this case. Finally,

C sends m′ as the response back to A.

∗ When the given unsigncrypter of CT is the chosen user Uj, that

is, Ul = Uj, because the corresponding unsigncryption key of Uj is

unknown, C simulates the Unsigncrypt algorithm as follows;
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· When given a ciphertext CT = (c1, c2, c3, c4, c5, c6, c7, c0, s1, s2,

s3, s4), C also first executes the Verify algorithm to check whether

CT is a valid ciphertext, C continues to the next step if CT is

valid, otherwise, C rejects CT and returns noting to A.

· C searches the hash list LH1 thoroughly to check whether there

exists a tuple (mH1 , hH1) in LH1 such that c6 = (c5)hH1 , if C
cannot find such a tuple, it rejects CT and returns noting to A.

Otherwise, it turns to the next step.

· For such a tuple (mH1 , hH1), the entry mH1 can be valued as

mH1 = g||z||yj ′||m′, then C extracts yj
′ and m′ from mH1 . C

latter searches the hash list LH1 thoroughly to find whether there

exists a tuple (mH2 , hH2) in LH2 such that (y′j)
hH1

= mH2 , if there does not exist such a tuple, then C rejects CT

and returns noting to A. Otherwise, it turns to the next step.

· For the qualified tuple (mH2 , hH2), C computes a element m′′ =

c7 ⊕ hH2 and checks whether the equation m′ = m′′ holds.

· C responds A with m′ if the above equation holds, otherwise it

rejects CT and returns noting to A.

We argue that the above simulation of the unsigncryption process

is identical to executing the Unsigncrypt algorithm from the view of

the adversary A. The simulation takes use of all the elements in

CT during finding the plaintext m′ and employs nearly the same

technique to check the integrity of CT after retrieving m′ from CT .

– Open query: A is allowed to issue this Open query at any time during this

Query phase 1 with the queried message denoted by (CT,Ul), C responds

such query in the following manner when receiving the tuple (CT,Ul);

∗ When the intended receiver Ul of CT is not the chosen user Uj,

namely, Ul 6= Uj, as C knows the unsigncryption keys of all users in

{U} except the user Uj, it can execute the Open algorithm of our

scheme given the tuple (CT,Ul) and sends back the result denoted

by the tuple (u′i, c
′, s′) as the response where u′i is the identifier of

the signcrypter of CT and (c′, s′) is the proof value which proves the

above statement about u′i.

∗ When the intended receiver Ul of CT is also the chosen user Uj, that

is, Ul = Uj, C aborts the game.

• Challenge: When A decides to end the Query phase 1, it chooses two messages

m0,m1 fromM such that |m0| = |m1| and two users Ui, Ul ∈ {U} as the sender
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and intended receiver respectively, then it sends the tuple (m0,m1, Ui, Ul) to

C. When the intended receiver in the given tuple is not the user Uj, C aborts

the game. Otherwise, C chooses mb ∈ {m0,m1} and generates the challenge

ciphertext CT ∗ using the signcryption key ei of Ui and public key ga of Uj as

follows;

– C chooses w1 ∈ {0, 1}`g , w2 ∈ {0, 1}k and computes

c∗1 = (gb)w2 , c∗2 = (gb)w1w2 , c∗3 = (ga)w2 ,

c∗4 = ui(g
a)w1w2 , c∗5 = (gb)eiw1 , c∗6 = (gb)eiw1w2 .

– As C knows ei, w1, it can produce the proof value (c∗0, s
∗
1, s
∗
2, s
∗
3, s
∗
4) easily

following the Signcrypt algorithm of our scheme.

– C chooses Z∗ ∈ {0, 1}` and sets c∗7 = Z∗

C sends CT ∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4, c
∗
5, c
∗
6, c
∗
7, c
∗
0, s
∗
1, s
∗
2, s
∗
3, s
∗
4) back to A as the chal-

lenge ciphertext.

• Query phase 2: After receiving the challenge ciphertext CT ∗, A can also issue

queries in this Query phase 2, the types of query allowed in this phase is the

same as that in the Query phase 1 and C answers them identical to what we

have described above. Here, the extra restriction comparing to the Query phase

1 is that Uj cannot appear in any unsigncryption key queries and (CT ∗, Uj)

cannot appear in any unsigncryption queries in this phase where CT ∗ is the

challenge ciphertext and Uj is the intended receiver of CT ∗. Assuming the

total number of Unsigncryption key query and that of open query issued by A
in Query phase 1 and Query phase 2 is qis and qo respectively.

• Guess: After completing the Query Phase 2, A makes a guess b′ from {0, 1}
and sends b′ to C.

Analysis. As analyzed in many other papers [LQ04, LYW+10], it is easy to show

that A will not able to realize that CT ∗, in fact, is not a valid signcryption for the

sender’s signcryption key ei and the intended receiver’s public key ga unless it asks

for the hash value H2(gabeiw1w2). In that case, the value gabeiw1w2 would have been

inserted in the hash list L2 exactly as one of its entry, furthermore, it does not matter

if the simulation of A’s view is no longer perfect now. Because C knows ei, w1, w2,

the solution gab to the CDHCG problem instance (g, ga, gb) in the composite group

Z∗n can be computed from that entry. At the end of the game, assuming there are

qH2 entries in L2, C randomly chooses one from L2, then with probability 1
qH2

, C will

find the solution correctly.
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Let E be the event that the value gabeiw1w2 is queried to H2 and Ẽ denotes

the event that the value gabeiw1w2 is not queried, we find that C solves the given

problem instance in event E with probability 1
qH2

. We denote Pr[b = b′] = 1
2

+ ε the

probability that A wins the game, then the conditional probability Pr[b = b′|Ẽ] = 1
2
,

we have

Pr[b = b′] =
1

2
+ ε

= Pr[b = b′|E] Pr[E] + Pr[b = b′|Ẽ] Pr[Ẽ]

≤ Pr[E] + Pr[b = b′|Ẽ] Pr[Ẽ]

= Pr[E] +
1

2
(1− Pr[E])

=
1

2
(1 + Pr[E])

So, Pr[E] ≥ 2ε. Let Pr[abort] denote that probability that C would not abort during

the simulation, then we have Pr[abort] = 1
t

where |{U}| = t Let AdvCDHCGC denote

that advantage that C can solves the given CDHCG problem instance, then we have

AdvCDHCG
C = Pr[E ∧ abort] 1

qH2

≥ Pr[E] Pr[abort]
1

qH2

≥ 2ε

tqH2

Obviously, if ε is non-negligible, then AdvCDHCG
C is non-negligible. That is, if A can

break the m-IND-CCA2 game with non-negligible probability ε, then C can solve the

CDHCG problem with non-negligible probability 2ε
tqH2

, here, we finish our proof. �

Theorem 5.2 Our secure communication scheme is an-CCA2 secure under our pre-

defined model assuming the Diffie-Hellman Decision (DHD) problem in composite

group is hard in the chosen group system (G, g, n) when the hash functionsH1,H2 are

modeled as random oracles. Concretely, if there is an adversary A which can break

the an-CCA2 security with non-negligible probability ε, supposing A makes at most

qis, qo queries to Unsigncryption key oracle and Open oracle respectively, then we can

construct another algorithm C solving the Diffie-Hellman Decision problem(DHD)

problem with probability at least 1
t
ε, where t is an integer.

Proof. Assuming there exists an adversary A which can break the an-CCA2 security

of our group signcryption scheme with non-negligible probability ε, then we can show

how to construct another algorithm C solving the DHD problem from A, C and A
interacts as below.
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• Setup: C is first given a group system (G, g, n), where n = pq, p, q are large

safe primes, G =< g >, (g|n) = 1, `g = |g| ≤ ` = |n|, and also a CDHCG

problem instance (g, ga, gb). C then executes the Setup algorithm and sends

the public parameter PM to A. Assuming there exists t users in the user group

{U}, C chooses one user Uj ∈ {U} and sets its signcryption key as sikj = ej

and its certificate tuple as (uj = z
1
ej , pkj = ga), the unsigncryption key unskj

is unknown. For the rest of users in {U}/Uj, their keys and identifiers are

generated correctly following the Registration algorithm. Notice that after the

t users are all registered, the certificate repository CR should include all the t

users’ personal certificate, the user group set {U} should also be sent to A.

• Query phase 1: In this phase, A can ask a polynomially bounded umber of

queries in an adaptive way. As the types of queries allowed in this phase and

the strategy used by C to answer each of those queries are all the same as that

mentioned in the Query phase 1 of the previous security proof, we omit the

description here.

• Challenge: When A decides to end the Query phase 1, it chooses one message

m from M and one user Ul ∈ {U} as the intended receiver, then it sends the

tuple (m,Ul) to C. If the intended receiver in the given tuple is not the user

Uj, C aborts the game. Otherwise, C chooses an index b ∈ [t] and generates

the challenge ciphertext CT ∗ using the signcryption key eb of Ub and public

key ga of Uj as follows;

– C chooses w∗3 ∈R {0, 1}`g and asks the H1 oracle with message

g||z||Sebw∗3 ||m to get w∗2 = H1(g||z||Sebw∗3 ||m). As C controls H1 oracle,

it does the same as what we have described in the Query phase 1 of the

previous security proof to answer this query.

– C sets

c∗1 = gw
∗
2w
∗
3 , c∗2 = sw

∗
2w
∗
3 , c∗3 = gaw

∗
2w
∗
3 ,

c∗4 = ubS
w∗2w

∗
3 , c∗5 = sebw

∗
3 , c∗6 = sebw

∗
2w
∗
3 ,

c∗7 = m⊕H2(Sebw
∗
2w
∗
3 ).

Here, the H2 oracle is also controlled by C, the strategy used by C to

answer the query with message ebw
∗
2w
∗
3 during generating the challenge

ciphertext is also identical to that described in the previous security proof.
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– C tries to forge a zero-knowledge proof like

(c∗0, s
∗
1, s
∗
2, s
∗
3, s
∗
4) = ZPK{(α, β) : z =

(c∗4)α

(c∗3)β
∧

1 =
(c∗2)α

(c∗1)β
∧ c∗6 = (c∗1)β ∧ c∗6 = (c∗2)α ∧

(2`1 − 2δ(`2+k)+1) < α < (2`1 − 2δ(`2+k)+1)}.

To do it, C first chooses c∗0 ∈R {0, 1}`, s∗1, s∗3 ∈R {0, 1}δ(`2+k), s∗2, s
∗
4 ∈R

{0, 1}δ(`g+`1+k), then it computes

t∗1 =
zc
∗
0(c∗4)s

∗
1−c∗02`1

(c∗3)s
∗
2

, t∗2 =
(c∗2)s

∗
1−c∗02`1

(c∗1)s
∗
2

,

t∗3 = (c∗1)s
∗
4(c∗6)c

∗
0 , t∗4 = (c∗2)s

∗
3−c∗02`1 (c∗6)c

∗
0 .

C programs H1 in such a way that it sets

c∗0 = H1(g||z||t∗1||t∗2||t∗3||t∗4||c∗5||c∗6||c∗7)

and then adds this tuple (g||z||t∗1||t∗2||t∗3||t∗4||c∗5||c∗6||c∗7, c∗0) to the hash list

LH1 .

– After finishing the above procedures, C sets the challenge ciphertext

CT ∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4, c
∗
5, c
∗
6, c
∗
7, c
∗
0, s
∗
1, s
∗
2, s
∗
3, s
∗
4). Here, in fact, the tuple

(c∗0, s
∗
1, s
∗
2, s
∗
3, s
∗
4) is valid from the view of the adversary A because C con-

trols H1 oracle.

• Query phase 2: After receiving the challenge ciphertext CT ∗, A can also issue

queries in this Query phase 2, the types of query allowed in this phase is the

same as that in the Query phase 1 and C answers them identical to what we have

described above. Here, the extra restriction comparing to the Query phase 1 is

that Uj cannot appear in any unsigncryption key query and (CT ∗, Uj) cannot

appear in any unsigncryption query and open query in this phase where CT ∗

is the challenge ciphertext and Uj is the intended receiver of CT ∗. Assuming

the total number of Unsigncryption key query and that of open query issued by

A in Query phase 1 and Query phase 2 is qis and qo.

• Guess: After completing the Query Phase 2, A makes a guess b′ from [t] and

sends b′ to C.

Analysis. Let Pr[b = b′] denote the probability that A wins the game, we consider

this probability in the following two different scenes,

• When (g, s, ga, S) ∈ Q(G), that is, logg g
a 6= logs S, the challenge ciphertext
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CT ∗ can be valued as an one-time pad indeed and it would not reveal any

information about the choice b of C. In that case, A gains no help from this

challenge ciphertext and it has no choice but to make a random choice b′ about

b, so the probability Pr[b = b′] = 1
t
.

• When (g, s, ga, S) ∈ DH(G), that is, logg g
a = logs S, the challenge ciphertext

CT ∗, in fact, is a valid ciphertext which encrypts m and ub. In this case, let

Pr[abort] denote the probability that the above simulation would not abort,

then Pr[abort] = 1
t
, if A can break the an-CCA2 security of our scheme with

non-negligible probability ε, then Pr[b = b′] = 1
t

+ ( t−1
t

)qis+qo 1
t
ε.

Let AdvDHD
C denote the probability that C can solve the DHD problem, then we have

AdvDHD
C =

1

t
ε

Namely, if A can break the an-CCA2 security of our scheme with non-negligible

probability ε, then C can break the DHD problem with non-negligible probability
1
t
ε. Here, we finish our proof. �

Theorem 5.3 Our secure communication scheme is O-UF-CMA secure under our

predefined model assuming the Strong RSA problem is hard in the chosen group

system (G, g, n) when the hash functions H1,H2 are modeled as random oracles.

Concretely, if there is an adversary A which can break the O-UF-CMA security with

non-negligible probability ε, supposing A makes at most qH1 , qH2 , qs queries to the H1,

H2 oracle and Signcrypt oracle respectively, then we can construct another algorithm

C solving the Strong RSA problem with probability (ε− 1
v
)2 1
qH1

+qH2
+qs

where |G| = v.

Proof. Assuming there exists an adversary A which can break the O-UF-CMA

security of our scheme with non-negligible probability ε, then we can show how to

construct another algorithm C solving the Strong RSA problem from A, C and A
interacts as below.

• Setup: C is first given a group system (G, g, n) and an element z ∈ G, where

n = pq, p, q are large safe primes, G =< g >, |G| = v, (g|n) = 1, `g = |g| ≤
` = |n|. C then executes the Setup algorithm and sends the public parameter

PM to A. Assuming there exists t users in the user group {U}. For each user

Ui ∈ {U}, C executes the Registration algorithm of our scheme and generates

Ui’s public key pki, user certificate ui, signcryption key siki and unsigncryption

key unski correctly. After all t users are properly registered, C also sends the

user group set {U} to A.

• Query phase: In this phase, A can ask a polynomially bounded umber of

queries in an adaptive way. However, to imitate the behavior of the adversary
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A which is neither a registered user nor colluding with any registered user in

the system, we only allow A to ask the H1 query, H2 query, Signcrypt query,

Unisgncrypt query and Open query. As the description of the types of queries

allowed in this phase and the strategy used by C when answering each of those

queries are all the same as that aforementioned in the Query phase 1 of the

previous message confidentiality security proof, we omit it here.

• Forgery: In this phase, A itself chooses a message m ∈ M and also one user

Uj as the intended message receiver, then it asks the H1, H2 oracles and tries

to give a forgery CT ′ = (c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6, c
′
7, c
′
0, s
′
1, s
′
2, s
′
3, s
′
4).

Analysis. In fact, the given forgery CT ′ can be represented as a variant of the

Schnorr signature[Sch89] (h′, δ′) of the messagem′ wherem′ = (c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6, c
′
7),

h′ = c′0, δ
′ = (s′1, s

′
2, s
′
3, s
′
4). The adversary A wins the above game when A can pro-

duce a valid ciphertext (m′, h′, δ′) such that Verify(m′, h′, δ′) = 1, let Pr[A wins]

denote the probability of the event that A wins the game. According to the Forking

Lemma[PS00], we can treat this adversary A as a turning machine with a random

tape R′, if Pr[A wins] = ε is non-negligible, that is, A can produce a valid message

signature pair (m′, h′, δ′) successfully with non-negligible probability, then C can con-

trolA and execute a replay attack with the same random tape R′, and would produce

another valid signature (h′′, δ′′) of the same message m′ where h′ 6= h′′∧δ′ 6= δ′′ with

probability
(ε− 1
|G| )

2

Q
, where |G| denotes the order of G and Q is the total number of

hash and signing queries asked during the game.

Basing on the above result, when C gets CT ′ = (m′, h′, δ′) and CT ′′ = (m′,

h′′, δ′′), it can retrieve the personal certificate u′ embedded in m′ = (c′1, c
′
2, c
′
3, c
′
4,

c′5, c
′
6, c
′
7) by computing u′ =

c′4
(c′2)xj

as it knows the unsigncryption key xj of the

intended receiver of CT ′. Given the two tuples (h′, δ′) = (c′0, s
′
1, s
′
2, s
′
3, s
′
4), (h′′, δ′′)

= (c′′0, s
′′
1, s
′′
2, s
′′
3, s
′′
4), we have

s′1 = r1 − c′0(e′ − 2`1), s′2 = r2 − c′0e′w1,

s′3 = r3 − c′0(e′ − 2`1), s′4 = r4 − c′0e′w1,

s′′1 = r1 − c′′0(e′ − 2`1), s′′2 = r2 − c′′0e′w1,

s′′3 = r3 − c′′0(e′ − 2`1), s′′4 = r4 − c′′0e′w1.

We can further compute e′ =
s′1−s′′1
c′′0−c′0

+ 2`1 =
s′3−s′′3
c′′0−c′0

+ 2`1 ,e′w1 =
s′2−s′′2
c′′0−c′0

=
s′4−s′′4
c′′0−c′0

.

According to the Verify algorithm of our scheme, if Verify(CT ′) = Verify(CT ′′)

= 1, then we have
(c′4)e

′

(c′3)e
′w1

= (u′)e
′
= z. That is, if there exist an adversary A which

can win our O-UF-CMA game with negligible probability ε, then we can use it to
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find a pair of value (u′, e′) such that (u′)e
′

= z to break the Strong RSA problem

with probability (ε− 1
v
)2 1
qH1

+qH2
+qs

where |G| = v. Here we finish our proof. �

Theorem 5.4 Our secure communication scheme is I-UF-CMA secure under our

predefined model assuming the Discrete Logarithm (DL) problem is hard in the com-

posite group system (G, g, n) when the hash functions H1,H2 are modeled as random

oracles. Concretely, if there is an adversary A which can break the I-UF-CMA se-

curity with non-negligible probability ε, supposing A makes at most qH1 , qH2 , qsk, qs

queries to the H1, H2 oracle, Signcryption key oracle and Signcrypt oracle respec-

tively, then we can construct another algorithm C that solves the DL problem with

probability at least (ε− 1
v
)2 1
qH1

+qH2
+qs

where |G| = v.

Proof. Assuming there exists an adversary A which can break the I-UF-CMA se-

curity of our scheme with non-negligible probability ε, then we can show how to

construct another algorithm C solving the DL problem from A, C and A interacts

as below.

• Setup: C is first given a group system (G, g, n) and a DL problem instance

(u′, z) where (u′, z) ∈ G2, where n = pq, p, q are large safe primes, G =< g >

, |G| = v, (g|n) = 1, `g = |g| ≤ ` = |n|. C then executes the Setup algorithm

and sends the public parameter PM to A. Assuming there exists t users which

consist of the user group {U}. C randomly chooses one user Ui ∈ {U} as the

user which it wants A to impersonate. For each user Uj ∈ {U}/Ui, C executes

the Registration algorithm of our scheme for that user and generates Uj’s public

key pkj, user certificate uj, signcryption key sikj and unsigncryption key unskj

correctly. For the specific user Ui, C sets its certificate ui = u′, C further

random chooses xi ∈ Zv, then sets Ui’s public key pki = gxi and unsigncryption

key unski = xi. Assuming there exists a user certificate repository CR which

includes all the t users’ certificate, after all t users are properly registered, C
also sends the user group set {U} and also CR to A.

• Query phase: In this phase, A can ask a polynomially bounded umber of queries

in an adaptive way and is allowed to ask all types of query described previously.

However, if A make signcryption key query on user Ui and make Signcrypt query

with queried message (m,Ul, Uj) where Ul = Ui, C would abort the game. As

the description of the types of query allowed in this phase and the strategy

used by C when answering each of those queries are all the same as that afore-

mentioned in the Query phase 1 of the previous message confidentiality security

proof, we omit it here. Assuming A makes at most qH1 , qH2 , qsk, qs queries to

the H1, H2 oracle, Signcryption key oracle and Signcrypt oracle respectively in

this phase.
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• Forgery: In this phase, A itself chooses a message m ∈ M and also one user

Uj as the intended message receiver, then it asks the H1, H2 oracles and tries

to forge a ciphertext CT ′ = (c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6, c
′
7, c
′
0, s
′
1, s
′
2, s
′
3, s
′
4) on behalf of

Ui.

Analysis. In fact, the given forgery CT ′ can be represented as a variant of the

Schnorr signature [Sch89] (h′, δ′) of the messagem′ wherem′ = (c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6, c
′
7),

h′ = c′0, δ
′ = (s′1, s

′
2, s
′
3, s
′
4). The adversary A wins the above game when A can pro-

duce a valid ciphertext (m′, h′, δ′) such that Verify(m′, h′, δ′) = 1 and

Open(m′, h′, δ′, unskj) = u′, let Pr[A wins] denote the probability of the event that A
wins the game. According to the Forking Lemma [PS00], we can treat this adversary

A as a turning machine with a random tape R′, if Pr[A wins] = ε is non-negligible,

that is, A produces a valid message signature pair (m′, h′, δ′) successfully, then C can

control A and execute a replay attack with the same random tape R′, and would pro-

duce another valid signature (h′′, δ′′) of the same message m′ where h′ 6= h′′∧δ′ 6= δ′′

with probability
(ε− 1

v
)2

Q
, where |G| = v and Q is the total number of hash and signing

queries asked during the game.

Basing on the above result, when C gets CT ′ = (m′, h′, δ′) and CT ′′ = (m′, h′′, δ′′)

such that (h′, δ′) = (c′0, s
′
1, s
′
2, s
′
3, s
′
4), (h′′, δ′′) = (c′′0, s

′′
1, s
′′
2, s
′′
3, s
′′
4), we have

s′1 = r1 − c′0(e′ − 2`1), s′3 = r3 − c′0(e′ − 2`1),

s′′1 = r1 − c′′0(e′ − 2`1), s′′3 = r3 − c′′0(e′ − 2`1).

We can further compute e′ =
s′1−s′′1
c′′0−c′0

+ 2`1 =
s′3−s′′3
c′′0−c′0

+ 2`1 .

According to the Verify algorithm of our scheme, if Verify(CT ′) = Verify(CT ′′) =

1, then we have
(c′4)e

′

(c′3)e
′w1

= (u′)e
′

= z. Let Pr[abort] denote the probability that our

simulation would not abort and AdvDLC denote the probability that C would break

the DL problem, then we have

AdvDLC = Pr[abort]
(ε− 1

v
)2

Q

= (
1

t
)
(ε− 1

v
)2

Q
,

≥ (ε− 1

v
)2 1

t(qH1 + qH2 + qs)

Namely, if there exist an adversary A which can win our I-UF-CMA game with

negligible probability ε, then we can use it to break the DL problem with probability

(ε− 1
v
)2 1
t(qH1

+qH2
+qs)

, where t is an integer. Here we finish our proof. �

Theorem 5.5 Our secure communication scheme is R-UF-CMA secure under our

predefined model assuming the Discrete Logarithm (DL) problem is hard in the com-
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posite group system (G, g, n) when the hash functions H1,H2 are modeled as random

oracles. Concretely, if there is an adversary A which can break the R-UF-CMA se-

curity with non-negligible probability ε, supposing A makes at most qH1 , qo times of

queries to the H1 and Open oracle respectively, then we can construct another algo-

rithm C that solves the DL problem with probability (ε− 1
v
)2 1
qH1

+qo
where |G| = v.

Proof. Assuming there exists an adversary A which can break the I-UF-CMA se-

curity of our scheme with non-negligible probability ε, then we can show how to

construct another algorithm C solving the DL problem from A, C and A interacts

as below.

• Setup: C is first given a group system (G, g, n) and an element z ∈ G, where

n = pq, p, q are large safe primes, G =< g >, |G| = v, (g|n) = 1, `g = |g| ≤
` = |n|. C then executes the Setup algorithm and sends the public parameter

PM to A. Assuming there exists t users in the user group {U}. For each user

Ui ∈ {U}, C executes the Registration algorithm of our scheme and generates

Ui’s public key pki, user certificate ui, signcryption key siki and unsigncryption

key unski correctly. Assuming C has a user certificate repository CR which

includes all users’ personal certificate. After all t users are properly registered,

C also sends the user group set {U} and also the certificate repository CR to

A.

• Query phase: In this phase, A can ask a polynomially bounded umber of

queries in an adaptive way. As the types of queries allowed in this phase and

the strategy used by C when answering each of those queries are all the same

as that aforementioned in the Query phase 1 of the previous security proof, we

omit the description here. Assuming A makes at most qH1 , qo times of queries

to the H1 and Open oracle respectively

• Challenge: In this phase, A chooses one message m ∈ M and one user

Uj ∈ {U} as the intended receiver of the chosen message, then A sends

the tuple (m,Uj) to C. After receiving it, C chooses one user Ui such that

Ui 6= Uj as the signcrypter of m and generates the challenge ciphertext as

CT ′ = Signcrypt(siki, ui, pkj,m) = (c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6, c
′
7, c
′
0, s
′
1, s
′
2, s
′
3, s
′
4), then

C sends this tuple (CT ′, Uj) back to A.

• Forgery: Upon receiving (CT ′, Uj), A tries to give a tuple (CT ′, u′, c′, s′) such

that u′ ∈ CR to convince others that the signcrypter of CT ′ is the user with

personal certificate u′.

Analysis. A wins the above game when Justify(CT ′, u′, c′, s′) = 1 ∧ u′ 6= ui. Let

Pr[A wins] denote the probability of the event that A wins the above game. In
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fact, the forged tuple (CT ′, u′, c′, s′) can be valued as a variant of the Schnorr sig-

nature (m′, h′, δ′) where m′ = (CT ′, u′), h′ = c′, δ′ = s′. According to the Forking

Lemma[PS00], we can treat this adversary A as a turning machine with a random

tape R′, if Pr[A wins] = ε is non-negligible, that is, A produces a valid message

signature pair (m′, h′, δ′) successfully, then C can control A and execute a replay

attack with the same random tape R′, and would produce another valid signature

(h′′, δ′′) of the same message m′ where h′ 6= h′′ ∧ δ′ 6= δ′′ with probability
(ε− 1

v
)2

Q
,

where |G| = v and Q is the total number of hash and signing queries asked during

the game.

When C gets two message signature pairs (m′, h′, δ′) and (m′, h′, δ′) such that

Justify(m′, h′, δ′) = Justify(m′, h′′, δ′′) = 1, it can find the following relationship

between the four values in our scheme;

s′ = w0 − c′x′, s′′ = w0 − c′′x′,

where w0, x
′ are unknown, we derive the value x′ = s′−s′′

c′′−c′ from them.

According to our scheme, if Justify(CT ′, u′, c′, s′) = 1, then we have
c′4
u′

= (c′2)x
′
.

Namely, if A can win the above game with non-negligible probability ε, then we

can construct another algorithm form A to break the DL problem with probability

(ε− 1
v
)2 1
qH1

+qo
. Here we finish the proof. �

5.5 Summary

In this chapter, to securely send the sensitive information from the surveillance

node to the server in the security surveillance system, we present a publicly verifi-

able secure communication scheme with user and data privacy. With our scheme,

the message filter can filtrate information sent not from the surveillance nodes with-

out requiring any secret and compromising the nodes’ privacy. In our scheme, the

anonymity of one node can only be revoked by the server, which enables only the

server to build the searchable database using the node’s location as index. Besides,

given a ciphertext, the surveillance server can also give a proof to convince anyone

the origination of it without leaking the data privacy. Such property enables the

message auditor and others to check the origination of a ciphertext latter without

knowing the underlying plaintext. We give formal security models and proofs to

argue that our scheme satisfies all the required security requirements.
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Access Control Encryption
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Chapter 6

ACE with compact ciphertext size

and decentralized sanitizers

We present an access control encryption (ACE) scheme which enjoys advantages over

previous works in several aspects. Our scheme ensures not only compact ciphertext

size but also small size of keys installed in each user in the ACE system. Besides,

our scheme is believed to be the first implementation of ACE with decentralized

sanitizers. Comparing to ACE constructions with only one sanitizer, our scheme is

more secure and reliable since it does not suffer from the so called single point failure.

To discuss the security of our scheme in detail, we present two models catering to

the no-read rule and no-write rule security requirements respectively. Additionally,

our extended no-write rule model allows the corruption of some sanitizers in the

ACE system and thus is more stronger than the one proposed in schemes with only

one sanitizer. We prove the security of our scheme under the two models.

6.1 Introduction

Background. The recently proposed primitive Access Control Encryption(ACE)

[DHO16] gives the first cryptographic realization of the classical Bell-Lapudala ac-

cess control model [BL96]. By giving different roles to different users, it enables

fine-grained access control in terms of which messages are allowed to be received

and sent respectively by one specific user, which properties are also defined as the

read rule and write rule of the ACE. In [DHO16], Damgard et. al. assume that there

must exist one special party named sanitizer in ACE to fully control the communi-

cation channel, which means all outgoing messages must pass through the sanitizer,

otherwise, the desirable access control strategies, no-read-up and the no-write down

exactly, can never be enforced successfully. In fact, such assumption is also held in

subsequent papers related to the ACE [FGKO17][TZMT17]. Furthermore, the ACE

103
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enjoys extra benefit with the existence of the sanitizer, that is, the sanitizer can

prohibit communications between even corrupted senders and corrupted receivers,

and it is this property that had seldom be considered by previous cryptographic

primitives.

Since the role played by the sanitizer is of vital importance in ACE, the se-

curity concerns on it should be considered carefully and thoroughly. According to

the previous works, the minimum requirement of the sanitizer is that it should be

semi-trusted. Explicitly, the sanitizer is trusted to follow the protocol specification

honestly but may try to learn additional information by utilizing other attacks such

as collusion. However, we argue that the sanitizer should also be extremely reli-

able, namely, the so called single point failure should never happen. Literally, if the

sanitizer cannot work properly in some instances, such as out-of-power or off-line,

none of the security properties, the no-read-rule and no-write-rule indeed, of the

ACE scheme would be guaranteed further. In this chapter, we show our interest on

the problem how to increase the reliability of the sanitizer in ACE and therefore

increase the robustness of the whole ACE scheme.

Existing ACEs. In [DHO16], Damgard et. al. aims to construct the ACE scheme

in such a way that the functionality of the sanitizer is simplified as much as possible

and the knowledge it learns is minimal. Namely, the sanitizer must process every

incoming ciphertexts in an easy way, and the processing depends neither on the

original message of the ciphertext nor on the access policies in the system. Even

the resulted ACE scheme satisfies the requirements mentioned above properly, the

sanitizer in the scheme still learns too much. Explicitly, in Damgard’s work, the

sanitizer utilizes keyed-sanitation algorithm to process received ciphertexts, which

requires the sanitizer to be installed with a set of sanitizing keys which are indeed

the additive inverse of all uses’ encryption keys in the ACE. This fact implies that

the sanitizer can create new access polices and then manipulate the communication

in the system when collusion attack is allowed. More precisely, the sanitizer can

collude with one user and allocate several encryption keys, which are not owned by

this user before, to it, the sanitizer therefore empowers this user with the capability

to send messages to users who it cannot communicate with previously. In this case,

the sanitizer actually creates new access policies. To solve such problem, Fuchsbauer

et. al. [FGKO17] gives new construction of the ACE in which the sanitizer does not

need sanitizing keys to do sanitation.

The newly constructed ACE scheme in [FGKO17] improved Damgard’s scheme

in two aspects. To begin with, the complexity, in terms of key and ciphertext size,

of the proposed scheme in [FGKO17] is polylogarithmic in terms of the numbers

of identities n in the system under standard cryptographic assumptions, while that

of the scheme in [DHO16] is exponential in n under the same kind of assumptions.
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Most importantly, the constructions in [DHO16] need the sanitizer to store some

secret information, such requirement could cause several security issues mentioned

above and then incur the proposed ACE scheme insecure. In contrast, the scheme

proposed in [FGKO17] does not need secret keys to do sanitation and therefore does

not have such problem. As a result, it significantly reduces the probability of break-

ing the security of the scheme. Also, benefiting from the non-keyed sanitation, the

sanitizing algorithm of the sanitizer in [FGKO17] is oblivious to the keys of the pos-

sible receivers of a incoming ciphertext. However, the sanitizer in [DHO16] has to

sanitize each component of the incoming ciphertext using a receiver-dependent pro-

cedure. Literally, the scheme in [FGKO17] also has advantage over that in [DHO16]

with respect to the efficiency of the sanitizing algorithm.

Motivations. Since the proposing of the primal work in [DHO16], one successive

work is primarily on improving the efficiency of the construction from standard

cryptographic assumptions [FGKO17]. There also exists a work giving new con-

structions from non-standard ones such as cryptographic obfuscation or learning

with error(LWE) assumption [TZMT17]. It has been declared in [FGKO17] that it

is still unclear whether there exists ACE scheme with compact size ciphertext under

standard assumptions. Considering there is no compact size ciphertext ACE scheme

under non-standard assumptions found in previous works, in this chapter, we are

trying to give such a ACE construction. Besides, as we have discussed before, the

ACE scheme with only one sanitizer empowers the sanitizer with the capability of

producing new access policies. Furthermore, such scheme also encounters single-

point-failure problem. Either of those problems would incur the insecurity of the

ACE system. Since such problems in ACE systems has seldom been considered or

addressed before, we treat it as one of our concern in this chapter.

Contributions. In this chapter, our contribution focuses on the following two as-

pects; We give the first ACE scheme construction with compact size ciphertext.

Our construction borrows idea from the primitive anonymous broadcast encryption

[LPQ12], the resulted scheme keeps not only the ciphertext size compact but also

the key size of each users in the ACE compact. Literally, the key size of our ACE

scheme is polylogarithmic in terms of the number of layers in the ACE, while that

in [DHO16] and [FGKO17] is exponential and polylogarithmic respectively in terms

of the number of users. As the number of layers should be at least smaller than that

of users in the ACE, the key size of our construction should be more compact than

that in previous construction mentioned before.

Our more significant contribution of this chapter is giving a decentralized im-

plementation of the sanitizer in the ACE to restrain its capability and also increase

its reliability. In this chapter, we use secret sharing technique to allow the sanitizing



CHAPTER 6. ACE 106

key to be shared among n sanitizers, and only exact t of them can collaboratively

transform a ciphertext into a valid sanitized ciphertext. Which can then be correctly

decrypted by its receivers. In our construction, each of the n sanitizers is installed

with an unique sanitizing key and would execute the same sanitizing algorithm on

the ciphertexts, which are either not sanitized or partially sanitized. One ciphertext

can only be viewed as a partially sanitized ciphertext and cannot be decrypted by

its intended receivers until it is processed by t sanitizers. Unlike previous scheme

with only one sanitizer, our construction distributes the sanitizing functionality of

the origin ACE among n sanitizers. It is impossible for one of sanitizers in our

construction to produce a new access policy, so our construction imposes restric-

tion on the capability of the sanitizer. Besides, aone message sender in our ACE

construction can choose the t sanitizers itself to collaboratively produce a valid san-

itized ciphertext. Even some of the n sanitizers cannot provide service or off-line,

the whole ACE system can never encounter the single-point-failure and still work

as normal. Our construction improves the reliability of the sanitizer and even the

robustness of the whole ACE system.

6.1.1 Chapter Organization

The rest of this chapter is organized as follows. In Section 6.2, we first formalize

useful notations and primitives, then we give a definition of our ACE scheme. We

also present two security models to cover the no-read rule and no-write rule prop-

erty in this part. In Section 6.3, in order to make the description of our scheme

more understandable, we first present a new notion of ”sanitizing pipeline”, then

we present a concrete construction of our ACE with compact size ciphertext and

decentralized sanitizers. We give security proofs in Section 6.4 and conclude this

chapter in Section 6.5.

6.2 Primitives and Definitions

Notations. Here, for the benefit of consistency, we give the notations used through-

out the whole chapter. There are always three types of users involved in the ACE

scheme, we denote them the message sender Se, the message sanitizer San and the

message receiver Re separately. For a specific user, he can play the role of both

Se and Re. We use ke, kd to represent this user’s encryption and decryption key

respectively. Assuming there are l layers in the ACE system, when a user in layer

α ∈ [l] can send messages to a receiver in layer β ∈ [l], we use the notation α×β → 1

to denote such access policy, otherwise α × β → 0. We use the access policy set

P : [l] × [l] → {0, 1} to cover the collection of all the access polices defined in the
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ACE system. When there exist n message sanitizers in our ACE definition, we

assume each of them hold a unique secret sanitizing key ks. In order to keep the

consistency of the description of our ACE system, we use [u+1,u+n] to denote the

list {u + 1, u + 2, · · · , u + n} and to represent identities of the n sanitizers. For

simplicity, we use the notation [u+ n] to represent all identities of users involved in

the ACE definition.

6.2.1 Primitives

Broadcast Encryption. The cryptographic primitive Broadcast Encryption(BE)

was first introduced by Fiat et. al. in [FN93], it ensures that a message sender can

choose a group of users and send encrypted messages to them, also, only users in

the chosen group can decrypt such ciphertext using their private keys. According

to [BGW05], a broadcast encryption system, without lose of generality, consists of

the following four algorithms:

• Setup(λ, n, `). Takes as input the security parameter λ, the number of receivers

n and the maximal size ` ≤ n of a broadcast recipient group, it outputs the

master public and secret key mpk,msk.

• KeyGen(i,msk). On inputs an index i ∈ {1, · · · , n} and the master secret key

msk, this algorithm outputs a decryption key di for that user.

• Enc(S,mpk). On input a subset S ⊂ {1, ·, n} and the master public key mpk,

when |S| ≤ `, this algorithm outputs a pair (Hdr,K) where Hdr is called

the herder and K ∈ K is a message encryption key. Where K is the key

space of one symmetric encryption scheme Esym. Let SymEnc and SymDec

be the encryption and decryption algorithm of Esym respectively. Let M be

the message to be broadcast to the users in set S and CM ← SymEnc(K,M)

be the encryption of M under the symmetric key K. The broadcast message

to users in S consists of (S,Hdr, CM).

• Dec(S, i, di, Hdr,mpk). Takes as input a subset S ⊂ {0, · · · , n}, a user with

identity i ∈ {1, · · · , n} and the decryption key di, if i ∈ S, then the algorithm

outputs a symmetric key K ∈ K. K then can be used to decrypt CM to obtain

M .

Since its invention in [FN93], many BE systems have been proposed and enjoy vari-

ous flavors; some of BE schemes [BH08, KSAS15] may follow the traditional public

key encryption construction while most of them [BGW05, Del07, DPP07, GW09,

BWZ14, PPSS13] apply the hybrid encryption methodology, with such technique,

the whole ciphertext of the BE system can be represented as a tuple with two
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parts (Hdr,Csk,m) where Hdr is an encryption of a symmetric key sk and Csk,m is a

symmetric encryption of the broadcast contents using the sk. The chosen receiver

group in the BE schemes could be static [FN93, ZWM13] or dynamic [DPP07], if

the receiver group can be changed by the broadcaster freely, we say it is dynamic,

otherwise static. In some BE schemes, the receivers’ keys can even be revoked

[SCG+16, LMG+17] to achieve forward-secrecy. One fundamental security property

of the BE is collision resistance, a broadcast encryption is said to be (t, n)−collusion

secure if for any subset R, where R ⊂ U , |R| = r, r ≤ t, |U| = n, users in R can by

no means infer information about the broadcast messages, the broadcast encryption

with (n, n)−collusion secure is said to be fully collusion resistance, BE schemes of

such kind can be found in [BGW05, DPP07].

Considering providing key-privacy, or receiver anonymity [BBDP01], in BE

schemes, Libert et. al. [LPQ12] proposed the anonymous broadcast encryption,

the two constructions given in that paper are generic and take one IND-CCA se-

cure PKE as their basis. To hide the real intended receivers of a broadcast content,

the schemes are constructed in such a manner that the resulted ciphertext size is

linear with the number of users in the BE system. This paper also declared that it

should be impossible to construct anonymous broadcast encryption with compact

size ciphertext. Latter, [FP12] gives the first anonymous broadcast encryption with

sublinear ciphertexts, however, the proposed schemes is based the anonymous IBE

and such requirement is stronger than that in [LPQ12], besides, the security of the

schemes is analyzed under the so-called subset cover framework, which is seldom

used before. It seems feasible to give anonymous broadcast encryption when the

intended receiver is static, and the construction in [ZWM13] gives evidence to this

statement.

Secreting Sharing. The secret sharing scheme has been invented decades ago and

usually acts as a very important ingredient in many cryptographic protocols such as

secure multi-party computation, threshold cryptography, access control, attribute-

based encrypiton and generalized oblivious transfer [Tas11].

Generally, one secret sharing scheme involves a dealer who holds the whole secret

s, a set of n parties, each of whom holds a share of the secret of the dealer, and a

collection AS of subsets of users from the n parties called the access structure. The

secret sharing scheme can be defined using the following algorithms;

• Setup(λ, n). Given the security parameter λ and the whole n parties involved

in the scheme, the dealer produces a secret s it wants to share as well as an

access structure AS. The dealer keeps s and sends AS to all the n parties.

Note that if AS is the collection of all possible subsets of at least t users from

the n parties, then such scheme is called the specific t out of n threshold secret
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sharing.

• ShDis(AS, s, i). Given AS, s and one user’s identity i, the dealer distributes

one secret share vi to that user.

• SeCon(AS, {vi}). For one user with identity i, if he has received a set of secret

shares {vi} from other users and those users can form at least one subset in

AS, then this user can reconstruct the whole secret s from {vi}

The scheme ensures that any subset in the access structure AS can reconstruct the

secret from shares of users in that subset collaboratively and any subset not in AS
can reveal nothing even partial information about the secret. Despite the fact that

there exist many different types of secret sharing schemes at present such as the

threshold kind in [Sha79], the undirected s − t connectivity kind in [BI92] and the

monotone formulae construction kind in [BL88], we give a secret sharing scheme

which is similar to the classical shamir one but does not inherit the threshold char-

acteristic. Explicitly, our scheme demands that each subset of the access structure

contains only t users and only the exact t users in one specific subset of the access

structure can reconstruct the secret collaboratively.

6.2.2 Defining Our ACE

An ACE scheme with decentralized sanitizers is defined by the following polynomial

time algorithms:

• Setup(P, λ). On input the security parameter λ and a access policy set P :

[u] × [u] → {0, 1}, the Setup algorithm outputs a master secret key msk and

the public parameter pp, which include the description of the message space

M, the ciphertext space C and the sanitized ciphertext space C ′.

• KeyGen(msk, i, t). On input msk, an identity i ∈ [u + n] and a user type

t ∈ {Se,Re, San}, the key generation algorithm KeyGen produces the following

different types of keys accordingly:

– kei = KeyGen(msk, i, Se) when the user with identity i is a message

sender, t = Se, and kei is called the encryption key for that user.

– kdi = KeyGen(msk, i, Re) when the user with identity i acts as a message

receiver, t = Re, and kdi is called the decryption key for that user.

– ksi = KeyGen(msk, i, San) when the user with identity i plays the role

of a message sanitizer, t = San, and ksi is called the sanitizing key for

that user.
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• Enc(kei,m). The encryption algorithm Enc, on input an encryption key kei

and a message m ∈M, outputs a ciphertext c ∈ C.

• Sanit(c, SPl). For one incoming ciphertext c ∈ C, a sanitizer in one chosen

sanitizing pipeline SPl would process it using this sanitation algorithm Sanit

with its own sanitizing key, and then relay the result to another sanitizer in the

same path, and the next sanitizer would do the same as its predecessor. Our

ACE scheme with decentralized sanitizers requires that c should be processed

by all t sanitizers in the sanitizing pipeline SPl collaboratively before becoming

a valid sanitized ciphertext c′ ∈ C ′.

• Dec(c′, kdj). On input a sanitized ciphertext c′ ∈ C ′ and a decryption key kdj,

the decryption algorithm Dec recovers the message m′ ∈M∪ {⊥}.

6.2.3 Security Notions for Our ACE

Our ACE scheme must satisfy requirements formalized below:

Definition 6.1 (Correctness) For all m ∈M, i, j ∈ [u] such that P (i, j) = 1:

Pr[Dec(kdj, Sanit(kst, · · · , Sanit(ksl,Enc(kei,m)))︸ ︷︷ ︸
t

) 6= m] ≤ negl(λ)

with (pp,msk)← Setup(1λ, P ), kei ← KeyGen(msk, i, Se),kdj ← KeyGen(msk, j,

Re) and ksl ← KeyGen(msk, l, San), where l ∈ [u + 1, u + n]. The above notation

denotes that the encrypted message should be processed by exact t different sanitizers

in the same sanitizing pipeline before becoming a valid sanitized ciphertext and then

being decrypted to a valid plaintext, otherwise, the probability of a correct decryption

should be negligible. The probability is taken over the random coins of all involved

algorithms.

Definition 6.2 (No-Read Rule) To define the No-Read Rule in our ACE sch-

eme, we consider the game, which is played between a challenger C and an adversary

A, described in Table 6.1.

Where P : [u]× [u]→ {0, 1} is the given access policy set and t ∈ {Se,Re, San},
|m0| = |m1|, i ∈ [u] and for all queries to OG with q = (j, Re), the equation

P (i, j) = 0 always hold. we say that the adversary A wins the No-Read game if its

output b′ = b.

Let Pr[A wins the No-Read game] denote the probability the A wins the pre-

defined game and AdvNo-Read
A (ACE) its advantage to win the game, then an ACE

scheme is said to satisfy the No-Read Rule if for all probabilistic polynomial time
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Table 6.1: The No-Read Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1λ, P ); OG(i, t) :
2. (m0,m1, i)← AOG(·),OE(·)(pp); 1. ki ← KeyGen(msk, i, t)
3. b← {0, 1}
4. c← Enc(KeyGen(msk, i, Se),mb) OE(i,m) :

5. c′ ← SanitOG()(· · · ,SanitOG()(ks1, c))︸ ︷︷ ︸
t

1. kei ← KeyGen(msk, i, Se);

6. b′ ← AOG(·),OE(·)(c′) 2. c← Enc(kei,m)

3. c′ ← SanitOG()(· · · ,SanitOG()(ks1, c))︸ ︷︷ ︸
t

(PPT) algorithm A

AdvNo-Read
A (ACE) = 2|Pr[A wins the game]− 1

2
| ≤ negl(λ).

Remark. The No-Read Rule model in [DHO16] also covers the sender anonymity, or

key-privacy, property when the second, fourth step of our game definition is changed

to

(m0,m1, i0, i1)← AOG(·),OE(·)(pp), c← Enc(KeyGen(msk, ib, Se),mb)

accordingly and the requirement P (i, j) = 0 is changed to

m0 = m1, P (i0, j) = P (i1, j).

It is easy to find that our model can be extended to guarantee the sender anonymity

with the above minimal modification, and the corresponding security proof would

not be changed a lot indeed. Here, for simplicity , we first concentrate on the basic

No-Read property.

Definition 6.3 (No-Write Rule) To define the No-Write Rule in our ACE sch-

eme, we consider the game, which is played between a challenger C and a stateful

adversary A, described in Table 6.2.

Let QS (resp. Q) be the set of queries issued by A to OS (resp. both OS and OR).

Let IS be all the identities i ∈ [u] such that (i, Se) ∈ QS and let J be the set of all

identities j ∈ [u] such that (j, Re) ∈ Q. When (l, San) /∈ Q, i′ ∈ IS ∪ {0} and ∀i ∈
IS, j ∈ J, P (i, j) = 0, if the adversary’s final output b′ = b, we say that A wins the

No-Write game defined above.

Let Pr[A wins the No-Write game] denote the probability when the event b′ = b

happens and AdvNo-Write
A (ACE) denote A’s advantage when A wins this game, then
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Table 6.2: The No-Write Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1λ, P ); OS(j, Se) :
2. (i′, c,m)← AOS(·),OE(·)(pp); 1. k ← KeyGen(msk, j, Se)
3. kei′ ← KeyGen(msk, i′, Se);
4. ksl ← KeyGen(msk, l, San), · · · , kst︸ ︷︷ ︸

t

;

5. b← {0, 1}; OR(j, Re) :
if b = 0, c′ ← Sanit(· · · ,Sanit(ks1,Enc(kei′ ,m)))︸ ︷︷ ︸

t

; 1.k ← KeyGen(msk, j,Re)

if b = 1, c′ ← Sanit(· · · ,Sanit(ks1, c))︸ ︷︷ ︸
t

OE(i, r) :

6. b′ ← AOS(·),OR(·)(c′) 1. kei ← KeyGen(msk, i, Se);
2. c← Enc(kei, r)
3. c′ ← Sanit(· · · , Sanit(ks1, c))︸ ︷︷ ︸

t

we say an ACE scheme satisfies the No-Write Rule if for all PPT A

AdvNo-Write
A (ACE) = 2|Pr[A wins the game]− 1

2
| ≤ negl(λ)

Remark. The No-Write security model here also ensures that any set of senders,

even corrupted, cannot transfer any information to any set of receivers unless at

least one of the senders is allowed to communicate with at least one of the receivers

by the access policy P . In fact, the above model does not consider whether the

sanitizers could be corrupted and thus is valued as the Simplified No-Write Rule.

However, in our ACE scheme with decentralized sanitizers, such corruption is per-

mitted, moreover, our scheme even allows the A to corrupt more than t sanitizers

as long as the corrupted sanitizers cannot form a valid ”sanitizing pipeline”. We

give another security model, the extended no-write rule model, to formalize such

property.

Before defining a security model allowing the corruption of the decentralized

sanitizers in our ACE, we would like to present a simple analysis about the security

goal of the adversary captured by such model. According to what we have discussed

previously, the sanitizer in [DHO16], in fact, can produce new access policies using

the sanitizing key held by itself, which actually violate the No-Write Rule security

requirement of the ACE scheme and should be forbidden, while our ACE with

decentralize sanitizers gives a promising way to prevent such behavior. In order to

produce a valid sanitized ciphertext, our scheme enforces t sanitizers in one specific

”sanitizing pipeline” to execute the sanitizing algorithm collaboratively rather than

only one single sanitizer. The result is that, if one new access policy is produced,

there should be at least t nodes in one specific pipeline colluded together. So, when
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Table 6.3: The Extended No-Write Rule

Extended No-Write Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1λ, P ); OS(i, Se) :

2. (m0,m1, j)← AOS(·),OE(·)(pp); 1. kei ← KeyGen(msk, i, Se)
3. kdj ← KeyGen(msk, j, Re)

4. ke
′

i ← AOSan(·),OS(·)(pp) OR(j, Re) :
5. b← {0, 1} 1. kdj ← KeyGen(msk, j, Re)
6. c← Enc(kei

′,mb) OSan(l, San) :
7. c′ ← Sanit(· · · , Sanit(ks1, c))︸ ︷︷ ︸

t

1. ksl ← KeyGen(msk, l, San)

8. b′ ← AOSan(·),OE(·)(c′) OE(i,msg) :
1. kei ← KeyGen(msk, i, Se);
2. c← Enc(kei,msg)

defining security model with respect to the sanitizer in our scheme, the goal of the

adversary is to produce a new access policy without corrupting all t users in one

specific ”sanitizing pipeline” .

Definition 6.4 (Extended No-Write Rule) To define a model capturing the se-

curity of the sanitizers, we consider the game, which is played between a challenger

C and an adversary A, described in Table 6.3.

Let QS, QR and QSan be the set of queries issued by A to OS, OR and OSan
respectively. Let IS be all the identities i ∈ [u] such that (i, Se) ∈ QS, JR be

the set of all identities j ∈ [u] such that (j, Re) ∈ QR and LSan be all identities

l ∈ [u+ 1, u+ n] such that (l, San) ∈ QSan respectively. We have

• ∀i ∈ IS, j ∈ J, P (i, j) = 0,

• There exists no ”sanitizing pipeline” whose users are all included in LSan.

If the adversary’s final output b′ = b, we say that A wins the Extended No-Write

Rule game defined above. Let Pr[A wins the game] denote the probability that b′ = b

and AdvEx-No-Write
A (ACE) denote A’s advantage when A wins this game, then we say

an ACE scheme satisfies the Extended No-Write Rule if for all PPT A

AdvEx-No-Write
A (ACE) = 2|Pr[A wins the game]− 1

2
| ≤ negl(λ)

In fact, we find the above two security models, the simplified no-write rule and the

extended no-write rule, are considering the same security issue with only minimal
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differences. Namely, the former model defines one user i’s no-write property in such

a manner that i cannot send messages to another user j when the access policy

P (i, j) = 0 even i, j are all corrupted or i gets help from users who also cannot send

messages to j, while in the extended no-write rule model, user i’s no-write property

is defined similarly but with the exception that i can also gets help from at most t−1

sanitizers in one sanitizing pipeline rather than just from other users. Intuitively, the

extended no-write rule model defined here should have already covered the simplified

no-write rule model and is thus stronger than it.

6.3 The ACE with Decentralized Sanitizers

In this section, we first illustrate how to construct a sanitizing cluster and how a new

”sanitizing pipeline” with t sanitizers is formed when there are n sanitizers existed

in the cluster, we also show you that the whole number of sanitizing pipelines and

sanitizers in the sanitizing cluster can be increased in an on-demand manner. After

that, we give a description of our ACE scheme with compact ciphertext size and

decentralized sanitizers in detail.

6.3.1 The Sanitizing Cluster and Sanitizing Pipelines

We assume all sanitizers in our ACE system constitute a sanitizing clusters. Our

ACE with decentralized sanitizers requires that only t sanitizers can collaboratively

fulfill the sanitizing algorithm properly and converts one incoming ciphertext into a

valid sanitized ciphertext which can then be decrypted by the intended receiver. To

save the computational cost of the sanitizers in the sanitizing cluster when they do

sanitization, we introduce the notion sanitizing pipeline. A sanitizing pipeline can

be valued as a path predefined by the system authority containing a collection of

exact t sanitizers chosen by it from the sanitizer cluster. one ciphertext can never

be transformed into a valid sanitized ciphertext until it is processed by every nodes

in the pipeline chosen in advance by the message sender. The system authority can

actually produce as many sanitizing pipelines as it wants, and the collection of all

the pipelines is represented as {SP} which should be known by all the nodes in

the ACE system. Given a polynomial F (x) with degree t − 1 such that F (0) = y,

which is the secret to be shared. When one user with identity j wants to join the

sanitizing cluster as a sanitizer, the system authority chooses xj ∈ Zp and computes

yj = F (xj), then yj is allocated to this user as one of its secret, then the system

authority would also produce a new sanitizing pipeline spl and add this user as one

member of this pipeline. Furthermore, as the authority knows all the t sanitizers

in spl, another secret value fj = g
−

∏
i 6=j∧i∈spl

xi
xi−xj is computed by the authority in
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advance and then distributed to that sanitizer j. When one user with identifier j

gets its own secret share (yj, fj) and the sanitizing pipeline identifier spl, it can work

as a valid sanitizer member in the sanitizer cluster.

6.3.2 Our ACE Scheme With Compact Ciphertext Size and

Decentralized Sanitizers

Our ACE scheme with compact ciphertext size and decentralized sanitizers (AC-

CDS) is defined by the following algorithms;

• Setup(λ): This ACE system setup algorithm is executed by the system au-

thority. Given the security parameter λ, a bilinear map group system BM =

(p, g,G,G1, e : G × G → G1) is generated such that |p| = λ, g, h ∈ G are

two randomly selected generators of G and a secret value γ ∈ Zp is cho-

sen, sets w = gγ. The authority also chooses a cryptographic hash function

H : {0, 1}λ → Zp which will be viewed as the random oracle in the security

analysis. The authority also initializes the sanitizing clusters and sanitizing

pipelines using the initialization algorithm defined above, after that, assum-

ing there are n sanitizers and |{SP}| sanitizing pipelines in the ACE system,

notice that each element in {SP} contains a list of sanitizers’ identities and

represents a unique sanitizing pipeline. Assuming there are u users which can

play the role of the message sender and the message receiver, and each of them

lays in one specific layer, supposing there are µ layers at most in the ACE sys-

tem, let SLβ denote the collection of identities of users laying in the β-th layer

where 1 ≤ β ≤ µ, only the authority knows AC = (SL1 , SL2 , · · · , SLα , ·, SLµ),

that is, only the authority has the knowledge of which user lays in which layer

for all the u users. The authority also knows the whole sanitizing key y ∈ Z∗p.
The authority defines the key space KM = G1,the ciphertext space C = G6,

the sanitized ciphertext space C ′ = G6 respectively. The public parameter

pp = (BM, w,H, {SP},KM, C, C ′), the master secret key msk = (AC, γ, y).

• KeyGen(msk, pp, i, Lβ, ty): When given pp,msk, one specific users’ identity i,

the layer Lβ this user lays in and its user type ty ∈ {Se,Re, San}, the key

generation algorithm is executed by the authority as follows;

– When ty = Se, that is, the authority needs to generate an encryption

key kei for the user with identity i. The authority chooses xi
R← Z∗p for

this user with identity i and sets kei as;

kei = (h

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

, h
xi

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

, g−xiγ, e(g, h)xi , gy)
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– When ty = Re, that is, the authority needs to generate a decryption key

kdi for that user. When user with identity i lays in layer Lβ, he can

receiver messages sent from layers below its own, that is, his decryption

key should be able to decrypt messages sent from layers from L1 to Lβ.

Here the authority construct the decryption key of this user in such a

manner that kdi contains β components and each component is response

for decrypting ciphertexts from one specific layer. kdi can be represented

as;

kdi = (kdi0 = g
1

γ+H(i) , kdi1 = h

∏
l 6=i∧l∈SL1

∪···∪SLµ
(γ+H(l))−1

γ ,

kdi2 = h

∏
l 6=i∧l∈SL2

∪···∪SLµ
(γ+H(l))−1

γ , · · · · · ·

kdiβ = h

∏
l 6=i∧l∈SLβ

∪···∪SLµ
(γ+H(l))−1

γ ).

– When ty = San, that is, the authority needs to generate a sanitizing

key ksi for that user. To do this, the authority chooses a m − 1 degree

function F (x) such that F (0) = y. For each sanitizer j in the specific

sanitizing pipeline, denoted by spl, the authority allocate a xj
R← Z∗p to

it and computes yj = F (xj), the sanitizing key ksi of the sanitizer with

identity i should be;

ksi = g
−yi

∏
j 6=i∧j∈SPl

xj
xj−xi

• Enc(m, kei, pp): Our ACE scheme borrows idea from the hybrid encryption

scheme, that is, the asymmetric encryption scheme actually encrypts a sym-

metric encryption key, the real ciphertext is an encryption of the origin message

using a symmetric key encryption scheme with the symmetric key encrypted

by the previous asymmetric encryption scheme. Here, we only focus on the

asymmetric part of our whole ACE and just use SEsk(m) to represent the

symmetric encryption part. When given a message m ∈ M, one message

sender with identity i in layer Lβ encrypts it as follows;

k0 , k1, rs
R← Z∗p

C1 = g−xiγk1 , C2 = g−xiγk1rsg−k0γgy,

C3 = h
k1xi

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

,

C4 = h
k1xirs

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

h
k0

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

C5 = e(g, h)xik1 , C6 = e(g, h)xik1rs

The symmetric key should be sk = e(g, h)k0 , the real ciphertext should be
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C7 = SEsk(m). So , the whole ciphertext of our ACE is the tuple CT =

(Lβ, C1, C2, C3, C4,

C5, C6, C7). The message sender then chooses one sanitizing pipeline SPl from

all pipelines which are hard-wired with this sender.

• Sanit(CT v, pp, kslv+1): Given a ciphertext CT v = (Lβ, C
v
1 , C

v
2 , C

v
3 , C

v
4 , C

v
5 , C

v
6 ,

Civ), no matter whether it is received from the message sender or from a

sanitizer’s predecessor, this sanitizer does as follows;

rv+1
R← Z∗p, Cv+1

1 = g−xiγk1 , Cv+1
2 = g−xiγk1rsg−k0γgykslv+1(Cv

1 )rv+1 ,

Cv+1
3 = h

k1xi
∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

,

Cv+1
4 = h

k1xirs
∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

h
k0

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

(Cv
4 )rv+1

Cv+1
5 = e(g, h)xik1 , Cv+1

6 = e(g, h)xik1rs(Cv
5 )rv+1 , Cv+1

7 = Cv
7

After this sanitizer proceeds the incoming ciphertext as above properly, it

would relay the partially sanitized ciphertext to the next sanitizer laying in

the same sanitizing pipeline as itself if it is not the final sanitizer in this

pipeline, otherwise, this sanitizer would relay the sanitized ciphertext to the

intended receiver.

Notice that all sanitizers in SPl will do the same as what we described above.

When one ciphertext tuple CT = (Lβ, C1, C2, C3, C4, C5, C6) goes through the

sanitizing pipeline SPl and is processed by each of the t sanitizers in SPl, the

finally sanitized ciphertext should be represent as:

Ct
1 = C1 = g−xiγk1 , Ct

2 = g−xiγk1rsg−k0γgy(C1)r1+r2+···+rtksl1ksl2 · · · kslt,

Ct
3 = C3 = h

k1xi
∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

,

Ct
4 = h

k1xirs
∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

h
k0

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

(C3)r1+r2+···+rt

Ct
5 = C5 = e(g, h)xik1 , Ct

6 = e(g, h)xik1rs(C5)r1+···+rt , Ct
7 = C7

As we can see,

ksl1ksl2 · · · kslt
= g

−yl1
∏
j 6=l1∧j∈SPl

xj
xj−xl1 g

−yl2
∏
j 6=l2∧j∈SPl

xj
xj−xl2 · · · g−ylt

∏
j 6=lt∧j∈SPl

xj
xj−xlt

= g−F (0) = g−y

When the last sanitizer in SPl has executed its sanitizing algorithm on one

incoming partially sanitized ciphertext, he can just send CT ′ = (Lβ, C
′
1, C

′
2, C

′
3,
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C ′4) to the intended receivers, where

C ′1 = Ct
2 = g−xiγk1rsg−k0γgy(C1)r1+r2+···+rtksl1ksl2 · · · kslt

= g−(xik1(rs+r1+···+rt)+k0)γ

C ′2 = Ct
4 = h

k1xirs
∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

h
k0

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

(C3)r1+···+rt

= h
(k1xi(rs+r1+···+rt)+k0)

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

C ′3 = Ct
6 = e(g, h)xik1(rs+r1+r2+···+rt)

C ′4 = SEsk(m) where sk = e(g, h)k0

and Lβ denotes the layer this message sender lays in.

• Dec(kdj, CT ′, pp): When given a properly sanitized ciphertext CT ′ and one

user’s decryption key kdj, this user would first judge whether he is able to

recover the origin message of the received ciphertext by checking whether the

layer the receiver lays in is higher than that of the message sender. If the

receiver can decrypt the ciphertext, it does as follows;

sk′ =
e(C ′1, kdjβ)e(C ′2, kdj0)

C ′3
, sets K = (xik1(rs + r1 + · · ·+ rt) + k0)

=
e(g−Kγ, h

∏
l 6=i∧l∈SLβ

∪···∪SLµ
(γ+H(l))−1

γ )e(h
K

∏
i∈SLβ

∪···∪SLµ
(γ+H(i))

, g
1

γ+H(i) )

e(g, h)K−k0

=
e(g, h)

K(1−
∏
l 6=i∧l∈SLβ

∪···∪SLµ
(γ+H(l)))

e(g, h)
K

∏
l 6=i∧l∈SLβ

∪···∪SLµ
(γ+H(l))

e(g, h)K−k0

= e(g, h)k0

m′ = DEsk′(C
′
4)

6.4 Security Proofs

Theorem 6.1 Our ACE scheme holds the No-Read Rule property assuming the

(f, g, F )−GDDHE problem is hard in the group system BM = (p, g0, h0,G1,GT ,

e(·, ·)) when the hash function H is modeled as random oracle. Concretely, if there

is an adversary A which can break our scheme with non-negligible probability ε,

supposing A makes at most qH , qke, qkd queries to the H hash oracle,encryption key

query oracle and decryption key query oracle respectively, then we can construct

another algorithm B that solves the (f, g, F )-GDDHE problem in the given group

system with advantage at least 1
2
· ( qH−1

qH
)
qkd · 1

qH
· ε, where qH , qkd are defined above.

Proof. Assuming the adversary A can break our ACE scheme with non-negligible

probability ε, we show how to construct another algorithm B solving the (f, g, F )-
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GDDHE problem from A, B and A interacts as below.

• Setup. The algorithm B is first given a (f, g, F )−GDDHE problem instance

BM = (p,G1,GT , e(·, ·)), (g0, g
γ
0 , g

γ2

0 , · · · , g
γt−1

0 , g
γ·f(γ)
0 , g

k·γ·f(γ)
0 ) ∈ G1,

(h0, h
γ
0 , h

γ2

0 , · · · , h
γ2n

0 , h
k·g(γ)
0 ) ∈ G1 and T ∈ GT

where p is a reasonably large prime number and also the order of G1 and GT .

Given the bilinear map group system BM = (p, g0, h0,G1,GT , e : G1 ×G1 →
GT ) from the problem instance, where |p| = λ, g0, h0 ∈ G1 are generators

of G1, B then executes the setup algorithm of our ACE scheme. B also ini-

tializes the sanitizing clusters and sanitizing pipelines using the initialization

algorithm defined in our ACE scheme, assuming there are s sanitizers and

|{SP}| sanitizing pipelines in the ACE system after the execution, notice

that each element in {SP} contains a list of sanitizers’ identities and repre-

sents a unique sanitizing pipeline. Assuming there are u users in the user

set {IDu} = {ID1, ID2, · · · , IDu}, where u < n, each of them lays in one

specific layer, supposing there are µ layers at most in the ACE system, let

SLβ denote the collection of identities of users laying in the β-th layer where

1 ≤ β ≤ µ, only B knows AC = (SL1 , SL2 , · · · , SLβ , ·, SLµ), that is, only B
has the knowledge of which user lays in which layer for all the u users. B
also chooses one element y ∈ Z∗p as the system sanitizing key. B defines the

key space KM = G1,the ciphertext space C = G6, the sanitized ciphertext

space C ′ = G6 respectively. B also chooses a cryptographic hash function

H : {0, 1}λ → Zp which will be viewed as the random oracle in the security

analysis.

To enable B to answer the three different types of queries, it randomly chooses

{I1, I2, · · · , IqH} from Zp, where qH ≤ t is the number of queries asked to the

H oracle. It also picks a random index i∗ ∈ {1, 2, · · · , qH}. B defines one

polynomial function f(x) as

f(x) =

qH∏
i=1,i 6=i∗

(x+ Ii) = FqH−1x
qH−1 + · · ·+ F2x

2 + F1x
1 + F (0)

B then sets g = g
f(γ)
0 .

Assuming the user with identity IDi∗ lays in the layer Lβ. B defines a function

g(x) as

g(x) =
∏

ID∈SLβ∪SLβ+1,··· ,SLµ (x+H(ID))
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B then sets

h = h
g(γ)
0 , w = g

γ·f(γ)
0 = gγ

B can also compute the tuple (h, hγ, · · · , hγn) from the given instance and the

predefined function. B then sets hγ = h1, then the above instance turns to

(h
1
γ

1 , h1, h
γ
1 , · · · , h

γn−1

1 ).

B gives the public parameter pp = (BM, {IDu}, {SP},KM, C, C ′), B itself

knows y.

• Hash query phase. At any time, A can query the random oracle H, the total

number of distinct query to H is qH . In order to answer such query, B main-

tains a list LH and responds the query as follows.

For one query with input ID to the oracle H, B first checks whether there

already has been one tuple (ID, I) in the LH .

– If yes, B responds with H(ID) = I to the adversary.

– Otherwise, let ID be the i-th distinct query to H, B responds with

H(ID) = Ii to the adversary. B then add this new tuple (ID, Ii) to

the LH .

• Encryption key query phase. A can also ask encryption key queries to B at any

time. When A wants to get the encryption key of user with identity ID, B
answers such key query as follows.

– As B knows the access policy AC, it would first check which layer the

user with identity ID lays in.

– Supposing the user lays in the layer Lδ, B would then find all users

laying in or above this layer, that is, all users’ identities in the set SLδ ∪
SLδ+1, · · · , SLµ .

– B issues multiple hash queries toH for each identity in the aforementioned

set. B computes the coefficients of FLδ(x) =
∏

ID∈SLδ∪SLδ+1,··· ,SLµ (x +

H(ID))

– B chooses a random value xi, then it computes the following values:

ke0
ID = h

FLδ (γ)

1 = h
γ·FLβ (γ)·FLδ (γ)

0 ,

ke1
ID = h

xi·FLδ (γ)

1 = h
xi·γ·FLβ (γ)·FLδ (γ)

0 ,

ke2
ID = g−xiγ = g

−xi·γ·f(γ)
0 ,

ke4
ID = e(g, h1)xi = e(g0, h0)γ·f(γ)·FLβ (γ)·xi , ke5

ID = gy = g
f(γ)·y
0
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Obviously, all the above values are computable by using the given chal-

lenge problem instance, the defined function f(x),FLβ(x) and FLδ(x) .

– B gives keID = (ke0
ID, ke

1
ID, ke

2
ID, ke

3
ID, ke

4
ID, ke

5
ID) as the respond to A.

• Decryption key query phase. A can query the decryption keys of users in the

ACE system at any time. When A sends the decryption key query with

identity ID as the queried message to A, B answers it using the following

steps.

– B first checks whether H(ID) = Ii∗ , if yes, B aborts the simulation.

Otherwise, B turns to the next step.

– B then identifies the layer this user lays in, say Lδ. If β < δ, B aborts

the simulation too. That is, A cannot answer decryption key queries for

users who can decrypt the challenge ciphertext.

– Otherwise, let the symbol QLδ denote IDi 6= ID and IDi ∈ SLδ ∪
SLδ+1, · · · , SLµ , it defines a function FLδ

x

(x) as

FLδ
x

(x) =

∏
QLδ

(x+H(i))−
∏

QLδ
(H(i))

x

– B computes the following values;

kd0
ID = g

1
α+H(ID) = g

f(γ)
γ+H(ID)

0 = g
∏
IDi /∈{ID,IDi∗}

(γ+H(IDi))

0

kd1
ID = h

∏
IDi 6=ID and IDi∈SL1

∪SL2
,··· ,SLµ

(γ+H(IDi))−1

γ

1

= h
FL1
γ

(γ)

1 h

∏
QL1

H(IDi)−1

γ

1

= h
FL1
γ

(γ)

1 h
∏
QL1

H(IDi)−1

= h
γ·f(γ)·FL1

γ

(γ)

0 h
f(γ)·

∏
QL1

H(IDi)−1

0

kd2
ID = h

∏
IDi 6=ID and IDi∈SL2

∪SL3
,··· ,SLµ

(γ+H(IDi))−1

γ

1

= h
FL2
γ

(γ)

1 h

∏
QL2

H(IDi)−1

γ

1
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kd2
ID = h

∏
IDi 6=ID and IDi∈SL2

∪SL3
,··· ,SLµ

(γ+H(IDi))−1

γ

1

= h
FL2
γ

(γ)

1 h

∏
QL2

H(IDi)−1

γ

1

= h
FL2
γ

(γ)

1 h
∏
QL2

H(IDi)−1

= h
γ·f(γ)·FL2

γ

(γ)

0 h
f(γ)·

∏
QL2

H(IDi)−1

0

· · ·

· · ·

kdδID = h

∏
IDi 6=ID and IDi∈SLδ

∪SLδ+1
,··· ,SLµ

(γ+H(IDi))−1

γ

1

= h
FLδ
γ

(γ)

1 h

∏
QLδ

H(IDi)−1

γ

1

= h
FLδ
γ

(γ)

1 h
∏
QLδ

H(IDi)−1

= h
γ·f(γ)·FLδ

γ

(γ)

0 h
f(γ)·

∏
QLδ

H(IDi)−1

0

As we can see, all the above values can be computed from the given

problem instance and the defined functions.

– B sends kdID = (kd0
ID, kd

1
ID, · · · , kd

β
ID) as the respond to A.

• Challenge phase. In this phase, B randomly chooses two messages m0,m1 from

the message space M and the identity ID∗ he wishes to challenge, then it

sends (m0,m1, ID
∗) to B. Upon receiving this tuple, B does as following.

– B would first check whether H(ID∗) = Ii∗ , if not, B aborts the simulation.

Otherwise, B continues.

– Let SLβµ denote the set SLβ ∪ SLβ+1, · · · , SLµ , B chooses a random bit

b ∈ {0, 1} and encrypts mb using the encryption key of the user with

identity ID∗, the generated sanitized ciphertext C ′ is;

C ′1 = g
−k·γ·f(γ)
0 , C ′2 = h

k·g(γ)
1 ,

C ′3 =
e(g

γ2·f(γ)
0 , h

kg(γ)
0 )

T
∏
ID∈SLβµ

(H(ID)) · e(gk·γ·f(γ)
0 , h

q(γ)
0 )

.

q(γ) =

∏
ID∈SLβµ (γ +H(ID))−

∏
ID∈SLβµ (H(ID))

γ

sk = e(g
f(γ)
0 , h

k·g(γ)
0 ), C ′4 = SEsk(mb)

– B then sends (C ′1, C
′
2, C

′
3, C

′
4) to A as the challenger ciphertext.

• Guess. Finally, the adversaryA outputs a guess b′ ∈ {0, 1} about the encrypted

message mb, if b = b′, then A wins the game.
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Analysis. Here, we finished the simulation part of our proof. Let Pr[b = b′] be the

probability A wins the above game, let AdvB
(f,g,F )−gddhe denote the advantage of B

in solving the given (f, g, F )-GDDHE problem instance and ε denote the probability

A breaks our ACE scheme, to complete the proof, we give the following probability

analysis;

• When T is a random element in GT , it is easy to verify that the challenge

ciphertext CT ′ = (C ′1, C
′
2, C

′
3C
′
4) is like a one-time-pad, so A cannot get any

useful information from CT ′. In this case Pr[b = b′] = 1
2

• When T = e(g0, h0)k·f(γ), when the symmetric key used to encrypt mb is

sk = e(g
f(γ)
0 , h

k·g(γ)
0 ) = e(g, h)k, we have

C ′1 = g
−k·γ·f(γ)
0 = g−k, C ′2 = h

k·g(γ)
1 = h

k
∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(γ+H(ID))

1 ,

C ′3 =
e(g

γ2·f(γ)
0 , h

kg(γ)
0 )

T
∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(H(ID)) · e(gk·γ·f(γ)

0 , h
q(γ)
0 )

=
e(g, h1)k

T
∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(H(ID)) · e(g0, h0)k·f(γ)·γ·q(γ)

=
e(g, h1)k

e(g0, h0)
k·f(γ)·

∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(H(ID)) · e(g0, h0)k·f(γ)·γ·q(γ)

=
e(g, h1)k

e(g0, h0)k·f(γ)·g(γ)
=
e(g, h1)k

e(g, h)k
, C ′4 = SEsk(mb)

So the given challenge ciphertext CT ′ = (C ′1, C
′
2, C

′
3, C

′
4) is valid and can be

viewed as an encryption of mb from the point ofA. In this case, we first analyze

the probability of the event our simulation would not abort. Here, let Pr[NA]

be the probability of such event, then Pr[NA] = ( qH−1
qH

)
qkd , where qH , qkd is

the number of queries to the H oracle and the decryption key query oracle

respectively. As A can choose the target identity with probability 1
qH

and can

break our ACE with probability ε, then Pr[b = b′] = 1
2

+ ( qH−1
qH

)
qkd · 1

qH
· ε.

Form what we have analyzed, we have

AdvB
(f,g,F )−gddhe = Pr[b = b′|T = e(g0, h0)k·f(γ)]− Pr[b = b′|T 6= e(g0, h0)k·f(γ)]

=
1

2
· (qH − 1

qH
)
qkd

· 1

qH
· ε

Here, we finish our proof. �

Theorem 6.2 Our ACE scheme holds the Extended No-Write Rule property assum-

ing the (f, g, F )−GDDHE problem is hard in the group system BM = (p, g0, h0,G1,

GT , e(·, ·)) when the hash function H is modeled as random oracle. Concretely, if
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there is an adversary A which can break our scheme with non-negligible probability

ε, supposing A makes at most qH , qke queries to the H hash oracle,encryption key

query oracle respectively, then we can construct another algorithm S that solves the

(f, g, F )-GDDHE problem in the given group system with advantage at least 1
2
· 1
qH
·ε,

where qH , qkd are defined above.

Proof. Assuming the adversary A can break our ACE scheme with non-negligible

probability ε, we show how to construct another algorithm S solving the (f, g, F )-

GDDHE problem from A, S and A interacts as below.

• Init. In this phase, A first outputs the user j with identity IDj as the user it

wants to send messages to.

• Setup. In this phase, S does the same as B in the setup phase of the previous

security proof. Eventually, S gives the public parameter pp = (BM, {IDu},
{SP},KM, C, C ′) to A and keeps y as the secret.

• Hash query phase. What S does in this phase is also identical to B in the hash

query phase of the previous security proof, so we omit the description.

• Decryption key query phase. In this phase, A can only ask the decryption key

of the user j he wants to sends messages to. Literally, when A queries the

decryption key of a user whose identity is not IDj, S aborts the simulation.

Otherwise, S answers the decryption key query the same as B does in the

corresponding phase of the previous security proof.

• Encryption key query phase. In this phase, A can query as many as users’

encryption keys with the only retraction that P (i, j) = 0 holds for each i of

those users. To answer such encryption key queries, S does identical to B in

the corresponding phase of the last security proof.

• Sanitizing key query phase. In this phase, A can query the sanitizing key of

multiple sanitizers. The restriction here is that some of the sanitizers queried

in this phase cannot form a ”sanitizing pipeline ”. Because S knows the system

sanitizing key y, he can answer such query using the sanitizing key generation

algorithm described in the concrete construction of the ACE scheme.

• Challenge phase. Let SLβµ denote the set SLβ ∪ SLβ+1, · · · , SLµ . In this phase,

A chooses two message m0,m1 ∈ M, then it sends them to S. S chooses

a random bit b ∈ {0, 1}, then it generates the sanitized ciphertext C ′ =
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(C ′1, C
′
2, C

′
3, C

′
4) as;

C ′1 = g
−k·γ·f(γ)
0 , C ′2 = h

k·g(γ)
1 ,

C ′3 =
e(g

γ2·f(γ)
0 , h

kg(γ)
0 )

T
∏
ID∈SLβµ

(H(ID)) · e(gk·γ·f(γ)
0 , h

q(γ)
0 )

.

q(γ) =

∏
ID∈SLβµ (γ +H(ID))−

∏
ID∈SLβµ (H(ID))

γ

sk = e(g
f(γ)
0 , h

k·g(γ)
0 ), C ′4 = SEsk(mb)

S then sends (C ′1, C
′
2, C

′
3, C

′
4) to A as the challenger ciphertext.

• Guess phase. Finally, the adversary A outputs a guess b′ ∈ {0, 1} about the

encrypted message mb, if b = b′, then A wins the game.

Analysis. Let Pr[b = b′] be the probability A wins the above game, let

AdvC
(f,g,F )−gddhe denote the advantage of S in solving the given (f, g, F )-GDDHE

problem instance and ε denote the probability A breaks our ACE scheme, to com-

plete the proof, we give the following probability analysis;

• When T is a random element in GT , it is easy to verify that the challenge

ciphertext CT ′ = (C ′1, C
′
2, C

′
3C
′
4) is like a one-time-pad, so A cannot get any

useful information from CT ′. In this case Pr[b = b′] = 1
2

• When T = e(g0, h0)k·f(γ), when the symmetric key used to encrypt mb is

sk = e(g
f(γ)
0 , h

k·g(γ)
0 ) = e(g, h)k, we have

C ′1 = g
−k·γ·f(γ)
0 = g−k, C ′2 = h

k·g(γ)
1 = h

k
∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(γ+H(ID))

1 ,

C ′3 =
e(g

γ2·f(γ)
0 , h

kg(γ)
0 )

T
∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(H(ID)) · e(gk·γ·f(γ)

0 , h
q(γ)
0 )

=
e(g, h1)k

T
∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(H(ID)) · e(g0, h0)k·f(γ)·γ·q(γ)

=
e(g, h1)k

e(g0, h0)
k·f(γ)·

∏
ID∈SLβ

∪SLβ+1,··· ,SLµ
(H(ID)) · e(g0, h0)k·f(γ)·γ·q(γ)

=
e(g, h1)k

e(g0, h0)k·f(γ)·g(γ)

=
e(g, h1)k

e(g, h)k

C ′4 = SEsk(mb)

So the given challenge ciphertext C ′ = (C ′1, C
′
2, C

′
3, C

′
4) is valid and can be

viewed as an encryption of mb from the point of A. In this case, we first
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analyze the probability of the event our simulation would not abort. Here, let

Pr[NA] be the probability of such event, then Pr[NA] = 1
qH

, where qH is the

number of queries to the H oracle. As A can break our ACE with probability

ε, then in this case Pr[b = b′] = 1
2

+ 1
qH
· ε.

Form what we have analyzed, we have

AdvS
(f,g,F )−gddhe = Pr[b = b′|T = e(g0, h0)k·f(γ)]− Pr[b = b′|T 6= e(g0, h0)k·f(γ)]

=
1

2
· 1

qH
· ε

Here, we finish our proof. �

6.5 A Further Discussion

We propose a pure cryptographic solution in this chapter to resist cyberattacks on

centralized ACE systems. In practice, giant IT companies, such as IBM and Google,

would prefer to use the traditional fault tolerance solutions with replicated servers

to protect their centralized systems from being compromised.

While it seems that traditional replica-based solutions are more attractive, we

argue that our solution has advantages over them because of the following reasons:

First, since our software solution does not involve high expenses to buy and maintain

expensive servers comparing to conventional replica-based solutions, it is more cost

effective. Which makes our solution more suitable for startups and small size organi-

zations. Second, our software solution can be deployed over either ASIC (application

specified integrated circuit) or FPGA (field programmable gate array)or personal

computers, while a replica-based solution may have to be deployed on servers with

X86 architecture. That is, the deployment of our solution enjoys high flexibility

than conventional hardware-based solutions. Last, our solution doesn’t require ex-

tra system level management procedures to guarantee the security of it. Namely,

the security of our software solution is based on the intractability of well studied

computational assumptions and thus can be quantitive analysis, while that of the

replica-based solutions lie in the trustiness level of the system manager, which could

be a person or a department. Which means that, when applying the replica-based

solutions, there must exist extra and strict management procedures to ensure that

the system manager always works honest and is highly trusted.

We should also admit that our solution has constraints comparing to the replica-

based solutions. Firstly, since our solution, in fact, shifts certain amount of com-

putational task from the server to the end nodes, the users in our system need to

spend more computational power and time on generating required ciphertexts. So,
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our solution imposes more burden on end users comparing to replica-based solutions.

Secondly, as a software-based solution, our scheme can hardly be more efficient than

the traditional hardware-based solutions with replicated servers. And when com-

paring the system throughput provided by the two types of solutions, our solution

also cannot earn any advantage over the traditional fault tolerance solutions with

replicated servers.

6.6 Summary

In this chapter, we present an access control encryption(ACE) with compact size

ciphertext and decentralized sanitizers. Our construction is also believed to be

the first one considering using multiple sanitizers rather than one. Our extended

no-write rule model and the given corresponding proof show that our ACE is more

secure and reliable because of the utilization of decentralized sanitizers. The security

of our scheme is proven under non-standard assumptions with the help of the random

oracle. Our next work focuses on presenting ACE which can be proven secure

without random oracle and under standard assumptions.



Chapter 7

Thesis Conclusion

In this chapter, we summarize the work presented in this thesis and list some research

directions for future work.

7.1 Conclusion

7.1.1 Communication Schemes with User and Data Privacy

In our first work, we formalize the notion user conditional privacy preservation

and then propose a privacy preserving source-verifiable encryption scheme which

maintains message confidentiality and sender conditional privacy. We also give a

short discussion of constructing a server-aided variant of our scheme.

In the second work, we consider a more complex scenario where the user and

data privacy should be preserved. In that scenario, a user is required to be able to

prove the legitimation of the communication channel between it and its communi-

cator without leaking their privacy. We find such scenario is realistic when there

exists a authority in the system which maintains a publicly published blacklist to

block communication channels between specific message senders and receivers. We

present a group-based source-destination verifiable encryption scheme with blacklist

checking which can address the issues in the scenario properly. Our construction uti-

lizes the zero-knowledge proof of membership and also zero-knowledge of inequality

technique.

Our two aforementioned works all give answers to the problem how to preserve

the user conditional privacy. However, those two solutions have the same insuffi-

ciency. Namely, since the receiver in the proposed schemes is the only parity which

can revoke the anonymity of the sender of a given ciphertext, and no one else in

the system has the capability to verify whether the receiver behaves honestly during

identifying the actual sender, it can manipulate the origination of one ciphertext

successfully. To tackle this problem, we develop a secure communication scheme

128
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applied between the surveillance camera and the server in the camera surveillance

system. With our scheme, the server can give a proof to convince others the origi-

nation of a ciphertext without leaking its content. Such property enables the server

to build a searchable database using the camera’s identifier as index and also the

message auditor to check the ciphertext and its origination stored in the database

without any dispute.

7.1.2 Access Control Encryption

In our fourth work, we give the first ACE scheme construction with decentralized

sanitizers. The resulted scheme keeps not only the ciphertext size but also the

key size of each users compact. Our more significant contribution to the ACE is

giving a decentralized implementation of the sanitizer. Unlike previous ACE schemes

with only one sanitizer, our construction distributes the sanitizing functionality of

the origin ACE among n sanitizers. It is impossible for one of sanitizers in our

construction to produce a new access policy, so our construction imposes restriction

on the capability of the sanitizer. Besides, as one message sender in our ACE

scheme can choose the t sanitizers itself to collaboratively produce a valid sanitized

ciphertext, even some of the n sanitizers cannot provide service or are off-line, the

whole ACE system can still work as normal. So our construction improves the

reliability of the sanitizer and even the robustness of the whole ACE system.

7.2 Future Work

We put forward the following research directions as our future work.

1. The realization of the user conditional privacy preservation property in our

first three works cannot avoid the usage of zero-knowledge proof, which makes

the resulted schemes rather inefficient. We are still working on finding more

efficient cryptographic tools to construct encryption schemes which preserve

the user conditional privacy.

2. The access control encryption is a cryptographic realization of the classical

Bell-LaPadula model. However, this primitive only realize a partial of the

functionalities of that model. Besides, there still exists another useful access

control model, the Chinese wall model concretely, which has never been well

studied and realized using cryptographic tools. We cannot, at present, ascer-

tain whether the whole functionalities of the Bell-LaPadula model and Chinese

wall model can be implemented using cryptographic tools. So we leave it as

one of our future work.
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