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Abstract
Signcryption originally proposed by Zheng (CRYPTO097) is a useful cryptographic
primitive that provides strong confidentiality and integrity guarantees. This article ad-
dresses the question whether it is possible to homomorphically compute arbitrary
functions on signcrypted data. The answer is affirmative and a new cryptographic
primitive, homomorphic signcryption (HSC) with public plaintext‐result checkability is
proposed that allows both to evaluate arbitrary functions over signcrypted data and makes
it possible for anyone to publicly test whether a given ciphertext is the signcryption of the
message under the key. Two notions of message privacy are also investigated: weak
message privacy and message privacy depending on whether the original signcryptions
used in the evaluation are disclosed or not. More precisely, the contributions are two‐fold:
(i) two different definitions of HSC with public plaintext‐result checkability is provided
for arbitrary functions in terms of syntax, unforgeability and message privacy depending
on if the homomorphic computation is performed in a private or in a public evaluation
setting, (ii) two HSC constructions are proposed: one for a public evaluation setting and
another for a private evaluation setting and security is formally proved.

1 | INTRODUCTION

Often in secure communications, one may want to send a mes-
sage that is not only concealed (i.e., readable only by the intended
receiver) but also authenticated (i.e., possible to verify that the
message originates from the indicated sender) and it has not been
modified while being transferred. Signcryption originally pro-
posed by Zheng [1] is a useful cryptographic primitive that can
provide strong confidentiality as well as authentication guaran-
tees. Unlike naively combining two different cryptographic
primitives (encryption and digital signatures), signcryption re-
sults in faster computation and shorter message expansion. It
can be viewed as the public‐key version of the symmetric‐key
primitive known as authenticated encryption.

More precisely, let us consider an example for signcryption
in the two‐user setting. In this case, the sender (Alice) generates
her own secret signing and public verification key pair ðskS; pkSÞ
and the receiver (Bob) generates his own secret decryption and
public encryption key pair skR; pkRð Þ. The sender performs the
signcryption algorithm by taking as input its secret key skS, the
receiver's public key pkR, and a message m and outputs a sign-
cryption ciphertext C to the receiver. After receiving the sign-
cryption C, the receiver performs unsigncryption on C by using
his secret key skR and the sender's public key pkS, and outputs
either m or ⊥, which indicates that the message was not
encrypted or signed properly.

Motivated by the ground‐breaking work of how to homo-
morphically perform arbitrary computations over encrypted
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data, known as fully homomorphic encryption (FHE) (e.g. [2–5])
as well as how to compute functions on signed data known as
homomorphic signatures (HS) (e.g. [6–9]); we address the
question whether it is possible to homomorphically compute
arbitrary functions on signcrypted data in this article.

1.1 | Our Motivation

Rezeibagha et al. [10] introduced the concept of an additive
homomorphic signcryption and gave a concrete construction,
which is proven to be secure against chosen plaintext attacks
(IND‐CPA) and achieves weak unforgeability under the DDH
assumption and the CDH assumption, respectively. However,
the notion of homomorphic signcryption (HSC) proposed in
[10], is only limited in additive operations and is not general to
capture homomorphic evaluations for any function. Further-
more, Rezaeibagha et al.’s additive HSC scheme allows only
private verification of the derived (homomorphically
computed) signcryptions, that is, the verification can only be
performed by the intended receiver. Moreover, it only achieves
weak unforgeability, which requires that the adversary is not
allowed to perform signcryption queries to the challenger.

In this article, we go beyond the additive homomorphic
signcryption notion and introduce new primitive homomor-
phic signcryptions for any function, which allows computa-
tions for any function (arbitrary circuits) on the signcrypted
data and provides public plaintext‐result checkability for the
derived signcryptions. We also investigate how to define the
message privacy notion in the homomorphic evaluation setting.

Informally, an example of performing computations on
signcrypted data can be described as follows (depicted in
Figure 1). The sender (Alice) has a datasetm1, …,mk of size k,
for instance, the weights of k persons. For convenience, we
write m!≔ ðm1;…;mkÞ. She independently signcrypts each
data mi associated with a tag and an index using her secret key
skS and the receiver's (Bob) public key skR. Namely, Alice
signcrypts the triple (‘weight’,mi, i) for i = 1, …, k and obtains
k independent signcryptions c1, …, ck, where i is the index of
mi in the dataset and ‘weight’ serves as a tag that names the
dataset. For simplicity, we write c!≔ ðc1;…; ckÞ. However,
restricted by limited computational resources and space, Alice
uploads her signcryptions c! to a powerful server and dele-
gates the (expensive and complicated) computation of the
function f to the server using an evaluation key ek. To compute
a function f, the server employs the algorithm Evaluate that
uses c! and f to derive a signcryption cf,y on the triple:
“weight”; y : ¼f ðm1;…;mkÞ; 〈f 〉ð Þ, where 〈f〉 is a string
describing the function f uniquely. Note that Evaluate does
not require access to the original dataset m! but only works on
the signcryptions themselves.

Then, the server may send the derived signcryption cf,y to
Bob. Bob using his secret key skR together with Alice's public
key pkS can obtain the message y. Given the pair (y, cf,y), anyone
can check with the public verification key vk that the server
correctly applied f to the dataset by verifying that cf,y is a valid
signcryption on a given triple “weight”; f ðm!Þ; 〈f 〉

� �
, without

performing the expensive computations of the function f on the
original dataset m!, to compute the value y. The verification on a
pair (y, cf,y) achieves public plaintext‐result checkability by
allowing anyone to test whether a derived signcryption cf,y is a
signcryption of the result y which is the correct output of the
computation f over Alice's data that is, y¼ f ðm!Þ. We describe
the precise definitions of the syntax and the security later.

1.2 | Our contributions

In this article, we introduce for the first time the notion of ho-
momorphic signcryption with public plaintext‐result check-
ability that can evaluate arbitrary circuits over signcrypted data.
We also define security notions in terms of both unforgeability
and message privacy. We give two definitions for HSC
depending on whether the homomorphic computation process
is performed publicly (i.e., by anyone who has access to the
public information) or privately (i.e., only by the one knowing
the secret evaluation key), while in both cases the plaintext‐
result‐checkability is performed publicly. For each case of pub-
lic or private evaluation, we provide a construction and prove its
security regarding unforgeability as well as message privacy.

Next, let us briefly describe the two important properties –
namely, public plaintext‐result‐checkability and message pri-
vacy, which our homomorphic signcryption enjoys.

Public Plaintext‐Result Checkability. It is to be noted
that in a traditional signcryption scheme, by employing the
unsigncryption algorithm (that uses the receiver's secret key)
on the signcrypted data, either the original message m! or ⊥ is
returned *. We notice that the signcryption allows a specific
user having access to the receiver's secret key, to test whether a
given signcryption originates from the given message under the
sender's public key.

In our homomorphic signcryption primitive, we go beyond
the plaintext‐result checkability for a specified user, and pro-
vide a functionality of public plaintext‐result checkability that
anyone can test whether a (either derived or original) sign-
cryption is the signcryption of a given message (possibly the
outcome of a function) under the sender's public key. Looking
ahead, we will see that such public plaintext‐result checkability
is achieved by a verification algorithm.

Message Privacy. Message privacy in the original (tradi-
tional) signcryption [1] means that even if the sender's private

F I GURE 1 An example of using the homomorphic signcryption
scheme
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key is leaked to an attacker, the attacker cannot tell which mes-
sage the signcryption challenge c* is corresponding to,m0 orm1

that are chosen by the attacker. In our proposedHSC, we achieve
a notion of message privacy, which guarantees that even if we
publish the pair (cf,y, y), where cf,y certifies y as the output of
some computation f over a datasetm!, no information is revealed
about the data m!, beyond what is revealed by y and f. Our
definition for message privacy is presented in a way that given
signcryptions onm!b (where b∈{0, 1} and thusm!b is one of two
different datasets m!0;m!1), the attacker cannot tell from which
dataset the derived signcryptions cf,y came from, f ðm!0Þ or
f ðm!1Þ for some function f known to the attacker.

However, to achieve a formal definition of message privacy
for our HSC is a challenging problem because the public
verification algorithm is able to operate on the signcryptions of
messages for any function of the adversary's choice, which
makes it easy for an adversary to find a function f * such that
f *ðm!0Þ ≠ f *ðm!1Þ. More precisely, if the original signcryptions
c!b over messages m!b are exposed to an adversary and the
homomorphic operation and verification process are public
algorithms, it is trivial for an adversary to distinguish the
original dataset only from the information of c!b by per-
forming a function f * on c!b to get the derived signcryption bc
on the message f *ðm!bÞ. By testing the matching of bc with
f ðm!0Þ or f ðm!1Þ via the public verification process, the
attacker can tell which c!b comes from, m!0 or m!1.

In consequence to avoid such a trivial attack described
above, we define two notions of message privacy–namely weak
message privacy and standard message privacy for HSC with
public verification. In the notion of weak message privacy, we
assume that the original signcryptions c!b on the dataset m!b are
not published (while the final signcryption is published), in
which case the homomorphic operation is public. In the stan-
dard message privacy, we require c!b to be exposed to the ad-
versary but the homomorphic operation is privately performed
by the challenger, rather than being available to the adversary.

1.3 | Challenges in designing an HSC

To describe some challenges faced when designing an HSC
scheme, let us consider a naive HSC scheme, which simply
outputs the concatenation of a message x and a signature σ,
that is, x‖σ as the signcryption of x; where σ is a signature on x
using an HS scheme. The publicly homomorphic evaluation
for HSC on different elements x‖σ proceeds by using the
evaluation algorithm of HS to homomorphically compute the
signature σf,y for y¼ f ð x!Þ in a straightforward manner. This
appears to satisfy the unforgeability of HSC due to the
unforgeability of HS. Furthermore, from the definition of the
weak message privacy for HSC that the adversary will be given
the derived signcryption σf,y but not get access to the original
signcryption x‖σ, it seems that the message x is not revealed.
However, this is only true when the underlying HS is context‐
hiding, which means the derived signature σf,y does not leak
any information about x!. In other words, if the underlying HS

is unforgeable and context‐hiding, then the concatenation of a
message and the corresponding signature is a trivial way to
build a weak message private HSC scheme. Nevertheless, if
given an HS that satisfies the basic homomorphism require-
ment, but not context hiding (which is an additionally
advanced requirement, since to achieve it, either an additional
assumption, i.e., existence of NIZKPoK (non‐interactive zero‐
knowledge proof of knowledge), or a context‐hiding homo-
morphic trapdoor function is needed [7]), a challenging ques-
tion is how to address the issue of maintaining no leakage on
x! from σf,y. In this article, we propose a construction of HSC
with weak message privacy in a public evaluation setting from
HS scheme without the context‐hiding property.

A similar intuition can be given for HSC schemes with
private evaluation. In this case, we might consider a scheme
similar to the one described above, but in which we set the
signcryption to be the ciphertext of x‖σ under a public key
encryption (PKE) scheme, denoted as cx,σ. Then, the evalua-
tion key will correspond to the private key for the PKE, and
the evaluator simply decrypts, and evaluates the HRs using the
appropriate function f to obtain a derived signature σf,y, and
then releases the result y¼ f ð x!Þ concatenated with σf,y. Note
that despite given access to the original signcrytion cx,σ, the
adversary still cannot learn the plaintext x since the employed
PKE scheme is secure. Then as given above, this scheme ap-
pears to satisfy the normal message privacy for HSC with
private evaluation. Unfortunately, such an assertion still relies
on the context‐hiding property of the underlying HS. The
problem of building an HSC scheme with message privacy in a
private evaluation setting arises when assuming the HS scheme
is unforgeable but not context‐hiding.

1.4 | Summary of our constructions

Let us now describe our solution for constructing HSC from
an HS scheme without the context‐hiding property. At first, we
provide a construction of a homomorphic signcryption
scheme with public plaintext‐result‐checkability in a public
evaluation setting achieving unforgeability and weak message
privacy, assuming the existence of HSsHS, PKE, indistin-
guishability obfuscation and statistical simulation‐soundness
non‐interactive zero‐knowledge proof (SSS‐NIZK) for NP
languages. The core idea of our construction is to apply the
sequential composition method by signing the message using
the underlying HS scheme first, then encrypting the concate-
nation of the message and the signature. The evaluation al-
gorithm of the HS scheme naturally provides a way to
homomorphically derive a signature σf,y from the signature σ x!
of the data x!, which certifies that y is the correct output of the
computation f over the signed data x!. Nevertheless, the
challenge is how to perform homomorphic evaluation over the
encrypted signature (signcryption) c x!≔ Encðσ x!Þ of the data
x! without the decryption key. We employ indistinguishability
obfuscation to resolve this problem by embedding the secret
decryption key in an obfuscated programme, whose func-
tionality is to decrypt the input signcryption so as to recover
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the underlying signatures first, and then from them to derive
the signature σf,y that corresponds to the message y¼ f ð x!Þ.
Anyone can verify the tuple (f, y, σf,y) using the HS's public
verification algorithm, thus testing whether y is the correct
output of the computation f over x!.

For an outsider adversary, who does not know the re-
ceiver's secret key, unforgeability can be achieved from the
existential unforgeability property of the underlying HS
scheme directly. Moreover, it is shown that our construction
achieves weak message privacy, which requires that given not
only the signcryptions on a number of messages derived from
two different datasets for some function known to the attacker
but also access to an unsigncryption oracle and the secret
signcryption key, the attacker is not able to tell which dataset
the derived signatures came from.

We then show how to use an HS together with a public key
functional encryption (FE) to construct a homomorphic
signcryption scheme with public plaintext‐result‐checkability in
a private evaluation setting with unforgeability and message
privacy. Employing the same sequential composition method
of signing then encrypting, we instantiate with an HS scheme
as before, while the underlying encryption is replaced with a
public functional encryption scheme. To perform homomor-
phic evaluation over the encrypted signature (signcryption)
c x!≔ Encðσ x!Þ of the data x! in case of having no access to
the decryption key, we take advantage of the functional secret
key for a function whose functionality is the following: if the
message‐signature pair ð x!; σ x!Þ (i.e. underlay in c x!) is veri-
fied, then it returns a function value y resulting from the
function f applied on x!, as well as a signature σy,f that is
derived from the original signatures σ x! over the plaintext data
x! for a function f. This is achieved by employing the evalu-
ation algorithm of HS and certifying the result value y.
Furthermore, to publicly verify the validity of the signcryption
cy,f on the data y, we use the function secret key for another
function, whose functionality is to directly check the validity of
(f, y, σf,y) by using the HS's public verification algorithm.

For an outsider adversary, unforgeability can be achieved
from the unforgeability of underlying HS directly. Moreover,
we define the notion of message privacy of HSC in a private
evaluation setting, which requires that given not only the
signcryptions on a number of messages derived from two
different datasets for some function known to the attacker, but
also the original signcryption on both two datasets and access
to the signcryption and evaluation oracles, the attacker is not
able to tell which dataset the derived signatures came from. We
prove that message privacy is preserved based on the IND‐
CPA security of the base functional encryption scheme.

Implementation and practical aspects. Due to the building
blocks that our constructions are based on, it is inevitable to
discuss the practicality of obfuscation and function encryption.
As far as we know, there are several articles [11–16] investi-
gating the practicality of programme obfuscation focussing on
implementing and evaluating the performance of the obfus-
cators. Although the initial results required significant amounts
of time to implement programme obfuscation [11, 12, 14],
there are some recent advances that are very promising. More

precisely, Cousins et al. [16] implemented obfuscation for
conjunction programme satisfying distributional virtual black
box (VBB) security. The obfuscation for a 64‐bit conjunction
programme takes 6.7 h and the evaluation takes only 3.5 s.
Except software‐only‐based approaches to implement pro-
gramme obfuscation, there are also some significant advances
in hardware‐based approaches. Nayak et al. [15] employed a
hardware‐based approach to implement it which achieves
simulation‐secure obfuscation for RAM programs, and im-
proves performance significantly making an important step
towards deploying obfuscation technology in practice.

Furtheremore, Lewi et al. [13] also implemented the Boneh
et al. [17] multi‐input functional encryption scheme for 2‐input
comparison functions and 3‐input DNF (3DNF) functions.
Taking 3DNF function on 16‐bit inputs with security param-
eter 80 as an example, it takes about 12 min to compute the
encryption for three 16‐bit inputs, yielding the overall cipher-
texts with a size of 2.5 GB. Moreover, evaluating the 3DNF
function value from the overall ciphertexts only takes 3 min.

Thus, in light of the promising future on the practicality of
programme obfuscation and functional encryption, we believe
that our proposed homomorphic signcryption schemes are very
promising and advance significantly the area of signcryption.

1.5 | Application: certified data analysis

Working with sensitive data is often a balancing act between
confidentiality and integrity concerns. One question on big
data is how to release some socially beneficial results on private
data, while minimising the information revealed about in-
dividuals. The nature of homomorphic signcryptions is that
they provide public plaintext‐result‐checkability, confidentiality
and integrity and they are very useful in a wide variety of
settings involving data processing by untrusted entities.

As an example, consider the National Institute of Health
(NIH) as the role of the curatorwhichhas some sensitivemedical
information from a set of subjects, which various research
groups (analysts) wish to examine in detail to draw conclusions
from. This separation between a curator and an analyst reflects a
common application scenario in large‐scale studies on sensitive
data, where the raw data is often hosted by a single organisation,
and the data may be used multiple times by different groups for
different purposes. The curator signcrypts the collected data m!

and distributes the signcrypted data c! to various analysts for
processing, so that the underlying sensitive data is authenticated
and remain confidential. Some of these groups may have the
intention to lie about the outcomes of their analysis. However,
using homomorphic signcryptions, they can publish their anal-
ysis strategy (a function f), the claimed outcome of the analysis
y= f(x), and a signcryption cf,y that certifies the correctness of the
outcome. This information can be released publicly and verified
by anyone using a verification key published by the NIH. When
performing the verification, the verifier neither needs to have
access to the underlying data nor needs to communicate with the
NIH or the research groups that performed the computation.
Furthermore, if such signcryptions are made to be messaged
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private, then it is assured that they do not reveal additional in-
formation about the underlying data beyond the analysis results.

1.6 | Related work

Homomorphic Signcryption. Homomorphic signcryption
initially introduced by Rezaeibagha et al. [10, 18] was limited in
capturing only additive homomorphic operations on the
signcrypted messages. Thus, it did not address the problem of
constructing a fully homomorphic signcryption, whose ho-
momorphic operation is able to perform any function or cir-
cuit of polynomial size. On the other hand, Rezaeibagha et al.
studied the homomorphic signcryption within the framework
of standard signcryption, where the unsigncryption can be seen
as a verification algorithm designed to be performed only by a
specific user having the unsigncryption key to test whether a
given ciphertext is the signcryption of a given message.
Therefore, in Rezaeibagha et al.’s approach message privacy is
defined in the same flavour of the original signcryption
scheme. In contrast, our work focusses on settling these two
weaknesses on Rezaeibagha et al.’ homomorphic signcryption.
We not only go beyond the plaintext‐result checkability for a
specified user, and provide a public verification algorithm to
achieve public plaintext‐result checkability such that anyone
can test whether a given ciphertext is the signcryption of a
given message under the sender's public key; but also beyond
the additive homomorphic signcryption notion and present a
homomorphic signcryption for any function.

Linearly Homomorphic Authenticated Encryption
with Public Verifiability. Linearly homomorphic authenti-
cated encryption with public verifiability (LAEPuV), intro-
duced by Catalano et al. [19], is a primitive approach that
allows to authenticate computations on encrypted data, with
the additional property that the correctness of the computa-
tions can be publicly verified. Catalano et al. have also provided
an instantiation for LAEPuV in the random oracle model
based on Paillier's cryptosystem. Struck et al. [20] proposed
some improvements on Catalano et al.’s instantiated scheme by
avoiding false negatives during the verification algorithm.

Syntactically, our notionof homomorphic signcryptionbears
resemblance with the primitive of LAEPuV [19] on the aspect
of allowing both the homomorphic operation on the encrypted
data and the decryption of the ciphertext resulted from the ho-
momorphic evaluation. However, using our homomorphic
signcryption scheme, the data is signcrypted. The main differ-
ence between our homomorphic signcryption and LAEPuV
relies on the verification algorithm. More precisely, in LAEPuV
[19, 20] the verification algorithm is defined as Verifyðvk;

id; c; f Þ and requires that the conditionVerifyðvk; id; c; f Þ ¼ 1 is
equivalent to ∃m; s:t: Decrypt ðsk; id; c; f Þ ¼m. Such a cor-
rectness requirement implies that if the verification is successful,
the verifier is convinced that c is an encryption of somemessage,
but without knowing to which message c corresponds to. In
contrast, the verification algorithm in our homomorphic sign-
cryption is defined as Verifyðpk; tag;m0; c0; f Þ, which is
employed to check the matching of a message m0 with the

corresponding signcryption c0. This also explains why we have
different security requirements from LAEPuV. The latter only
considers IND‐CCA security, since their verification algorithm
does not need the message as input, and in some sense it re-
sembles the securitymodel of an encryption scheme.However in
our case, the verification algorithm itself takes the message as
input, thus, we should consider the plaintext checkable attack.
Therefore, we define not only the privacy for the message but
also the unforgeability for the signcryption.

Furthermore, although the two instantiations of LAEPuV
[19, 20] are very efficient (since the homomorphic operation
on the encrypted message in LAEPuV is a linear function),
their security is proved in the random oracle model. On the
contrary, the security of our proposed signcryption primitive is
proved in the standard model and can be employed for a more
general function, that is, for any polynomial size circuit, which
leads to sacrificing some efficiency.

Publicly Verifiable Computation. Intuitively, it seems
that our homomorphic signcryption scheme implies a publicly
verifiable computation (VC) scheme that protects the secrecy
of the used dataset towards the server and the verifier. In fact,
to the best of our knowledge, there are no verifiable compu-
tation schemes that simultaneously achieve input privacy and
provide public verifiability for arbitrary functions. Our ho-
momorphic signcryption as a building block provides an
optional method to publicly achieve VC with input privacy.

VC schemes [21–23] based on fully homomorphic encryp-
tion naturally offer input‐output privacy, because both the inputs
and outputs are encrypted. However, they do not provide public
verifiability. The VC schemes using homomorphic authentica-
tors are more restrictive with respect to the supported function
class, although some solutions even provide input privacy. Ho-
momorphic authenticator‐based VC schemes are all privately
verifiable and do not provide input privacy with an exception of
Fiore et al.’s [24] scheme. Fiore et al. [24] showed how to
combine the homomorphicMACs of [25] with a FHE scheme to
construct a VC scheme for multi‐variate polynomials of degree 2
that offers input privacy; however, it is privately verifiable.

Another line on studying VC is based on functional
encryption or functional signatures. Parno et al. [26] showed
a public VC for a class of Boolean functions F , namely func-
tions with one‐bit output, that can be constructed from
any attribute‐based encryption (ABE) scheme for a related
class of functions–namely, F ∪ F

¯
where F

¯
denotes the

complement of the function F . If the underlying ABE scheme
is attribute hiding, then the VC scheme provides input pri-
vacy since the function's input is encoded in the attribute.
However, the constructions for attribute hiding ABE is un-
der way. Another very interesting approach is to build VC
from functional signatures (FS) introduced by Boyle et al. [27].
Given an FS scheme with signature size δ(λ), and verification
time t(λ) (where λ is the security parameter), we can get a VC
scheme in the preprocessing model with proof size δ(λ) and
verification time t(λ). However, this scheme provides no input
privacy, since there is no encoded processing to be carried out on
the input, which means that the input is sent as plaintext to the
server.

LI ET AL. - 5



2 | PRELIMINARIES

2.1 | Functional encryption

We provide the definition of functional encryption from the
literature (e.g., [28–31]).

Definition 1 (Functional Encryption) A functional
encryption scheme FE over a message space
X ¼ fX λgλ∈N and a function space F ¼ fF λgλ∈N

consists of four algorithms FE:Setup; FE:Enc;ð

FE:KeyGen; FE:DecÞ defined as follows:

� FE:Setupð1λÞ→ ðmpk;mskÞ: on input the security
parameter λ, the setup algorithm outputs a master public key
mpk and a master secret key msk.

� FE:KeyGenðmsk; f Þ→ SKf : on input the master secret key
msk and a function f ∈ F λ, the key generation algorithm
outputs a functional key SKf .

� FE:Encðmpk; xÞ→ CT: on input the master public key
mpk and a plaintext x ∈ X λ, the encryption algorithm
outputs a ciphertext CT.

� FE:DecðSKf ;CTÞ→ y: on input the functional key SKf
corresponding to the function f and the ciphertext CT, the
decryption algorithm outputs a value y.

Correctness. A functional encryption scheme FE is cor-
rect for a class of functions F if for any f ∈ F , any pair of
master keys ðmpk;mskÞ← FE:Setupð1λÞ, any functional key
SKf ← FE:KeyGenðmsk; f Þ, any x ∈ X , and any
CT← FE:Encðmpk; xÞ, it holds that FE:DecðSKf ;

CTÞ ¼ f ðxÞ with all but a negligible probability over the in-
ternal randomness of the algorithms FE:Setup; FE:KeyGen,
and FE:Enc.Adaptive security. A functional encryption
scheme FE for a class of functions F is adaptively secure if for
any probabilistic polynomial‐time adversary A¼ ðA1;A2Þ,
there exists a negligible function negl(λ) such that

Adv
adp

FE;A
ðλÞ ¼ Pr½Exp

adp

FE;A
ðλÞ ¼ 1� − 1

.
2

�
�
�

�
�
� ≤ neglðλÞ;

for all sufficiently large λ ∈ N, where the random variable
Exp

adp

FE;AðλÞ is defined via the following experiment:

Experiment Exp
adp

FE;A
ðλÞ :

ðmpk;mskÞ← Setupð1λÞ;

ðx�0; x
�
1; stateÞ←A

KeyGenðmsk;⋅Þ
1 ðmpkÞ; where x�0; x

�
1 ∈ X ;

and for each f ∈ F which A1 queries to KeyGenðmsk; ⋅Þ;
it holds that f ðx�0Þ ¼ f ðx�1Þ;
CT�← Encðmpk; x�bÞ;

b0←AKeyGenðmsk;⋅Þ
2 ðCT�; stateÞ; where for all f ∈ F that A2

queries to KeyGen ðmsk; ⋅Þ it holds that f ðx�0Þ ¼ f ðx�1Þ;
If b0 ¼ b; output 1; otherwise output 0:

2.2 | Homomorphic signature

In this subsection, we recall the syntax and security definition
of homomorphic signatures as originally introduced by Boneh
and Freeman [6]. We denote the message space byM, and let
f :Mk →M denote a function that takes k messages and
outputs a result message inM.

Definition 2 (Homomorphic Signature [6]) A ho-
momorphic signature scheme for the function family
F is a tuple of probabilistic, polynomial‐time algo-
rithms HS ¼ ðSetup; Sign;Verify;EvaluateÞ as
follows:

� Setupð1λ; kÞ: Takes as inputs the security parameter λ and a
maximum size k of a dataset whose messages can be signed.
Outputs a public key pk and a secret key sk. The public key
pk defines a message spaceM, a signature space Σ, and a
set F of functions f :Mk →M.

� Signðsk; tag;m; iÞ: Takes as inputs a secret key sk, a tag
tag ∈ f0; 1gλ, a message m ∈M and its corresponding
index i ∈ [k], and outputs a signature σ ∈ Σ.

� Evaluateðpk; tag; f ; σ!Þ: Takes as inputs a public key pk, a
tag tag ∈ f0; 1gλ, a function f ∈ F , and a tuple of signa-
tures σ!∈ Σk, and outputs a signature σ0 ∈ Σ.

� Verifyðpk; tag;m; σ; f Þ: Takes as inputs a public key pk, a
tag tag ∈ f0; 1gλ, a messagem ∈M, a signature σ ∈ Σ, and
a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

The tags are used to distinguish different datasets so that
only signatures with matching tags can be employed to
perform homomorphic evaluations. A tag is a bit‐string of
length λ that is randomly chosen from {0,1}λ.

Definition 3 (Correctness [6]) The F ‐homomorphic
signatureHS is correct, if for any tag tag ∈ f0; 1gλ, any
function f ∈ F , any tuple of messages
m!¼ ðm1;…;mkÞ ∈Mk, and any index i ∈ [k], we
have

Verify pk; tag; f ðm!Þ;Evaluateðpk; tag; f ; ðσ1;…; σkÞÞ; f
� �

¼ 1

where ðpk; skÞ← Setupð1λ; kÞ; σi ← Signðsk; tag;m; iÞ for
i ∈ [k]. Note that the function f can also be a projection
function Pi, that is, Pi(m1, …, mk) = mi, which means that the
correctness also must hold for original signatures.

We use the notion of existential unforgeability under
chosen dataset attacks in [6] to describe the unforgeable se-
curity definition of homomorphic signatures, which requires
the adversary to query all the messages in a dataset at once.

Definition 4 (Unforgeability [6]) An F ‐homomor-
phic signature scheme HS ¼ ðSetup; Sign;
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Verify;EvaluateÞ is unforgeable if for all k, no PPT
adversary A can win the following defined experiment
ExptUF

A ð1
λÞ with non‐negligible probability.

� The challenger runs ðpk; skÞ← Setupð1λ; kÞ and sends pk

to the adversary.
� Proceeding adaptively, A specifies a sequence of signature

queries. Each query consists of:
— a dataset given as a k‐message vector

m!i ¼ fmi;1;…;mi;kg.
� For each i, the challenger sends back:

— a randomly chosen dataset tag tagi ∈ 0; 1f g
λ;

— a signature vector σ!i ¼ σij
� �

j∈½k� where σij ← Signðsk;

tagi;mij; jÞ for j ∈ [k]
� A outputs a tag tag� ∈ f0; 1gλ, a message m� ∈M, a

function f ∈ F , and a signature σ* ∈ Σ.

The adversary wins if Verifyðpk; tag�;m�; σ�; f Þ ¼ 1 and
either

1. (a type 1 forgery) tag� ≠ tagi for all i, or
2. (a type 2 forgery) tag� ¼ tagi for some i but m� ≠ f ðm!iÞ.

Context hiding, as a desirable privacy property for a ho-
momorphic signature, requires that a signature that certifies y as
the outcome of some computation f over original data should
not reveal anything about the underlying data beyond the
function value y. The full context hiding property of HS was
first proposed by Ahn et al. [32] to capture a notion of privacy
that the derived signature σ! (i.e., signature produced homo-
morphically from the signatures σ1, σ2, …, σk corresponding to
the data m1, m2, …, mk) is required to have the same distri-
bution with the fresh signature σy generated by computing the
signature of the message y = f(m1, m2, …, mk), even if the
original signatures (σ1, σ2, …, σk) are disclosed to the adversary.
Then, Boneh et al. [6] defined a weak context‐hiding property
which captures the idea that the given signatures on a number
of messages derived from two different datasets, the attacker
cannot tell which dataset the derived signatures came from.
They call it as a ‘weak’ context hiding since the original signa-
tures on the dataset are not exposed to the adversary. Note that
since the privacy property of homomorphic signature is not
required in our article, here we omit its formal definition.

2.3 | Indistinguishability obfuscation

Here, we recall the notion of indistinguishability obfuscation
which was originally proposed by Barak et al. [33]. The formal
definition we present below is from [34].

Definition 5 (Indistinguishability obfuscation [34])
A probabilistic polynomial time (PPT) algorithm iO is
said to be an indistinguishability obfuscator for a
circuits class fCλg, if the following conditions are
satisfied:

� For all security parameters λ ∈ N, for all C ∈ Cλ, for all
inputs x, we have that

Pr½C0ðxÞ ¼ CðxÞ : C0← iOðλ;CÞ� ¼ 1:

� For any (not necessarily uniform) PPT adversaries
ðSamp;DÞ, there exists a negligible function negl(·) such that
the following holds: if Pr½∀x;C0ðxÞ ¼ C1 ðxÞ : ðC0;C1; σÞ←
Sampð1λÞ� > 1 − neglðλÞ, then we have:

jPr ½Dðσ; iOðλ;C0ÞÞ ¼ 1 : ðC0;C1; σÞ← Sampð1λÞ�−
Pr Dðσ; iOðλ;C1ÞÞ ¼ 1 : ðC0;C1; σÞ← Samp 1λ� ��� �

� ≤ neglðλÞ:

3 | HOMOMORPHIC SIGNCRYPTION
WITH PUBLIC PLAINTEXT‐RESULT
CHECKABILITY IN a PUBLIC
EVALUATION SETTING: DEFINITION
AND BASIC CONSTRUCTION

Informally, a homomorphic signcryption scheme in a public
evaluation setting consists of algorithms Setup; KGenS;

KGenR; Signcrypt; UnSigncrypt as well as two additional
algorithms, that is, Evaluate and Verify. The Evaluate algo-
rithm is able to transform the signcryptions on some orig-
inal messages to a signcyrption on an outcome of the
function applied to those original messages without using
any secret keys. The Verify algorithm enables a verifier to
test whether the (either original or derived) signcryption is a
valid signcryption of a given message under the corre-
sponding sender and receiver's public keys. If c! is a valid
set of signcryptions on the messages m!, then
Evaluateðf ; c!Þ should be a valid signcryption for f ðm!Þ. An
additional ‘tag’ is employed to distinguish different datasets,
so that only signcryptions with matching tags can be
computed homomorphically. A tag is a bit‐string of length λ
that is randomly chosen from {0,1}λ.

Definition 6 (Homomorphic Signcryption in a
public evaluation setting) A homomorphic sign-
cryption (HSC) scheme in a public evaluation setting is
a tuple of probabilistic, polynomial‐time algorithms
Setup; KGenS; KGenR; Signcrypt; Unsigncrypt;

Evaluate; Verify as follows:

� Setupð1λ; kÞ: It takes as inputs the security parameter λ and
a maximum size k of a dataset, whose messages can be
signcrypted. It outputs the public parameter pp and defines
a message spaceM, a signcryption space C, and a set F of
functions f :Mk →M.

� KGenSðppÞ: It takes as inputs the public parameter pp, and
outputs a sender's key‐pair ðpkS; skSÞ.
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� KGenRðppÞ: It takes as inputs the public parameter pp, and
outputs a receiver's key‐pair ðpkR; skRÞ.

� Signcryptðpp; skS; pkR; tag;m; iÞ: It takes as inputs the
public parameter pp, sender's private key skS, receiver's
public key pkR, a tag tag ∈ f0; 1gλ, a message m ∈M and
its corresponding index i ∈ [k], and outputs a signcryption
c ∈ C.

� UnSigncryptðpp; pkS; skR; cÞ: It takes as inputs the public
parameter pp, the sender's public key pkS, the receiver's
secret key skR, and a signcryption c ∈ C, and outputs a
message m ∈M.

� Evaluateðpp; pkS; pkR; tag; f ; c!Þ: It takes as inputs the
public parameter pp, the sender's public key pkS, the re-
ceiver's public key pkR, a tag tag ∈ f0; 1gλ, a function
f ∈ F , and a tuple of signcryptions c!∈ Ck, and outputs a
derived signcryption c0 ∈ C.

� Verifyðpp; pkS; pkR; tag;m0; c0; f Þ: It takes as inputs the
public parameter pp, sender's public key pkS , receiver's
public key pkR, a tag tag ∈ f0; 1gλ, a message m0 ∈M, a
function f ∈ F , and a signcryption c0 ∈ C, and outputs
either 0 (reject) or 1 (accept).

Let fΦi :Mk →Mg be the function Φi(m1, …,
mk) = mi that maps onto the i‐th component and
Φ1;…;Φk ∈ F for all pp output by Setupð1λ; kÞ.

Correctness For all pp← Setupð1λ; kÞ; ðpkS; skSÞ←
KGenSðppÞ and ðpkR; skRÞ← KGenRðppÞ we have:

1. For all tags tag ∈ f0; 1gλ
; m ∈M, and i ∈{1, …, k}, if

c← Signcryptðpp; skS; pkR; tag;m; iÞ, then with over-
whelming probability it holds that UnSigncryptðpp; pkS;

skR; cÞ ¼m and Verifyðpp; pkS; pkR; tag;m; c;ΦiÞ ¼ 1.
2. For all tag ∈ f0; 1gλ, tuples m!¼ ðm1;…;mkÞ ∈Mk, and

functions f ∈ F , if ci ← Signcryptðpp; skS; pkR; tag;mi; iÞ
for i = 1, …, k and c0← Evaluateðpp; pkS; pkR; tag;

f ; ðc1;…; ckÞÞ, then with overwhelming probability it holds
UnSigncrypt pp; pkSð ,skR; c0Þ ¼ f ðm!Þ and Verifyðpp;

pkS; pkR; tag; f ðm!Þ; c0; f Þ ¼ 1.

We say that a signcryption scheme as above is F ‐homo-
morphic, or homomorphic with respect to F . For simplicity,
we assume in our homomorphic signcryption systems all data
sets are composed of exact k items.

3.1 | Unforgeability

The security model for homomorphic signcryptions in a public
evaluation setting allows an adversary to get access to the
signcryption oracle by submitting datasets of his choice which
contains up to k messages and obtaining the signcryptions as
responses along with a randomly selected tag tag for each
dataset that is queried. Meanwhile, the adversary is allowed to
have access to the unsigncryption oracle by issuing queries on
the signcryptions of his choice and receiving the original
message m back. The adversary wins the game if he outputs a
message‐signcryption pair (m*, c*) as well as a tag tag� and a

function f* as a forgery. To win the game, the forgery should be
one of the following two distinct types of forgeries. In a type 1
forgery, the signcryption c* is a valid signcryption of a message
m* associated with the tag tag�, which has not been chosen as
a tag for the dataset queried to the signcryption oracle earlier.
This corresponds to the usual notion of a signcryption forgery.
In a type 2 forgery, the pair (m*, c*) verifies for some dataset
that has been queried to the signcryption oracle, but for which
m* is not equal to the outcome of f* applied to the queried
messages.

Definition 7 (Unforgeability) An F ‐homomorphic
signcryption scheme in a public evaluation setting
HSC ¼ Setup; KGenS; KGenR; Signcrypt;Unsð

igncrypt; Evaluate; VerifyÞ is unforgeable if for all k
no PPT adversary A can win the following defined
experiment ExptUF

HSC;Að1
λÞ with non‐negligible

probability.

� The challenger runs pp← Setupð1λ; kÞ; ðpkS; skSÞ←
KGenSðppÞ and ðpkR; skRÞ← KGenRðppÞ, and sends
pp; pkS; pkR to the adversary A.

� A proceeds with adaptive queries,
� SIGNCRYPTION QUERIES. Each query consists of:
� a dataset given as a k‐message vector m!i ¼ fmi;1;…;mi;kg.
� For each i, the challenger sends back a randomly chosen tag

tagi ∈ f0; 1gλ, and a signcryption vector c!i ¼ fcijgj∈½k�
where cij ← Signcryptðpp; skS; pkR; tagi;mijÞ for j ∈ [k].

� a dataset given as a k‐message vector m!i ¼ fmi;1;…;mi;kg.
� For each i, the challenger sends back a randomly chosen tag

tagi ∈ f0; 1gλ, and a signcryption vector c!i ¼ fcijgj∈½k�
where cij ← Signcryptðpp; skS; pkR; tagi;mijÞ for j ∈ [k].
� UNSIGNCRYPTIONQUERIES. Each query consists of:
� a signcryption cı ∈ C
� For each ı, the challenger sends back: a message

mı ← UnSigncryptðpp; pkS; skR; cıÞ.
� A outputs a tag tag� ∈ f0; 1gλ, a message m� ∈M, a

function f � ∈ F , and a signcryption c*.

The adversary wins if Verifyðpp; pkS; pkR; tag
�;

m�; c�; f �Þ ¼ 1 and UnSigncryptðpp; pkS; skR; c�Þ ¼m� and
either

1. (a type 1 forgery) tag� ≠ tagi for all i or
2. (a type 2 forgery) tag� ¼ tagi for some i but m� ≠ f �ðm!iÞ.

Remark 1 Our security model requires that all k
messages in a dataset is signcrypted at once.

Remark 2 While the adversary can always compute
the message m* by querying the unsigncryption oracle
with c*, if the adversary is able to forge a valid sign-
cryption c*, he always can obtain the message m* by
querying the unsigncryption oracle. Thus, we only
require that for the type 1 forgery ðtag�;m�; c�; f �Þ the
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corresponding tag tag� of message m* has never been
chosen as a tag for the dataset queried to the sign-
cryption oracle, while a signcrypted message c* might
has been queried to the unsigncryption oracle.

3.2 | Weak message privacy

Our definition of message privacy for homomorphic sign-
cryption is defined in a game. Given the access to the sign-
cryption oracle as well as the unsigncryption oracle, the
adversary has to come up with two equal‐length messages m!�0
and m!�1 along with a sequence of functions f1, …, fs. One of
ðm!�0;m

!�
1Þ will be signcrypted at random, and the signcryption

challenge bc�i will be generated by the homomorphic evaluation
algorithm for the function fi from the original signcryption c�b
on message m!�b. Only the derived signcryption bc�i for all i ∈ [s]
will be given to the adversary and then, the adversary has to
guess which message was signcrypted. We call it weak message
privacy since we require that the original signcryptions on the
dataset are not disclosed to the adversary.

Definition 8 (Weak Message Privacy) An F ‐homo-
morphic signcryption scheme HSC in a public evalu-
ation setting is weakly message private if for all k no
PPT adversary A can win the following defined
experiment ExptwMP

HSC;Að1
λÞ with non‐negligible

advantage.

� The challenger runs pp← Setupð1λ; kÞ; ðpkS; skSÞ←
KGenSðppÞ and ðpkR; skRÞ← KGenRðppÞ, and sends
pp; pkS; pkR together with skS to A.

� A adaptively performs UnSigncryption queries as in the
experiment ExptUF

HSC;A.
� A outputs ðm!�0;m

!�
1; f 1;…; f sÞ with m!�0;m

!�
1 ∈Mk. The

functions f1, …, fs are in F and satisfy f iðm
!�

0Þ ¼ f iðm
!�

1Þ for
all i ∈ [s].

� The challenger generates a random bit b ∈{0, 1} and a
random tag tag ∈ f0; 1gλ. It signcrypts the messages in m!�b
using a tag to obtain a vector c! of k signcryptions, where
cj ← Signcryptionðpp; skS; pkR; tag;m�bj; jÞ for all j ∈ [k].
Next, for each i ∈ [s] the challenger computes a derived
signcryption bci ← Evaluateðpp; pkS; pkR; tag; f i; c

!Þ. It
sends tag and the signcryptions ðbc1;…;bcsÞ to A. Note that
the functions f1, …, fs can be output adaptively after
m!�0;m
!�

1 are output.
� A adaptively performs unsigncryption queries as before.

Note that there is no need for A to ask its unsigncryption
oracle for any query c which is the same as any one of bci (for
i ∈ [s]) returned as the challenged signcryptions, since it
already knows the answer f iðm

!�
bÞ which is the same for b

∈{0, 1} (f iðm
!�

0Þ ¼ f iðm
!�

1Þ).
� A outputs a bit b0.

The adversary A wins the game if b = b0.

We also consider a selective variant of message privacy. The
selectively weak message privacy game is equivalent to the
above one with the exception that the attacker must declare the
challenge messages m!�0;m

!�
1 at the very beginning before it sees

the public parameters.

Definition 9 (Selectively Weak Message Privacy)
An F ‐homomorphic signcryption scheme HSC is
selectively weak message private for all PPT adver-
saries A, if the advantage of A is negligible in the se-
lective weak message privacy game.

3.3 | Construction of an HSC in a public
evaluation setting

In this section, we present an HSC scheme in a public evalu-
ation setting from the HS scheme without the context‐hiding
property based on indistinguishability obfuscation. Our con-
struction relies on the following building blocks:

� An F ‐homomorphic signature scheme HS ¼ HS:Setup;ð

HS:Sign, HS:Evaluate;HS:VerifyÞ with message of length
|m| and signature of length ℓsig.

� An IND‐CPA secure public key encryption scheme
PKE ¼ ðPKE:Setup;PKE:Enc;PKE:KeyGen; PKE:DecÞ

for messages of length ðℓsig þ jmjÞ, the ciphertexts of
length ℓPKE and the randomness of length ℓPKEr.

� Indistinguishability obfuscation iO.
� Statistically simulation sound non‐interactive zero knowl-

edge proofs SSS‐NIZKs ¼ ðNIZK:Setup;NIZK:Prove;

NIZK:VerifyÞ for the following NP language:

L¼ ðpk1; pk2; e1; e2Þj ∃ σkm; r1; r2 such thatf

e1 ¼ PKE:Encðpk1; σkm; r1Þ ∧ e2 ¼ PKE:Encðpk2; σkm; r2Þg;

ð1Þ

and has a simulator Sim.
Our HSC scheme. HSC¼ Setup; KGenS; KGenR;

Signcrypt;Unsigncrypt; Evaluate;Verify in a public evalua-
tion setting with respect to F is built as follows.

� HSC:Setupð1λ; kÞ→ pp:
� Run crs← NIZK:Setupð1λÞ and set obtain pp ≔ crs.
� HSC:KGenSðpp; kÞ→ ðpkS; skSÞ:
� Generate a key‐pair of HS, that is,
ðhsk; hpkÞ← HS:Setupð1λÞ. Set skS ≔ hsk and
pkS ≔ hpk.

� HSC:KGenRðpp; kÞ→ ðpkR; skRÞ:
� Generate two independent key‐pairs of PKE, that is,
ðpk1; sk1Þ← PKE:Setupð1λÞ and
ðpk2; sk2Þ← PKE:Setupð1λÞ.

� Create two obfuscations iOðProgVÞ and iOðProgEÞ for
the programme ProgV defined in Figure 2a and pro-
gramme ProgE defined in Figure 2b;
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� Set pkR ≔ ðpk1; pk2; iOðProgVÞ; iOðProgEÞÞ and
skR ≔ sk1.

� HSC:Signcryptðpp; skS; pkR; tag;m; iÞ→ ci:
� Parse skS ¼ hsk and pkR ¼ ðpk1; pk2; iOðProgVÞ;

iOðProgEÞÞ;
� Use the tag tag ∈ f0; 1gλ to generate a signature for the

messagem as σi ← HS:Signðhsk; tag;m; iÞ where i ∈ [k]
is the index of message m in the dataset.

� Compute ciphertexts for the same plaintext σi‖mi under
two different public keys pk1 and pk2, respectively,
namely, ei1 ← PKE:Encðpk1; σikmi; ri1Þ and ei2
←PKE:Encðpk2; σikmi; ri2Þ where ri1; ri2 ∈ f0; 1gℓPKEr .
Then generate the proof πi ← NIZK:Proveðcrs; νi;ωiÞ

where νi ¼ ðpk1; pk2; ei1; ei2Þ is a statement of the NP
language defined in (1) and ωi = (σi‖mi, ri1, ri2) is the
corresponding witness.

� Output ci = (ei1, ei2, πi).
� HSC:UnSigncryptðpp; skR; pkS; tag; ciÞ→mi:
� Parse pkS ¼ hpk; skR ¼ sk1 and ci ¼ ei1; ei2;ð πiÞ;
� Check that πi is a valid NIZK proof using the

NIZK:Verify algorithm and crs for the NP language (1).
If the check fails output ⊥; Otherwise compute
σikmi ¼ PKE:Dec ðsk1; ei1Þ.

� Check that HS:Verifyðhpk; tag;mi; σiÞ ¼ 1. If it is true,
output mi; else, output ⊥.

� HSC:Evaluateðpp; tag; pkR; pkS; f ; c!Þ→ bc:

� Parse pp¼ crs; pkS ¼ hpk, and pkR ¼ ðpk1; pk2;

iOðProgVÞ; iOðProgEÞÞ;
� Run the obfuscated programme iOðProgEÞ on input

tag; hpk; f and c!¼ ðc1;…; ckÞ where ci = (ei1, ei2, πi)
for all i ∈ [k], and obtain the output bσk bm.

� Generate be1 ← PKE:Encðpk1; bσk bm; r01Þ and
be2 ← PKE:Enc pk2ð , bσk bm; r02

�
, and the NIZK proof

bπ← NIZK:Proveðcrs; bν; bωÞ where bν ¼ ðpk1; pk2;

be1;be2Þ is a statement of the NP language (1) and
bω ¼ ðbσk bm; r01; r02Þ is the corresponding witness.

� Output bc ¼ ðbe1;be2; bπÞ.
� HSC:Verifyðpp; tag; pkR; pkS; bm;bc; f Þ:
� Parse pp¼ crs; pkR ¼ ðpk1; pk2; iOðProgVÞ;

iOðProgEÞÞ; pkS ¼ hpk and bc ¼ ðbe1;be2; bπÞ;
� Run the obfuscated programme iOðProgVÞ on input
bc ¼ ðbe1;be2; bπÞ; bmð , tag; hpk; f Þ and obtain the output b.

� Output the returned bit b.

Correctness. Correctness of our HSC scheme follows
immediately from the correctness of the iO, PKE system, SSS‐
NIZK, HS scheme and the description of the programme
template ProgV and ProgE.

Theorem 1 Assuming the underlying homomorphic
signature scheme HS is existentially unforgeable
against chosen message attacks as defined in Definition

(a)

(b)

F I GURE 2 The description of the
programs ProgV and ProgE
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4, the homomorphic signcryption scheme described
above satisfies unforgeability against chosen message
attacks as defined in Definition 7.

Proof: Let us fix a PPT adversary AUnf
HSC attacking the

unforgeability security of the HSC scheme built above. We will
useAUnf

HSC to construct an adversaryA
Unf
HS such that, ifAUnf

HSC wins
in the unforgeability game for our HSC scheme given abovewith
non‐negligible probability, then AUnf

HS breaks the underlying
homomorphic signature scheme HS, which is assumed to be
existentially unforgeable against chosen message attacks.

We now describe the constructed homomorphic signature
adversary, AUnf

HS . In the security game for the HS scheme, AUnf
HS

is given the verification key hpk, and access to a signing oracle
OHSsig

. He is considered to be successful in producing a forgery
if he outputs a valid signature for a message that was not
queried from OHSsig

(type 1 forgery) or that was queried to the
signing oracle, but for which m* does not equal f* applied to
the messages queried (type 2 forgery).
AUnf

HS interacts with AUnf
HSC, playing the role of the challenger

in the unforgeability game for our HSC scheme built above.
This means that AUnf

HS must simulate the signcryption oracle
and the unsigncryption oracle. After receiving the challenge
verification key hpk of the HS scheme, AUnf

HS first generates
crs← NIZK:Setupð1λÞ, key‐pairs ðpk1; sk1Þ←
PKE:Setupð1λÞ; ðpk2; sk2Þ← PKE:Setupð1λÞ, and creates
the obfuscated programme iOðProgVÞ and iOðProgEÞ for the
programme ProgV depicted in Figure 2a and ProgE in
Figure 2b, respectively. AUnf

HS sets pp ≔ crs; pkS ≔ hpk and
pkR ≔ ðpk1; pk2; ; iOðProgVÞ; iOðProgEÞÞ.

To answer the i‐th query to the signcryption oracle, that is,
a k‐message vector m!i ¼ fmi1;…;mikg issued by
AUnf

HSC; A
Unf
HS performs the following:

� It sends the k‐message vector m!i ¼ fmi1;…;mikg to its
own signing oracle OHSsig

to get a tag tagi and a signature
vector σ!i ¼ ðσi1;…; σikÞ of k signatures.

� For each j ∈ [k], it generates e1ij ← PKE:Enc pk1;ð

σijkmij; r1ijÞ and e2ij ← PKE:Encðpk2; σijkmij; r2ijÞ, and the
NIZK proof πij for the statement (1).

� It sets tagi; c
!

i ¼ fci1;…; cikg
� �

where cij ¼ e1ij; e
2
ij; πij

� �

for each j ∈ [k] and returns it back to AUnf
HSC.

To answer the query, the signcryption cı ¼ ðe1ı ; e
2
ı ;πıÞ with

corresponding tag tagı issued by AUnf
HSC, to the unsigncryption

oracle;AUnf
HS performs as following:

� Checks that πı is a valid NIZK proof using the NIZK:Verify

algorithm and the crs for the NP‐statement (1). If the check
fails, it outputs ⊥; Otherwise, it computes σikmi¼

PKE:Decðsk1; e1i Þ.
� Checks that HS:Verifyðhpk; tagi;mi; σiÞ ¼ 1. If it is true, it

returns mi; else, it returns ⊥.

Eventually, AUnf
HSC outputs a tuple ðtag�;m�; c�; f �Þ where

c� ¼ ðe�1; e
�
2;π

�Þ. AUnf
HS computes σ�km� ¼ PKE:Decðsk1; e�1Þ

to obtain the output σ*‖m*, and then outputs
ðtag�;m�; σ�; f �Þ as its message‐forgery pair in the unforge-
ability game for the underlying HS scheme.

It is easy to see that AUnf
HS exactly recreates the environ-

ment. Thus, if AUnf
HSC produces a forgery in our HSC scheme

with non‐negligible probability 1/Poly(λ), then AUnf
HS success-

fully forges in the underlying HS scheme with non‐negligible
probability 1/Poly(λ). But, this cannot be the case, since we
have assumed that the HS scheme is existentially unforgeable
against chosen‐message attacks. We conclude that our HSC
scheme as specified above satisfies the unforgeability security
of Definition 7. □

Theorem 2 Assuming iO is a secure indistinguish-
ability obfuscator, a IND‐CPA secure public key
encryption PKE, along with the statistical simulation‐
soundness and the zero‐knowledge properties of a SSS‐
NIZK system, the homomorphic signcryption scheme
described above is selectively weakly message private as
defined in Definition 9 for datasets up to k.

Proof: We now show that our HSC scheme satisfies the
selective weak message privacy of Definition 9. We prove that
no poly‐time attacker can break the weak message privacy of
our HSC scheme if our underlying assumptions hold. We
organise our proof into a sequence of hybrids. In the first
hybrid, the challenger signcrypts the messages in m!�0 and
computes the signcryption on f iðm

!�
0Þ for each i ∈ [s]. We then

gradually change the signcryptions in multiple hybrid steps into
the signcryptions on m!�1 and f iðm

!�
1Þ. We show that each

successive hybrid experiment is indistinguishable from the
former one.

Hyb0: In this hybrid the following game is played.

� The adversary A outputs the challenged message ðm!�0;m
!�

1Þ.
� The challenger generates crs← NIZK: Setupð1λÞ; ðpk1;

sk1Þ← PKE:Setupð1λÞ; ðpk2; sk2Þ← PKE:Setupð1λÞ and
ðhsk; hpkÞ← HS:Setupð1λÞ. Then, it creates the obfusca-
tions iOðProgV Þ and iOðProgEÞ for the programme ProgV
of Figure 2a and ProgE of Figure 2b. The challenger gives
pp ≔ crs; pkS ≔ hpk; pkR ≔ ðpk1; pk2; iOðProgVÞ;

iOðProgEÞÞ together with skS ≔ hsk to A.
� For the unsigncryption queries ci ¼ ðe1i ; e

2
i ;πiÞ with corre-

sponding tag tagi issued by A, the challenger checks that πi
is a valid NIZK proof using the NIZK:Verify algorithm and
the crs for the NP‐statement (1). If the check fails, it out-
puts ⊥; Otherwise, it computes σikmi ¼ PKE:Decðsk1; e1i Þ
and verifies that HS:Verifyðhpk; tagi;mi; σiÞ ¼ 1. If it is
true, it returns mi; else, it returns ⊥.

� The adversary A outputs (f1, …, fs) satisfying f iðm
!�

0Þ¼

f iðm
!�

1Þ for all i ∈ [s].
� The challenger randomly samples a tag tag� and generates

σ0
j ← HS:Sign hsk; tag�;m�0j; j

� �
for alright j ∈ [k]. Then,

for each j ∈ [k] it generates e1j ← PKE:Encðpk1; σ0
j km

�
0j; r

1
j Þ

and e2j ← PKE:Enc ðpk2; σ0
j km

�
0j; r

2
j Þ, and the NIZK proof

πj for statement (1), and sets c0j ¼ ðe
1
j ; e

2
j ;πjÞ. For all i ∈ [s]
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the challenger runs ðbσ ik bmiÞ← iOðProgEÞ ððc01;…; c0kÞ;
tag�; hpk; f iÞ and generates be1i ← PKE:Encðpk1;

bσ ik bmi; r0i1Þ and be
2
i ← PKE:Enc pk2; bσ ik bmið ; r0i2

�
, and the

NIZK proof bπi for statement (1). It sets bci ¼ ðbe1i ;be
2
i ; bπiÞ

and sends tag�;bc1;…;bcsð Þ to A.

� The adversary A outputs a bit b0 and wins if b = b0.

Hyb1: This hybrid is identical to Hyb0 with the exception that
ðcrs;πÞ is simulated as

ðcrs;πÞ← Sim ∃ðu; r1; r2Þ; s:t:
�

e1 ¼ PKE:Encðpk1; u; r1Þ∧
e2 ¼ PKE:Encðpk2; u; r2ÞÞ:

ð2Þ

Since the SSS‐NIZK system is computationally zero knowl-
edge, Hyb1 is indistinguishable from Hyb0.

Hyb2: This hybrid is identical to Hyb1, with the exception
that the ciphertexts are generated as following. For all
j ∈ ½k þ s�; e1j ¼ PKE:Encðpk1; u0j ; r

1
j Þ, where for

j ∈ ½k�; u0j ¼ σ0
j km

�
0j; σ0

j ← HS:Sign hsk; tag�;m�0j; j
� �

while for j ∈ ½k þ 1; k þ s�; u0j ¼ σ0
j kf j−kðm

!�
0Þ;

σ0
j ← HS:Evaluateðhpk; tag�; f j−k; ðσ

0
1;…; σ0

kÞÞ. For all
j ∈ ½k þ s�; e2j ¼ PKE:Encðpk2; u1j ; r

2
j Þ, where for

j ∈ ½k�; u1j ≔ σ1
j km

�
1j; σ1

j ← HS:Signðhsk; tag�;m�1j; jÞ while

for j ∈ ½k þ 1; k þ s�; u1j ¼ σ1
j kf j−kðm

!�
1Þ; σ1

j← HS:Evaluate

hpk; tag�ð , f j−k; σ
1
1;…; σ1

k

�
. (The NIZK is still simulated.)

Since the PKE system is IND‐CPA secure, Hyb2 is indistin-
guishable from Hyb1.

Hyb3: This hybrid is identical to Hyb2, with the exception
that the challenger generates the obfuscation of programme
Prog1V which is defined in Figure 3a instead of an obfuscation
for programme ProgV defined in Figure 2a as well as the
obfuscation of programme Prog1E which is defined in
Figure 3b instead of an obfuscation for programme ProgE

defined in Figure 2b. Since iO is an indistinguishability
obfuscator, Hyb3 is indistinguishable from Hyb2.

Hyb4: This hybrid is identical to hybrid Hyb3 with the
exception that the ciphertexts are generated as follows. For
each j ∈ ½k þ s�; e1j ¼ PKE:Encðpk1; u1j ; r

1
j Þ, where for each

j ∈ ½k�; u1j ≔ σ1
j km

�
1j and σ1

j ← HS:Signðhsk; tag�;m�1j; jÞ,
while for each j ∈ ½kþ 1; kþ s�; u1j ≔ σ1

j kf j−kðm
!�

1Þ and
σ1
j ← HS:Evaluateðhpk; tag�; f j−k; ðσ

1
1;…; σ1

kÞÞ. (The NIZK
is still simulated and the obfuscated programs are created for
the programme Prog1V and Prog1E, respectively.) Since the PKE
system is IND‐CPA secure, Hyb4 is indistinguishable from
Hyb3.

Hyb5: The ciphertext and the crs are formed the same way
as in Hyb4 with the exception that the challenger generates the
obfuscation of the programme ProgV defined in 2a and the
programme ProgE defined in Figure 2b instead of the obfus-
cation for the programme Prog1V defined in Figure 3a and the

programme Prog1E defined in Figure 3b. Since iO is an indis-
tinguishability obfuscator, Hyb5 is indistinguishable from
Hyb4.

Hyb6: This hybrid is the same as in Hyb5 with the
exception that the crs is generated from an honest run of the
NIZK:Setup algorithm and the NIZK proof components.
This corresponds to the game when the signatures are gener-
ated on m!�1 and f iðm

!�
1Þ. Since the SSS‐NIZK system is

computationally zero knowledge, Hyb6 is indistinguishable
from Hyb5. □

4 | HOMOMORPHIC SIGNCRYPTION
WITH PUBLIC PLAINTEXT‐RESULT
Checkability IN a PRIVATE EVALUATION
SETTING: DEFINITION AND BASIC
CONSTRUCTION

Definition 10 (Homomorphic Signcryption in a
private evaluation setting) A homomorphic sign-
cryptionHSC scheme in a private evaluation setting is a
tuple of probabilistic, polynomial‐time algorithms
KGenS; KGenR; Signcrypt; Unsigncrypt; Evaluate;

Verify as follows:

� KGenSð1λ; kÞ: It takes as inputs the security parameter λ and
a maximum size k of a dataset, whose messages can be
signcrypted. It outputs a sender's key‐pair ðpkS; skSÞ and
defines a message spaceM, a signcryption space C, and a
set F of functions f :Mk →M.

� KGenRð1λ; kÞ: It takes as inputs the security parameter λ
and a maximum size k of a dataset, and outputs a receiver's
key‐pair ðpkR; skRÞ, together with a public verification key
vk and a private evaluation key ek.

� SigncryptðskS; pkR; tag;m; iÞ: It takes as inputs the
sender's private key skS, the receiver's public key pkR, a tag
tag ∈ f0; 1gλ, a message m ∈M and its corresponding
index i ∈ [k], and outputs a signcryption c ∈ C.

� UnSigncryptðpkS; skR; cÞ: It takes as inputs the sender's
public key pkS, the receiver's secret key skR, a signcryption
c ∈ C and it outputs a message m ∈M together with its
corresponding tag tag.

� Evaluateðek; pkS; pkR; tag; f ; c!Þ: It takes as inputs an
evaluation key ek, sender's public key pkS, receiver's public
key pkR, a tag tag ∈ f0; 1gλ, a function f ∈ F , and a tuple
of signcryptions c!∈ Ck, and it outputs a derived sign-
cryption c0 ∈ C.

� Verifyðvk; pkS; pkR; tag;m0; c0; f Þ: It takes as inputs a
public verification key vk, sender's public key pkS , receiver's
public key pkR, a tag tag ∈ f0; 1gλ, a message m0 ∈M, a
function f ∈ F , and a derived signcryption c0 ∈ C, and it
outputs either 0 (reject) or 1 (accept).

Let fΦi :Mk →Mg be the function Φi(m1, …,
mk) = mi that projects onto the i‐th component and
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Φ1;…;Φk ∉ F , which implies that the verification algorithm
is only allowed to verify whether the derived signcryption from
the homomorphic evaluation operation is a valid signcryption
or not.

Correctness. For all ðpkS; skSÞ← KGenSð1λ; kÞ and.
ðpkR; skRÞ

←KGenRð1λ; kÞ, we have:

1. For all tags tag ∈ f0; 1gλ
; m ∈M, and i ∈{1, …, k}, if

c← SigncryptðskS; pkR; tag;m; iÞ, then with over-
whelming it holds that probability UnSigncrypt

ðpkS; skR; cÞ ¼m.
2. For all tags tag ∈ f0; 1gλ, all tuples

m!¼ ðm1;…;mkÞ ∈Mk, and all functions f ∈ F , if
ci ← SigncryptðskS; pkR; tag;mi; iÞ for i = 1, …, k, then
with overwhelming probability it holds that

Verify pkS; pkR; tag;ð Evaluateðek; pkS; pkR; tag; f ;
ðc1;…; ckÞÞ; f Þ ¼ 1.

We say that a signcryption scheme as above is F ‐homo-
morphic, or homomorphic with respect to F .

Remark 3 We note that the Unsigncrypt algorithm is
allowed to perform on both the original and the
derived signcryptions, while the verification algorithm
can only accept the derived signcryptions as inputs .

The reason for this limitation is to protect the secrecy
of the message in the signcryption scheme. More pre-
cisely, if the public verification algorithm is allowed to
operate on the original signcryption of a message, then
it is trivial for any adversary to test the matching of
the message and the challenged signcryption via the
public verification algorithm.

4.1 | Unforgeability

Definition 11 (Unforgeability) An F ‐homomorphic
signcryption scheme in a private evaluation setting
HSC¼ KGenS;ð KGenR; Signcrypt; Unsigncrypt;

Evaluate; VerifyÞ is unforgeable if for all k no
PPT adversary A can win the following defined
experiment ExptUF

HSC;Að1
λÞ with non‐negligible

probability.

� The challenger runs ðpkS; skSÞ← KGenSð1λ; kÞ and
ðpkR; skRÞ←KGenRð1λ; kÞ, and sends pkS; pkR to the
adversary A.

� A proceeds with adaptive queries,
� SIGNCRYPTION QUERIES. Each query consists of:
� a dataset given a k‐message vector m!i ¼ fmi;1; …;mi;kg.

(a)

(b)

F I GURE 3 The description of the
programs Prog1V and Prog1E
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� For each i, the challenger sends backa randomly chosen
dataset tag tagi ∈ f0; 1gλ, and a signcryption vector
c!i ¼ ci;1;…; ci;k

� �
where cij ← Signcrypt skS;ð

pkR; tagi; mijÞ for all j ∈ [k].
� UNSIGNCRYPTIONQUERIES. Each query consists of:
� a signcryption cı ∈ C
� For each ı, challenger sends back mı ← UnSigncryptðpkS;

skR; cıÞ.
� EVALUATION QUERIES. Each query consists of:
� a k‐signcryption vector c!ȷ ¼ fcȷ;1;…; cȷ;kg ∈ Ck together

with a tag tagȷ and a function f ȷ ∈ F .
� The challenger sends back bc ȷ ← Evaluateðek; pkS; pkR;

tagȷ; f ȷ; c
!

ȷÞ along with tagȷ.
� A outputs two main kinds of forged tuple that can be

classified as follows:
1. (type 1) a tuple ðtag�; c�Þ, where c!� is a signcryption s. t

(1) UnSigncryptðpkS; skR; c�Þ ≠ ⊥ and (2) tag� is
different from all the tags associated with dataset that has
been queried to the signcryption oracle and the evalua-
tion oracle, or

2. (type 2) a tuple ðtag�;m�; f �; c�Þ s. t (1) Verify vk;ð

pkS; pkR; tag
�;m�; c�; f �Þ ¼ 1 and (2) tag� ≠ tagȷ for all

ȷ where tagȷ denotes the tag that has been submitted to
the evaluation oracle, or

3. (type 3) a tuple ðtag�;m�; f �; c�Þ s. t (1) Verify vk;ð

pkS; pkR; tag
� ;m�; c�; f �Þ ¼ 1 and (2) tag� ¼ tagȷ for

some ȷ where tagȷ denotes the tag that has been sub-
mitted to the evaluation oracle, but f* has never been
queried to the evaluation oracle, or

4. (type 4) a tuple ðtag�;m�; f �; c�Þ s. t (1) Verify vk;ð

pkS; pkR; tag
�;m�; c�; f �Þ ¼ 1 and (2) tag� ¼ tagȷ for

some ȷ where tagȷ denotes the tag that has been sub-
mitted to the evaluation oracle, and f* has been queried
to the evaluation oracle, but m� ≠ f �ðm!ȷÞ where m!ȷ is
the dataset corresponding to the tag tagȷ.

4.2 | Message privacy

Contrary to the weak message privacy for HSC in a pub-
lic evaluation setting in a private evaluation, the privacy
notion is defined for the full message confidentiality, which
captures the idea that given both the original signcryptions
on the dataset and the signcryptions on a number of mes-
sages derived from one of two different datasets, the
attacker cannot tell which dataset the derived signatures
came from.

Definition 12 (Message Privacy) An F ‐homomor-
phic signcryption scheme in a private evaluation setting
HSC is message private if for all k no PPT adversaryA
can win the following defined experiment
ExptMP

HSC;Að1
λÞ with non‐negligible advantage.

� The challenger runs ðpkS; skSÞ← KGenSð1λ; kÞ and
ðpkR; skRÞ← KGenRð1λ; kÞ, and sends pkS; pkR to A.

� A adaptively proceeds with signcryption and evaluation
queries as in the experiment ExptUF

HSC;A.
� A outputs ðm!�0;m

!�
1; f 1;…; f sÞ with m!�0;m

!�
1 ∈Mk. The

functions f1, …, fs are in F and satisfy f iðm
!�

0Þ ¼ f iðm
!�

1Þ for
all i ∈ [s].

� The challenger generates a random bit b ∈{0, 1} and a
random tag tag ∈ f0; 1gλ. It signcrypts the messages in m!�b
using tag to obtain a vector c! of k signcryptions, where
cj ← SignðskS; pkR; tag;m�bj; jÞ for all j ∈ [k]. Next, for
each i ∈ [s] the challenger computes a derived signcryption
bci ← Evaluateðek; pkS; pkR; tag; f i; c

!Þ. It sends tag and
the derived signcryptions bc1;…; bcsð Þ as well as original
signcryption vector c! to A.

� A adaptively performs signcryption and evaluation queries
as before.

� A outputs a bit b0. A wins the game if b = b0.

4.3 | Construction of an HSC in a private
evaluation setting

In this section, we present an HSC scheme in a private eval-
uation setting from an HS scheme without context‐hiding and
a FE scheme. Our construction relies on the following building
blocks:

� An F ‐homomorphic signature scheme HS ¼ HS:Setup;ð

HS:Sign,HS:Evaluate;HS:VerifyÞ with message of length
|m| and a signature of length ℓsig.

� A general‐purpose public‐key multi‐input functional
encryption scheme MIFE ¼ ðMIFE:Setup; MIFE:Enc;

MIFE:KeyGen;MIFE:DecÞ.

Our HSC scheme HSC¼ KGenS;ð KGenR; Signcrypt;

Unsigncrypt; Evaluate; VerifyÞ with respect to F is built as
follows.

� KGenSð1λ; kÞ→ ðpkS; skSÞ:
� Sample ðhsk; hpkÞ← HS:Setupð1λÞ. Set pkS ≔ hpk and

skS ≔ hsk.
� KGenRð1λ; kÞ→ ðpkR; skR; vk; ekÞ:
� Sample ðmsk0;mpk0Þ←MIFE:Setupð1λÞ; ðmsk1;mpk1Þ

←MIF E:Setupð1λÞ;
� Compute skUFE ←MIFE:KeyGenðmsk0;UÞ where the

function U is described in Figure 4a;
� Compute skGFE ←MIFE:KeyGenðmsk1;GÞ where the

function G is described in Figure 4b;
� Set pkR ≔ ðmpk0;mpk1Þ; skR ≔ ðmsk0;msk1Þ, the

evaluation key ek ≔ skUFE and verification key vk ≔ skGFE.
� SigncryptionðskS; pkR; tag; x!; iÞ→ ci:
� Parse skS ¼ hsk; pkR ¼ ðmpk0;mpk1Þ and x!¼
ðx1;…; xkÞ.
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� Using the tag tag ∈ f0; 1gλ generate a k‐signature vector
σ!¼ ðσ1;…; σkÞ for message x!, where
σi ← HS:Signðhsk; tag; xi; iÞ.

� Compute cti ←MIFE:Encðmpk0; tagkσikxikΦiÞ;

cttag ←MIFE:Encðmpk1; tagÞ; ctσi ←MIFE:Enc

ðmpk1; σiÞ; ctxi ←MIFE:Encðmpk1; xiÞ, and ctΦi←
MIFE:Encðmpk1;ΦiÞ;

� Output ci ¼ ð0; cti; cttag; ctσi; ctxi; ctΦiÞ.
� UnSigncryptionðpkS; skR; ciÞ→ ðtag; xiÞ:
� Parse pkS ¼ hpk; skR ¼ ðmsk0;msk1Þ, and

ci ¼ β; cti; cttag; ctσi

�
; ctxi; ctf

�
.

� Compute tagkσikxikf ←MIFE:Decðmsk0; ctiÞ.
� Run tag0←MIFE:Decðmsk1; cttagÞ; σ0i ←MIFE:Dec

ðmsk1; ctσiÞ; x0i ←MIFE:Decðmsk1; ctxiÞ, and f 0←
MIFE:Decðmsk1; ctf Þ.

� Check if tag¼ tag0; σi ¼ σ0i; xi ¼ x0i and f = f0. If they
hold, then check if HS:Verifyðhpk; tag; xi; σi; f Þ ¼ 1; If
it is true, then output ðtag; xiÞ. Otherwise, abort.

� EvaluateðpkS; pkR; ek; tag; fcigi∈½k�; f Þ→ bc:
� Parse ek¼ skUFE; pkR ¼ ðmpk0;mpk1Þ and ci ¼ β; cti;ð

cttag; ctσi; ctxi; ctΦiÞ. If β = 1, abort; otherwise, proceeds
as following.

� Encrypt the function f under the public key mpk0 of
MIFE, namely, ctf ←MIFE:Encðmpk0; f Þ. Decrypt the
ciphertexts with the function key of FE and obtain
ðtag0; y; bσÞ←MIFE:Dec skUFE; ct1;…

�
,ctk; ctf

�
.

� If tag¼ tag0, then compute bct ←MIFE:Enc ðmpk0;

tagkbσkykf Þ, bcttag ←MIFE:Encðmpk1; tagÞ, bctbσ←
MIFE:Encðmpk1; bσÞ; bcty
←MIFE:Encðmpk1; yÞ, and bctf ←MIFE:Encðmpk1; f Þ;

� Output bc ¼ ð1; bct; bcttag; bctbσ ;
bcty; bctf Þ.

� Verifyðvk; pkS; pkR; tag; y; c; f Þ→ f0; 1g:
� Parse pkS ¼ hpk; pkR ¼ ðmpk0;mpk1Þ; vk¼ skGFE and

c ¼ ðβ; ct; cttag; ctσ; cty; ctf Þ;
� Compute ct0tag ←MIFE:Encðmpk1; tagÞ; ct0y←

MIFE:Enc mpk1
�

,yÞ, and ct0f ←MIFE:Encðmpk1; f Þ.

Then run b←MIFE:Dec skGFE

�
,ct0tag; ct

0
y; ctσ; ct

0
f

�
and

output b.

Correctness. The correctness of HSC scheme described
above follows immediately from the correctness of MIFE and
HS scheme.

Theorem 3 Assuming the underlying homomorphic
signature scheme HS is existentially unforgeable
against chosen message attacks as defined in Definition
4, the homomorphic signcryption scheme described
above satisfies unforgeability against chosen message
attacks as defined in Definition 11.

Proof: Let us fix a PPT adversary AUnf
HSC attacking our

HSC scheme constructed above, we will use AUnf
HSC to

construct an adversary AUnf
HS such that, if AUnf

HSC wins in the
unforgeability game for our HSC scheme given above with
non‐negligible probability, then AUnf

HS breaks the underlying
existential unforgeability of homomorphic signature scheme
HS.

We now describe the constructed HS adversary, AUnf
HS .

After receiving the challenge verification key hpk of the HS
scheme, AUnf

HS first generates ðmsk0;mpk0Þ←
MIFE:Setupð1λÞ; ðmsk1;mpk1Þ←MIFE:Setupð1λÞ. Then it
computes skUFE ←MIFE:KeyGenðmsk0;UÞ for the function
U described in Figure 4a and skGFE ←MIFE:KeyGenðmsk1;GÞ
for the function G described in Figure 4b. AUnf

HS sets
pkS ≔ hpk; pkR ≔ ðmpk0; mpk1Þ; skR ≔ ðmsk0;msk1Þ;

vk ≔ skGFE, and ek ≔ skUFE. pkS; pkR; vk are given to AUnf
HSC.

To answer the i‐th query submitted to the signcryption
oracle, that is, a k‐message vector m!i ¼ fmi1;…;mikg issued
by AUnf

HSC; A
Unf
HS performs the following:

� Sends m!i ¼ fmi1;…;mikg to its own signing oracle OHSsig

to get a tag tagi and a k‐signature vector σ!i ¼ ðσi1;…; σikÞ.

(a)

(b)

F I GURE 4 Description of the function
Uhpk and Ghpk
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� For each j ∈ [k], run ctij ←MIFE:Enc ðmpk0;

tagikσijkmijkΦiÞ; cttagi ←MIFE:Encðmpk1; tagiÞ; ctσij

←MIFE:Encðmpk1; σijÞ; ctmij ←MIFE:Encðmpk1;mijÞ,
and ctΦi ←MIFE:Encðmpk1;ΦiÞ. Then set cij ¼ ð0; ctij;
cttagi; ctσij; ctmij; ctΦiÞ.

� Return tagi; c
!

i ¼ fci1;…; cikg
� �

back to AUnf
HSC.

To answer the query submitted to the unsigncryption
oracle, that is, a signcryption cı ¼ ðβ; ctı; cttagı; ctσı; ctmı; ctf Þ

with corresponding tag tagı issued by AUnf
HSC; A

Unf
HS performs

the following:

� Computes tagıkσıkmıkf ←MIFE:Decðmsk0; ctıÞ;
� Run tag0ı ←MIFE:Decðmsk1; cttagıÞ; σ0ı← MIFE:Dec

ðmsk1; ctσıÞ; m0ı← MIFE:Decðmsk1; ctmıÞ, and f 0←
MIFE:Decðmsk1; ctf Þ.

� Check if tagı ¼ tag0ı; σı ¼ σ0ı; mı ¼m0ı and f = f0. If they
hold, then check if HS:Verifyðhpk; tagı;mı; σı; f Þ ¼ 1; If it
is true, then output mı. Otherwise, abort.

To answer the query to the evaluation oracle, that is, k‐
signcryption vector c!ȷ ¼ fcȷ1;…; cȷkg with corresponding tag
tagȷ and function fȷ issued by AUnf

HSC; A
Unf
HS performs the

following:

� Compute ctf ȷ
←MIFE:Encðmpk0; f Þ and ðtag0ȷ; yȷ; bσȷÞ←

MIFE: DecðskUFE; ctȷ1;…; ctȷk; ctf ȷ
Þ.

� If tagȷ ¼ tag0ȷ, then run bctȷ ←MIFE:Encðmpk0;

tagȷkbσȷkyȷkf ȷÞ, bcttagȷ ←MIFE:Encðmpk1; tagȷÞ, bctbσȷ
←

MIFE:Encðmpk1; bσȷÞ; bctyȷ
←MIFE:Encðmpk1; yȷÞ, and

bctf ȷ
←MIFE:Encðmpk1; f ȷÞ;

� Return bc ȷ ¼ ð1; bctȷ; bcttagȷ; bctbσȷ
; bctyȷ

; bctf ȷ
Þ.

Eventually, AUnf
HSC outputs a k‐signcryption vector

c!� ¼ ðc�1;…; c�kÞ together with a tag tag� or a tuple
ðtag�;m�; c�; f �Þ. We then analyse the following two cases.

Case 1: When AUnf
HSC outputs a k‐signcryption vector

c!� ¼ ðc�1;…; c�kÞ along with a tag tag�. Since
UnSigncryptðusk; c�i Þ ≠ ⊥ for all i ∈ [k], AUnf

HS decrypts c�i
using the master secret key of FE to obtain
tag�kσ0ikm0ikf

�

i ←MIFE:Decðmsk0; c�i Þ for all i ∈ [k], thus
resulting in k‐message/signature pairs fðm0i; σ0iÞgi∈½k�. As it is
required that tag� is different from all the tags associated with
the dataset that has been queried to the signcryption oracle and
the evaluation oracle, AUnf

HS outputs ðm!0; σ!0Þ together with the
tag tag� as a forgery, which is the forgery of HS of type 1
defined in Definition 4.

Case 2: When AUnf
HSC outputs a tuple ðtag�;m�; c�; f �Þ

such that HSC:Verifyðpk; tag�;m�; c�; f �Þ ¼ 1, where
c� ¼ β; ct�; ct�tag

�
,. ct�σ; ct

�
m; ct

�
f

�
. AUnf

HS computes
ct0tag� ←MIFE:Encðmpk1; tag�Þ; ct0m� ←MIFE:Encðmpk1;

m�Þ and ct0f � ←MIFE:Enc ðmpk1; f �Þ. Then, from
HSC:Verifyðpk; tag�;m�; c�; f �Þ ¼ 1, we have. MIFE:

DecðskGFE; ct
0
tag� ; ct

0
y� ; ct

�
σ; ct

0
f � Þ ¼ 1, which implies. HS:Verify

hpk; tag�;m�; σ; f �Þ ¼ 1, where σ ←MIFE:Decðmsk1; ct�σÞ.
AUnf

HS outputs ðtag�;m�; σ; f �Þ as its message‐forgery pair in
the unforgeability game for the underlying HS scheme, which

means that the adversaryAUnf
HS successfully outputs a forgery of

HS scheme of type 2 defined in Definition 4.
Thus, if AUnf

HSC produces a forgery in our HSC scheme with
non‐negligible probability 1/Poly(λ), then AUnf

HS successfully
forges in the underlying HS scheme with non‐negligible
probability 1/Poly(λ). But, this cannot be the case, since we
have assumed that the HS scheme is existentially unforgeable
against chosen‐message attacks. We conclude that our HSC
scheme as specified above satisfies the unforgeability security
of Definition 11. □

Theorem 4 Assuming the underlying public key
functional encryption scheme FE is secure, the ho-
momorphic signcryption scheme described above is
message private as defined in Definition 12 for datasets
up to k.

Proof: Let AMP be an adversary attacking our HSC scheme
constructed above in the sense of message privacy. We
construct an adversary AFE attacking the security of the MIFE,
and then upper bound the advantage of A in terms of the
advantages of these adversaries.

We now describe the constructed public‐key multi‐input
functional encryption adversary, AFE. AFE interacts with
AMP, playing the role of the challenger in the game of message
privacy for HSC. This means that AFE must simulate the
signcryption oracle and the evaluation oracle.

After receiving the master public key mpk0;mpk1 of the
MIFE scheme, AFE samples a key pair of HS,
ðhsk; hpkÞ← HS:Setupð1λ; kÞ. AFE sends the function U
defined in Figure 4a and the function G defined in Figure 4b to
the MIFE scheme's challenger and obtains the secret keys skUFE

and skGFE as responses, respectively. AUnf
HS sets pkS ≔ hpk;

pkR ≔ ðmpk0; mpk1Þ; skR ≔ ðmsk0;msk1Þ; vk ≔ skGFE, and
ek ≔ skUFE. pkS; pkR; vk are given to AUnf

HSC. To simulate the
signcryption oracle, for the i‐th query, a k‐message vector
m!i ¼ fmi1;…;mikg issued by AMP; AFE performs as
following:

� Generate a random tagi ∈ f0; 1gλ and sign the message in
m!i using the tag tagi to obtain a k‐signature vector
σ!i ¼ ðσi1;…; σikÞ, where σij ← HS:Signðhsk; tagi;m

!
i; jÞ

for alright j ∈ [k].
� For each j ∈ [k], run ctij ←MIFE:Enc ðmpk0;

tagikσijkmijkΦiÞ; cttagi ←MIFE:Encðmpk1; tagiÞ;

ctσij ←MIFE:Encðmpk1; σijÞ; ctmij ←MIFE:Enc ðmpk1;

mijÞ, and ctΦi ←MIFE:Encðmpk1;ΦiÞ. Then set
cij ¼ ð0; ctij; cttagi; ctσij; ctmij; ctΦiÞ.

� Return tagi; c
!

i ¼ fci1;…; cikg
� �

back to AMP.

To answer the query to evaluation oracle, that is, k‐sign-
cryption vector c!ȷ ¼ fcȷ1;…; cȷkg with corresponding tag
tagȷ and function fȷ issued by AMP; AFE performs as
following:

� Compute ctf ȷ
←MIFE:Encðmpk0; f Þ and ðtag0ȷ; yȷ; bσȷÞ←

MIFE: DecðskUFE; ctȷ1;…; ctȷk; ctf ȷ
Þ.
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� If tagȷ ¼ tag0ȷ, then run bctȷ ←MIFE:Encðmpk0;

tagȷkbσȷkyȷkf ȷÞ; bcttagȷ ←MIFE:Encðmpk1; tagȷÞ; bctbσȷ
←

MIFE:Encðmpk1; bσȷÞ; bctyȷ
←MIFE:Encðmpk1; yȷÞ, and

bctf ȷ
←MIFE:Encðmpk1; f ȷÞ;

� Return bc ȷ ¼ ð1; bctȷ; bcttagȷ; bctbσȷ
; bctyȷ

; bctf ȷ
Þ.

After receiving a tuple ðm!�0; m
!�

1; f 1;…; f sÞ with
m!�0;m
!�

1 ∈Mk from AMP, where functions f1, …, fs belong to
F and satisfy f iðm

!�
0Þ ¼ f iðm

!�
1Þ for all i ∈ ½s�; AFE randomly

samples two tags tag�0 and tag�1 and signs two message vectors
m!�b using the tag tag�b to obtain σbj ← HS:Signðhsk;

tag�b;m
!�

b; jÞ for all j ∈ [k] and all b ∈{0, 1}. Then, AFE sets
xb;j ≔ tag�bkσbjkm�bjkΦj for all j ∈ [k] and all b ∈{0, 1}. It
sends (x0,1, …, x0,k) and (x1,1, …, x1,k) to its own MIFE
challenger with respect to mpk0 and receives the challenged
ciphertexts ct�1;…; ct�k. For all j ∈ ½k�; AFE computes
ct�Φj

←MIFE:Encðmpk1;ΦjÞ, and sends ðtag�0; tag
�
1Þ;

ðσ0j; σ1jÞ; ðm�0j;m
�
1jÞ to its ownMIFE challenger with respect to

mpk1 and receives the challenged ciphertexts ct�tag; ct
�
σj
; ct�mj

,
respectively. AFE sets c�j ¼ ð0; ct

�
j ; ct

�
tag; ct�σj

; ct�mj
; ct�Φj

Þ. AFE

computes ctf i ←MIFE:Enc ðmpk0; f iÞ for all i ∈ [s] and
decrypts ciphertexts with function key skUFE to
obtain ðtag0i; yi; bσ iÞ← MIFE:DecðskUFE; ct

�
1;…; ct�k; ctf iÞ.

Since tag0i should be the same, we denote it as tag0.
For all i ∈ ½s�; AFE computes bcti ←MIFE:Encðmpk0;

tag0kbσ ikyikf iÞ; bcttag0← MIFE:Encðmpk1; tag0Þ; bctbσ i
←MIFE:

Encðmpk1; bσ iÞ; bctyi ←MI

FE:Encðmpk1; yiÞ, and bctf i ←MIFE:Encðmpk1; f iÞ. Then
AFE sets bci ¼ ð1; bcti; bcttag0 ; bctbσ i

; bctyi;
bctf iÞ. AFE sends the tag

tag0 and the signcryptions ct�1;…; ct�k;bc1;…;bcs to AMP.
Finally, if AMP outputs b* to indicate that the challenged
signcryptions are the encoded value of the message m!�b� , then
AFE returns b* to indicate that ct�1;…; ct�k are the encryptions
of the messages ðxb�;1;…; xb�;kÞ.

Thus, if AMP correctly guesses which message the chal-
lenger encodes in the game of message privacy of the HSC
scheme with non‐negligible probability ϵ(λ), then AFE

correctly guesses which message the challenger encrypts in the
underlying IND‐CPA game for the MIFE scheme with non‐
negligible probability ϵ(λ). □

5 | CONCLUSION

In this article, we investigate the question of how to
homomorphically perform arbitrary computations on sign-
crypted data, going beyond the existing additive homomor-
phic operation. We augment the concept of homomorphic
signcryption on two aspects, one of which is to provide
public plaintext‐result checkability such that anyone is able
to publicly check whether a given ciphertext is the sign-
cryption of the message under the key, thus no longer
bound to the recipient. Another property that our

homomospric signcryption schemes achieve is message pri-
vacy. The latter guarantees that the derived signcryption will
not reveal any information about the underlying dataset,
beyond what is revealed by the outcome of evaluation on
the underlying dataset. We also propose constructions of a
homomorphic signcryption scheme with public plaintext‐
result checkability both in a public evaluation setting and
a private evaluation setting. We believe that homomorphic
signcryptions that achieve both plaintext‐result checkability
and confidentiality are very useful in a wide variety of set-
tings involving data processing by untrusted entities.
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