78,674 research outputs found

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    Task analysis of discrete and continuous skills: a dual methodology approach to human skills capture for automation

    Get PDF
    There is a growing requirement within the field of intelligent automation for a formal methodology to capture and classify explicit and tacit skills deployed by operators during complex task performance. This paper describes the development of a dual methodology approach which recognises the inherent differences between continuous tasks and discrete tasks and which proposes separate methodologies for each. Both methodologies emphasise capturing operators’ physical, perceptual, and cognitive skills, however, they fundamentally differ in their approach. The continuous task analysis recognises the non-arbitrary nature of operation ordering and that identifying suitable cues for subtask is a vital component of the skill. Discrete task analysis is a more traditional, chronologically ordered methodology and is intended to increase the resolution of skill classification and be practical for assessing complex tasks involving multiple unique subtasks through the use of taxonomy of generic actions for physical, perceptual, and cognitive actions

    Evolution towards Smart Optical Networking: Where Artificial Intelligence (AI) meets the World of Photonics

    Full text link
    Smart optical networks are the next evolution of programmable networking and programmable automation of optical networks, with human-in-the-loop network control and management. The paper discusses this evolution and the role of Artificial Intelligence (AI)

    Measuring progress in robotics: Benchmarking and the ‘measure-target confusion’

    Get PDF
    While it is often said that robotics should aspire to reproducible and measurable results that allow benchmarking, I argue that a focus on benchmarking can be a hindrance for progress in robotics. The reason is what I call the ‘measure-target confusion’, the confusion between a measure of progress and the target of progress. Progress on a benchmark (the measure) is not identical to scientific or technological progress (the target). In the past, several academic disciplines have been led into pursuing only reproducible and measurable ‘scientific’ results – robotics should be careful to follow that line because results that can be benchmarked must be specific and context-dependent, but robotics targets whole complex systems for a broad variety of contexts. While it is extremely valuable to improve benchmarks to reduce the distance be- tween measure and target, the general problem to measure progress towards more intelligent machines (the target) will not be solved by benchmarks alone; we need a balanced approach with sophisticated benchmarks, plus real-life testing, plus qualitative judgment

    In loco intellegentia: Human factors for the future European train driver

    Get PDF
    The European Rail Traffic Management System (ERTMS) represents a step change in technology for rail operations in Europe. It comprises track-to-train communications and intelligent on-board systems providing an unprecedented degree of support to the train driver. ERTMS is designed to improve safety, capacity and performance, as well as facilitating interoperability across the European rail network. In many ways, particularly from the human factors perspective, ERTMS has parallels with automation concepts in the aviation and automotive industries. Lessons learned from both these industries are that such a technology raises a number of human factors issues associated with train driving and operations. The interaction amongst intelligent agents throughout the system must be effectively coordinated to ensure that the strategic benefits of ERTMS are realised. This paper discusses the psychology behind some of these key issues, such as Mental Workload (MWL), interface design, user information requirements, transitions and migration and communications. Relevant experience in aviation and vehicle automation is drawn upon to give an overview of the human factors challenges facing the UK rail industry in implementing ERTMS technology. By anticipating and defining these challenges before the technology is implemented, it is hoped that a proactive and structured programme of research can be planned to meet them

    Automotive automation: Investigating the impact on drivers' mental workload

    Get PDF
    Recent advances in technology have meant that an increasing number of vehicle driving tasks are becoming automated. Such automation poses new problems for the ergonomist. Of particular concern in this paper are the twofold effects of automation on mental workload - novel technologies could increase attentional demand and workload, alternatively one could argue that fewer driving tasks will lead to the problem of reduced attentional demand and driver underload. A brief review of previous research is presented, followed by an overview of current research taking place in the Southampton Driving Simulator. Early results suggest that automation does reduce workload, and that underload is indeed a problem, with a significant proportion of drivers unable to effectively reclaim control of the vehicle in an automation failure scenario. Ultimately, this research and a subsequent program of studies will be interpreted within the framework of a recently proposed theory of action, with a view to maximizing both theoretical and applied benefits of this domain

    Initiating technical refinements in high-level golfers: Evidence for contradictory procedures

    Get PDF
    When developing motor skills there are several outcomes available to an athlete depending on their skill status and needs. Whereas the skill acquisition and performance literature is abundant, an under-researched outcome relates to the refinement of already acquired and well-established skills. Contrary to current recommendations for athletes to employ an external focus of attention and a representative practice design, Carson and Collins’ (2011) [Refining and regaining skills in fixation/diversification stage performers: The Five-A Model. International Review of Sport and Exercise Psychology, 4, 146–167. doi:10.1080/1750984x.2011.613682] Five-A Model requires an initial narrowed internal focus on the technical aspect needing refinement: the implication being that environments which limit external sources of information would be beneficial to achieving this task. Therefore, the purpose of this paper was to (1) provide a literature-based explanation for why techniques counter to current recommendations may be (temporarily) appropriate within the skill refinement process and (2) provide empirical evidence for such efficacy. Kinematic data and self-perception reports are provided from high level golfers attempting to consciously initiate technical refinements while executing shots onto a driving range and into a close proximity net (i.e. with limited knowledge of results). It was hypothesised that greater control over intended refinements would occur when environmental stimuli were reduced in the most unrepresentative practice condition (i.e. hitting into a net). Results confirmed this, as evidenced by reduced intra-individual movement variability for all participants’ individual refinements, despite little or no difference in mental effort reported. This research offers coaches guidance when working with performers who may find conscious recall difficult during the skill refinement process
    • 

    corecore