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Task Analysis of Discrete and Continuous Skills: a Dual Methodology 

Approach to Human Skills Capture for Automation 

Abstract 

There is a growing requirement within the field of intelligent automation for a 

formal methodology to capture and classify explicit and tacit skills deployed by 

operators during complex task performance. This paper describes the development of a 

dual methodology approach which recognises the inherent differences between 

continuous tasks and discrete tasks and which proposes separate methodologies for 

each. Both methodologies emphasise capturing operators‟ physical, perceptual, and 

cognitive skills, however they fundamentally differ in their approach. The Continuous 

Task Analysis recognises the non-arbitrary nature of operation ordering and that 

identifying suitable cues for sub task is a vital component of the skill. Discrete Task 

Analysis is a more traditional, chronologically ordered methodology and is intended to 

increase the resolution of skill classification and be practical for assessing complex 

tasks involving multiple unique sub tasks through the use of taxonomy of generic 

actions for physical, perceptual and cognitive actions. 

Keywords: automation; human-centred automation; task decomposition; hierarchical 

task analysis; human factors methods 

Research problem 

The technological capability of automation to replace or supplement human activity in 

manufacturing is increasing. As automation technology becomes more intelligent so does the 

capacity of automation to supplement not only the physical, but also the perceptual and 

cognitive aspects of a task. Whilst tasks that were previously the exclusive domain of skilled 

human operators can now be supplemented or replaced by intelligent automation, there exists 

no formal methodology to determine what tasks are suitable for intelligent automation, and to 

what extent they can or should be automated. 

Within the human factors literature a number of papers have been published 

discussing the process of automation implementation, function allocation and suitability for 
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automation with an emphasis on both operator well-being and system reliability (Endsley and 

Kaber, 1999; Kaber and Endsley, 2004; Lin, Yen and Yang, 2010; Parasuraman et al., 2000). 

The more recent papers can be summarised as advocating the „levels of automation‟ approach 

(LoA) which assigns an automation level to specific components of the task such as „option 

generation‟ or „decision making‟, or to a task as a whole. Levels are defined from 1 (full 

manual control) to 10 (fully autonomous). Yet, whilst some guidance towards optimal 

automation is offered (Parasuraman et al., 2000), it is difficult to generalise how the level of 

automation affects overall human-automation performance (Endsley and Kaber, 1999), thus 

the burden of determining the suitability of automation is still largely left to the discretion of 

the system designer. 

Notably the initial capture of the task is not discussed by these studies, perhaps under 

the assumption that traditional methods such as Hierarchical Task Analysis (HTA) and 

Cognitive Work Analysis are suitable skills capture for automation (Marsden and Kirby, 

2004; Tan, et al., 2008). Although powerful, both of these tools are designed to be flexible 

and used in a range of applications beyond automation implementation, as such in specific 

cases these tools rely heavily upon the skill and experience of the analyst to know what 

information about the task is needed and how to structure and represent the information in a 

manageable way. Shepherd (2001) notes that as an analyst‟s experience with HTA grows so 

does their ability to try out new ways of task structuring and determine how to best visually 

represent information and thus the effectiveness of a HTA is tied to the skills of the analyst.  

However it cannot be assumed that all automation projects will have access to this 

level of expertise for reasons relating to cost, being a small scale project or general access 

issues. Yet effective automation strategy depends upon accurate and sufficiently detailed 

decomposition of tasks, thus one of the challenges of effective intelligent automation in 
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manufacturing is being able to accurately capture both the implicit and tacit skills deployed 

by human operators during task completion, physical, perceptual and cognitive. 

From a mechatronic perspective, experts in that field are better suited to determine the 

feasibility of automation based upon technical possibility and/or cost effectiveness, however 

human factors is ideally placed to inform and advise these decisions by offering a formal  

automation specific tool to accurately account of the processes that facilitate skilled 

behaviour. This detailed account of the human faculties would assist system designers to 

identify analogies between human processes and potential automated solutions which mimic 

human performance, but also devise ways in which automation may circumvent the required 

faculty. 

 In summary, automation engineers currently lack a formal methodology to fully 

evaluate the suitability of high skill manual tasks for automation. To address this problem, 

this paper describes the development of an accessible and comprehensive interpretation of 

task analysis to capture human skills specifically for the assessment of intelligent automation 

implementation suitability. The development of the TA is grounded in industry case studies 

capturing highly skilled manual manufacturing tasks; Tungsten Inert Gas (TIG) welding, 

aircraft assembly and steel polishing. 

Hierarchical Task Analysis 

Hierarchical Task Analysis (HTA) (Annett, 2003; Annett and Duncan, 1967, Shepherd, 2001) 

remains at present the most widely used task analysis methodology within human factors 

(Salmon et al., 2008). The HTA process identifies the primary goal of the task and then 

identifies the sub goals that must be achieved in order to complete the primary goal. Each 

subtask is in turn subjected to a similar analysis until a nested hierarchy of goals and 

subordinate goals has been created. Plans are added to the hierarchy representing the 
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unobservable decisions of an operator and which determine the sequence in which the 

operations are performed. Tasks can be analysed down to very precise movements and the 

level of detail provided is limited only by the extent of analysis by the researcher. 

In its basic form HTA emphasises the identification of task goals; the recording of 

operations is achieved through the identification of their sub goals and plans (Shepherd, 

2000; Stanton, 2006). Whilst the identification of task goals is an imperative step of mapping 

a task for automation to capture the tacit operations associated with high skill tasks as such to 

effectively account for the human faculties which are utilised, an emphasis must also lie in 

capturing the process as well as the goals. Although it could be argued that sufficiently deep 

analysis by a skilled analyst would be sufficient (even for highly skilled tasks), but merely 

describing goals, sub-goals and plans an analysis doesn‟t emphasise identifying the 

mechanisms which facilitate such action. For example, for an individual finger movement the 

goal may be stated as „press a button‟, the plan may state how operator moves their hand and 

their fingers. However this would not account for action-facilitating factors such as visual 

judgement and haptic feedback to ensure the correct button has been selected and regulate the 

amount of force used to press the button etc. Whilst these factors may be superfluous for 

simpler, repetitive tasks associated with automation currently, when considering the 

implementation of intelligent automation for high level, tacit skills these mechanisms must be 

accounted for in order to achieve a comprehensive account of the task and how optimal 

performance is achieved. Shepherd (2001) notes that HTA is not a cognitive task analysis 

method but serves as a useful structural basis upon which cognitive tasks can be identified 

and appraised, and provide context for deeper analysis of cognitive elements. Therefore it is 

proposed that an effective and accessible human skills capture methodology is built upon 

traditional task analysis structure to provide context but also formalise the process of 

identifying the action-facilitating factors. 
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Human skills capture 

Recently two key papers have been published which explore the capture of human skills for 

automation, the first; Bullock, Ma and Dollar (2013) proposed taxonomy of human and robot 

hand manipulations to enable the transfer of fine motor skill tasks to automation by 

describing the anatomical movements of the hand and its relation with the object. 

Manipulations are coded by their combination of sub classifications which in turn are rigidly 

defined terms such as „contact‟ and „prehensile‟ (i.e. whether contact is made and whether 

that contact is prehensile, respectively). The taxonomy is supported by examples of simple 

tasks that were successfully transferred to automation by mimicking human performance (e.g. 

picking up a coin). It could be inferred that the use of taxonomy to describe actions and 

facilitating factors in generic terms presents a reliable method to „capture‟ the human skill 

and facilitate the development of automated solutions. 

However its current form may be unsuitable for automation feasibility assessment; 

firstly it was designed for skill transfer of simple, fine motor tasks to automation and as such 

its scope is limited to hand and wrist actions only. Whilst it‟s resolution to distinguish 

between fine motor actions is comprehensive, this scope is too narrow to be applied to larger, 

more complex tasks employing larger body movements, sensory, and cognitive functions. 

Furthermore the depth and detail of the analysis required demands significant time and 

resources to capture even minute actions. Whilst this level of detail of physical movements 

may be necessary for skill transfer to automation, if the goal is to merely assess the feasibility 

of automation then it may be surplus to requirement and thus impractical. If the goal is use 

taxonomy for rapidly and effectively assessing feasibility of intelligent automation of larger, 

more complex manufacturing tasks then a simpler, broader scoped taxonomy of generic skill 

classifications is required. 
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The second paper by Caird-Daley, Fletcher and Baker (2013) explored the utility of 

task decomposition (TD) built upon HTA to capture the observable and unobservable, 

activities in manual tasks.  The HTA and TD were constructed from observations, 

walkthroughs, talk-throughs, and interviews with experienced and novice manual Tungsten 

Inert Gas (TIG) welders laying a routine butt weld. As the methodology was specifically 

devised to „capture‟ tasks to assess their suitability for automation it considers both physical 

and cognitive functions and analyses tasks at a resolution which is practical for complex 

tasks. However the resultant TD was susceptible to vague outputs where the human operator 

did not possess the specific required sense: for example, a tactile cue was described as 

“feeling how tacky the weld pool is when the filler rod is dipped in” (p353). The human 

operator cannot directly feel the tackiness (viscosity) of the weld pool as the operator isn‟t in 

direct contact; there must be some medium by which information from another source is 

translated to monitor the tackiness of the weld pool. A better resolution of skill classification 

would reduce this „sensory leap‟ between non-directly observable parameters in the 

environment and perception by formalising the process of determining how physical stimuli 

are perceived. 

Proper analysis of perceptual elements and reduction of the sensory gap is of 

particular importance for human skills capture for automation. This is to inform system 

designers of potential analogous automated solutions when feedback from the task 

environment is required and to assist the selection of suitable sensory systems. For example, 

if the analysis posits that a human operator visually tracks an object in three dimensions, this 

would suggest that some form of 3D tracking apparatus may be required for an automated 

solution. However it cannot be assumed that an optimal automated solution would necessarily 

mimic human operations, thus it is important to separate the actual parameter and the human 

perceptual mechanism within the analysis. At this point it should be reiterated that skills 
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capture alone cannot evaluate automation feasibility; rather the description of action-

facilitating factors and identification of potential analogous automated solutions can only be 

used to inform decisions regarding automation implementation in concert with the expertise 

of mechatronic experts. 

The study also found a predominance of „skill‟ or „rule‟ based performance 

(Rasmussen, 1983) which indicates that operators‟ actions are largely governed by pre-

determined procedures. Although this represents only one scenario it could be speculated that 

most manufacturing tasks follow suit as they are by their nature predictable, occur in stable 

work environments, and are oft practiced and repeated. Therefore, it is argued that a 

manufacturing specific skill capture methodology should assume a procedural modus 

operandi and emphasise capturing the tacit procedural rules used by operators in task 

performance (Everitt and Fletcher, 2015). However, some tasks may not be rigidly 

procedural; instead they may be reactionary to environmental stimuli. This difference is the 

difference between discrete and continuous tasks which is discussed in the next section. 

Discrete vs Continuous tasks 

Within Caird-Daley et al‟s (2013) TD, the subtasks observed can be separated into two 

distinct groups: discrete and continuous. Discrete tasks are defined by a fixed beginning and 

end, usually with a change of states, for example, throwing a ball or pressing a button. In 

contrast, continuous tasks have no clearly defined beginning and end, and usually the 

objective of the task is to maintain a status quo in opposition to confounding influences, for 

example, steering a car or maintaining a reactor core temperature. Both types of task require 

operator skill but of different kinds: in the former actions occur in a fixed procedure whilst in 

the latter actions are reactionary to the context. 
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A key difference between discrete and continuous tasks is the nature in which 

subtasks are cued. Due to the clear definition of start and end states, discrete tasks are often 

cued by the completion of a previous subtask which gives rise to an arbitrary chronological 

ordering of the sub tasks. In contrast, within continuous tasks subtasks are cued when 

required by factors outside of the operators control and not in any particular order, thus the 

non-chronological nature of continuous tasks should be reflected within a task analysis. 

Furthermore it could be argued that part of the skill of continuous tasks is recognising within 

context when an appropriate subtask should be initiated. This means that one cannot represent 

the more fluid nature of subtask ordering within continuous tasks effectively using 

traditional, chronological based task decomposition methods. 

This fundamental distinction makes it difficult to design a methodology which can 

effectively accommodate both fluid continuous tasks and rigid discrete tasks. It is 

acknowledged that traditional HTA through the use of plans can be used to accommodate and 

analyse fluid continuous tasks (Shepherd, 2001) however tradition methods become 

increasingly difficult to comprehend as complexity rises as traditional methods are grounded 

in actions and sub goals rather that the parameters which provoke them. Thus the analysis 

structure is stretched further and further to cope with ever increasing levels of interaction 

between factors. From an automation designer‟s and systems perspective this is unsuitable for 

assessing automation feasibility as one cannot easily trace the flow of information between 

the stimulus and the operator/potential automated solution. Furthermore by grounding the 

analysis in actions and sub goals the analysis encourages automation designs to simply mimic 

human operations, whereas a dedicated methodology grounded in the root parameters better 

facilitates designers to consider more novel automated solutions which match the parameters 

and not necessarily just mimic human actions. It is therefore proposed that discrete and 
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continuous tasks are analysed separately by differing paradigms designed to accommodate 

their individual requirements. 

Dual Methodology Approach 

 In response to the differences highlighted between discrete and continuous tasks this paper 

proposes a dual methodology approach in which continuous and discrete tasks are analysed 

separately by Continuous Task Analysis (ConTA) and Discrete Task Analysis (DTA) 

respectively.  ConTA is fundamentally structured to emphasise the stimulus cued nature of 

continuous tasks and also work to capture the „skill‟ of deciding the most appropriate action 

in response to the prevailing context. Discrete Task Analysis presumes the procedural nature 

of tasks and facilitates the categorisation of tasks, similarly to Bullock et al (2013), but with a 

more practical and broadly scoped taxonomy. Both methodologies also place an emphasis 

upon the separation of parameter and perception to reduce or eliminate the sensory gap for 

reasons described earlier. 

In the following sections ConTA and DTA will be individually described and then 

discussed in the context of an industrial case study (large aircraft assembly tasks and TIG 

welding respectively). The implementation of both methodologies in tandem will then be 

outlined and similarly discussed in the context of a case study which employs both discrete 

and continuous elements (steel polishing). 

Continuous Task Analysis 

Continuous task analysis requirements 

To summarise the issues highlighted, an effective skill capture methodology for continuous 

tasks should: 

 Recognise non-chronological nature of subtask ordering 
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 Recognise that identifying when to perform an action is part of the skill 

 Reduce the sensory gap 

Proposed paradigm for capture of continuous skills 

The proposed methodology for the skill capture of continuous tasks presented here is a rapid 

departure from previous methods discussed. Instead of breaking the task up into 

chronologically defined stages ConTA emphasises identifying the relevant stimuli in the 

work environment and capturing the flow of information between the stimuli and the 

operator, as well as how this translates into behaviour. Four categories are proposed to 

achieve this: 

 Parameter – describes the physical parameters within the stimuli which are 

monitored by the operator. 

 Perception – describes how the operator perceives information regarding the 

Parameter. 

 Decision – describes what decisions are made based on perceived information. 

 Action – describes how decisions are translated into physical actions. 

In theory each parameter will form the base of a „procedural tree‟ which branches out 

depending upon the number of ways it is monitored (perception), the number of different 

conclusions to be made about the state of the parameter (decision), and the number of 

possible actions which can be taken (action). The branch tips then represent all the possible 

actions taken during the task, this bottom up approach ensures that the skills identified remain 

grounded to tangible parameters in the environment. The distinction between parameter and 

perception is designed to reduce the sensory gap described earlier, this is of particular 

importance for assessing intelligent automation feasibility in order to highlight potential 

analogous automated solutions. Inversely, by formalising the process of identifying the real-
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world parameters separately it facilitates system designers to consider completely novel 

automated solutions as well as analogous. 

In order to evaluate the practicality and effectiveness of the proposed task analysis 

format a case study was conducted to investigate the continuous skills employed by operators 

during a simple TIG weld. TIG welding was chosen as direct continuation of Caird-Daley et 

al‟s (2013) task decomposition study and the analysis was focused purely upon the actual 

welding stage, negating the preparatory and post weld tasks. 

Case study 1: TIG welding 

Ten welders (9 male, 1 female) were interviewed immediately after performing four short 

TIG welds: 2x butt joints (constant and varying gap), 1x lap joint, and 1x T-joint. The 

interviews were unstructured but questioning was directed to establish their perspectives on 

the four categories: parameters to be monitored, how to monitor said parameters, what 

possible decisions are made based on the state of a parameter, and how these decisions 

translated into actions. After the first transcript was analysed the sensory cues and procedural 

rules alluded to by participants were organised into the ConTA tabulations (table 1). After 

each subsequent transcript analysis the ConTA was refined to incorporate the new 

information until all transcripts were analysed and thus achieving redundancy. All data 

collection and analysis was conducted by one researcher. 

[table 1 near here] 

The methodology was able to identify how parameters are perceived and monitored 

by differing senses (visual, tactile, etc.) allowing the operator to „triangulate‟ a more accurate 

perception of a parameter‟s current state. This is shown if the example discussed earlier 

(viscosity of the weld pool) is re-examined through the lens of the ConTA: whilst Caird-

Daley et al (2013) reported weld pool viscosity as a factor, the ConTA (table 1) was able to 
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also determine that the viscosity (or rather the heat) in the weld pool is perceived indirectly 

by a combination of visually monitoring the size of the weld pool but also tactilely by the 

level of resistance felt when adding filler material to the weld pool. Furthermore visually 

observing „Size/width of the weld pool‟ is also used to help gauge „heat in the work piece‟, 

this suggests that observing the size of the weld pool is a primary visual perception in 

monitoring the state  of the weld. This was supported by qualitative interview analysis of the 

transcripts in which participants, from a subjective standpoint, alluded to consciously 

concentrating on this parameter. 

In terms of automation design these findings suggest that an analogous intelligent 

welding robot able to achieve the same performance as a human welder would need to be 

able to monitor the viscosity of the weld pool. Furthermore based on human performance this 

may be achieved by a form of visual sensor capable of detecting the size of the weld pool. 

Whilst this concurs with Caird-Daley et al‟s (2013) traditional analysis, crucially the ConTA 

also found tactile feedback from the filler wire to play a crucial part in controlling the weld 

suggesting some form of force/torque sensory system may also be required to achieve human 

performance levels. The advantage of the ConTA is that subsequent analysis of each 

perceptual avenue is kept separate which facilitates potential sub routines of any automated 

system to approximately modelled based on its potential sensory system. This in turn allows 

system designers to rapidly appraise the hardware requirements and the complexity of 

potential sub routines as independent separate systems, but by keeping the analysis grounded 

in the root real world parameter the potential need for triangulation of sensory inputs remains 

salient. 

Discrete Task Analysis 

This section will outline DTA, a task analysis designed specifically for capturing discrete, 
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procedural tasks in manufacturing; as such it is based upon the classification of subtasks into 

taxonomy of physical, perceptual and cognitive activities.  

Discrete task analysis requirements 

With respect to the points outlined, the following requirements are proposed: 

 Categorisation of tasks into generic „skill classifications‟ like Bullock, Ma and Dollar. 

(2013) but simpler, more practical and more comprehensive. 

 Assume a rigid procedural nature of tasks. 

 Reduce sensory gap 

Proposed paradigm for capture of discrete tasks 

DTA directly builds upon the Caird-Daley, Fletcher and Baker‟s (2013) task analysis,  and as 

such is based more upon traditional HTA than ConTA. However, the categories represent 

different human faculties, and each category is supported by taxonomy of different skills 

within that faculty allowing each action to be categorised by what faculties are used and how 

they are being used. There are broadly three types of category: physical, perceptual and 

cognitive.  

In terms of physical movements the classification paradigm is aimed to be a simpler, 

more practical version of Bullock, Ma and Dollar‟s (2013) methodology and two categories 

are suggested: fine motor skill and gross motor skills. The difference is defined as whether a 

physical action is performed within the hand (fine motor skill) or using muscles outside of the 

hand (gross motor skill). This allows the researcher to describe and discriminate both larger, 

more powerful actions predominantly performed with the shoulders and arms, and precise, 

delicate actions predominantly performed with the hands and fingers. Furthermore both 

action types can be performed simultaneously and independently of one another, thus it is 
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prudent to record them as independent actions rather than assign a task as either fine or gross 

motor skill based. The implication for automated solutions from this part of the analysis is a 

straight forward description of the physical movements being undertaken. 

Perceptual categories are derived from the traditional five senses: vision, hearing, 

touch, taste and smell. Olfactory and gustatory perception were omitted as they were deemed 

unlikely to be critical within manufacturing (they can of course be included if a future 

application demands it). Thus three categories are proposed: visual, tactile, and auditory 

perception. Accordingly with regards to implications for automated solutions the visual 

taxonomy is intended to reveal the potential requirement for 2D or 3D vision systems, the 

tactile taxonomy would suggest the potential requirement for force/torque sensors or laser 

scanning among others, and the acoustic taxonomy indicates the potential requirement for 

noise monitoring capabilities. 

Cognitive activity is distinguished into two categories: decision making and 

communication. The identification of decision making processes is critical for the 

implementation of intelligent automation; the ability to capture the decisions made by an 

operator in relation to the state of current parameters is crucial to achieving the flexibility of 

human performance.  Furthermore the capture of intra-task communication between two or 

more operators is of importance when one considers that novel automated solutions not only 

must integrate with the current system but also with the team of human operators. In order to 

effectively integrate from a human factors perspective any automated solution must be able to 

communicate the key parameters to remaining operators. 

The categories and related taxonomy are outlined below: 

 Fine motor skill (FMS) – this category is used to describe object manipulation with 

motor movement within the hand not including the wrist. It should also be noted if a 
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task requires both hands (bilateral) and each hand should be described individually.  

Subcategories: 

o Grasp – prehensile contact that does not permit within hand movement. 

o Precision grasp - prehensile contact that does permit within hand movement. 

o Precision screw – rotating an object with a precision grasp. 

o Precision push/pull – push/pulling an object with a precision grasp. 

o Non prehensile contact 

o (T) – added as a suffix to indicate the use of tool as opposed to manual handed 

actions 

 

 Gross motor skill (GMS) – this category is used to describe object manipulation with 

motor movement beyond the hand (predominantly upper body). Subcategories: 

o Place (remove) – bring object/empty hand into contact with no/minimal force 

(opposite for remove). 

o Screw – rotate object (outside of fingers, e.g. with wrist). 

o Position  

 Prehensile – move an object to a certain location 

 Non-prehensile – move an object to a certain location without full 

freedom of movement (excluding gravity). 

o Apply – Place and smear object of surface. 

o Push/pull – Push/pull object outside of fingers. 

o Strike – Bring object/empty hand into contact with force. 

o Hold – Maintain position from last step. 
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 Visual Judgement – this category is used to describe information about stimuli being 

sensed visually. Elements of VJ which monitor directly controlled stimuli (such as 

FMS and GMS) are not included. Subcategories: 

o Spatial judgement – observation of position and motion of objects in 3 

dimensions. 

o Pattern recognition – observation and recognition of patterns in 2 dimensions. 

o Reading – related to PR however is concerned with direct input of non-

ambiguous information. 

 

 Tactile judgement – this category is used to describe information about the 

environment being sensed by touch. During actions the regulation of force depending 

on resistance felt is assumed and so not noted in this category, unless a change of 

action is determined by tactile perception (E.g. switching from pushing to striking). 

Subcategories: 

o Pressure – detecting pressure applied to or against the operator 

o Texture – detecting differences in texture on a 2d plain. 

o Temperature – detecting level and changes in temperature. 

o Vibration – detecting level and changes in vibration on a surface. 

 

 Acoustic judgement – this category is used to describe information about the 

environment sensed by sound. Subcategories: 

o Presence – detecting only the presence of a sound 

o Pitch/volume – detecting characteristics of a sound 

o Acoustic source localisation – determining the location of a sound source 
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 Decision making – this category is used to describe any decision making based on 

situational context. In the first iteration of the methodology it is open ended as 

decisions are often deeply grounded within the context and thus difficult to describe 

in generic terms. 

 

 Communication – this category is used to describe communication between two or 

more operators that is essential to task completion. Note that this category is intended 

to capture intra-task communication rather than delegation of separate tasks. 

 

From the output of this method an automation designer would be able to look up any 

individual subtask and quickly assess the physical, perceptual and cognitive capabilities 

required by any automated system to replace human input. The advantage of this approach 

within automation implementation is that it assists function allocation on two fronts: firstly, 

the output provides a template for further analysis and allows automation designers to gauge 

the level of difficulty for automating individual sub tasks in terms of technical difficulty or 

cost effectiveness. Secondly, this approach provides a view of the operations left for the 

human operator following automation which may be useful for evaluating possible impacts of 

automation and identifying training needs. 

As with Continuous Task Analysis a case study was conducted to evaluate the 

practicality and effectiveness of the methodology. In contrast to the previous case study a 

different task was chosen in lieu of TIG welding; instead an aerospace manufacturing task 

was selected due to the task being seen as having a heavier emphasis towards discrete tasks. 

Case study 2: Aircraft assembly 

The task selected was the installation of a large component to a passenger aircraft wing. The 
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first stage of the analysis was for the researcher to familiarise themselves with the task, this 

was achieved through study of standard operating procedures and inspection of a completed 

installation. The main data collection was conducted by ethnographic methods consisting 

primarily direct observations of operators completing the task, talk-throughs of the task, and 

unstructured interview questions. Observations of task completion primarily served as task 

familiarisation and to record physical functions. During observations operators were asked to 

talk through their actions and decisions as they worked, specifically with regards to their 

decisions they were asked to describe how they came to decisions and what information 

influenced this process. Alongside this operators were asked occasional unstructured 

questions as cues to better reveal their thought processes, actions and plans.  

Main data collection was conducted during normal working conditions at the product 

flow line and took place over four visits during which the task was observed six times. 

Information was recorded manually on paper from which a HTA was constructed which was 

subsequently validated by operators for accuracy.  From this each individual sub task was 

analysed with operator input to determine which skill classifications corresponded with the 

sub task (two examples are shown in tables 2 and 3). 

[tables 2 and 3 near here] 

The initial HTA identified 107 unique sub tasks; subsequent DTA determined that 8 

were purely cognitive/sensory tasks, 34 required visual judgement, 26 required tactile 

judgement, one required acoustic judgement, and 25 cases of decision making. The output of 

this analysis was successful in identifying and distinguishing physical functions used by 

operators. Whilst the concept of identifying categories of pre-defined actions lacked the 

precision of Bullock et al‟s (2013) system, it was possible to classify information of 

manipulations of multiple actions with relative efficiency. Further analysis in concert with 

automation experts would be able to identify the automation challenges, where the „crux‟ of 
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full automation may exist, and highlight subtasks which may share certain characteristics. 

The success of the methodology in capturing the perceptual skills of operator was mixed; on 

the one hand the methodology appeared well suited to classify and distinguish between forms 

of visual judgement. However with regards to tactile judgement the classification system 

lacked the necessary resolution to distinguish between tasks. This presents a potential area for 

subsequent work. With regards to the cognitive functions of decision making and 

communication, separating the acquisition of information from the purely cognitive functions 

allows system designers better determine whether a decision can be automated or should 

remain a human task. Additionally it allowed decisions which may appear very different 

because of their context and sensory source be recognised as essentially the same style of 

decision. For example, two subtasks identified appear at first glance to be very different 

however they both share the same cognitive function: estimating extent of correction required 

of a variable. They differed only in perceptual factors: one depended upon tactile judgement 

and the other visual. With regards to the implications for automated solutions in this instance, 

the analysis suggests that if the perceptual or sensory obstacles can be overcome then a 

similar subroutine can be used for both subtasks. 

Dual methodology approach 

The two contrasting methodologies already outlined are intended to map the physical, 

perceptual and cognitive faculties used by operators and so inform system designers of the 

capability requirement for each component subtask. They have been designed to be used 

independently as standalone tools to capture discrete and continuous skills but also in 

conjunction to provide a holistic skill capture of tasks composed of both.  

Taking a Dual Methodology Approach (DMA) is relatively straight forward if 

subtasks can be clearly identified as either discrete or continuous, one can simply apply 
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whichever methodology is suitable. However the definitions of continuous and discrete skills 

lie at the extremities of a gradual scale within which most tasks would reside towards the 

middle. Tasks with discrete goals, composed of discrete skills may still require continuous 

skills in order to counteract external factors which may hinder the completion of the discrete 

elements of the task. For example: landing an aircraft requires completion of discrete tasks in 

order to achieve the goal of stopping safely, however the pilot must still make continuous, 

reactionary adjustments throughout to achieve the desired outcome. Therefore, what is 

required is a combined methodology which recognises and accurately captures both the 

discrete and continuous elements within an individual subtask. A comprehensive DMA 

methodology is outlined below which seeks bridge the gap between discrete and continuous 

tasks by incorporating ConTA within an overall DTA. An industrial case study investigating 

the tacit skills of steel polishing operators was conducted to evaluate the practicality and 

effectiveness of the dual methodology approach. 

Proposed paradigm for the capture of mixed type tasks 

The DMA is built around a refined and expanded DTA with the primary addition being a 

category for continuous task elements within individual discrete subtasks. This category is 

used alongside the other skill classification categories to indicate that the subtask contains 

continuous task and be linked to a separate CTA concerning that specific subtask (for 

example, different subtasks which require differing continuous skills may be labelled within 

the DTA as CTA1, CTA 2, etc.).  

For this second iteration of DTA some more subtle refinements were made 

comprising of the addition of two new skill categories and new taxonomy of decision making 

skills. The first new skill category is Motor Program: this category is for describing whether a 

physical action is „open loop‟ thereby movements are performed without modification in 
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response to perceptual feedback, or whether and action is „closed loop‟ thereby physical 

movements are modified. At this stage it is important to define the difference between 

discrete closed loop actions and continuous skill which is one of scale. A discrete closed loop 

task may involve a minor adjustment while completing a rigidly ordered task (for example, 

calibrating the force required when lifting a weight), whereas continuous skills involves 

deploying specific actions in response to perceived stimuli. The second new skill category is 

Pacing: this category is for describing whether the operator performs at their own pace 

(internal pacing) or must „keep up‟ with the wider system (external pacing). This is 

important when considering the viability and requirements of an automated solution with a 

systems integration context. The final refinement is the addition of taxonomy of decision 

making skills which is intended to increase the overall resolution of skill capture. The 

taxonomy is based upon the nature of the possible decision outcomes; specifically the types 

are derived from Stevens‟ (1946) “Levels of Measurement” and are outlined below: 

 Nominal – options have no numerical connection (e.g. red, blue, green) 

 Ordinal – options can be ranked (e.g. 1st, 2nd, 3rd) 

 Interval – options have a degree of difference with an arbitrary zero point (e.g. 

-5C, 0C, 5C, 10C) 

 Ratio - options have a degree of difference with a natural zero point (e.g. 1kg, 

2kg, 3kg) 

As with DTA and ConTA individually, an industrial case study was conducted to assess the 

DMAs effectiveness and practicality in capturing human skill: manual steel polishing.  

Case study 3: Steel polishing 

Similar ethnographic methods utilised in the previous case study (talk-throughs and 

observations) were used again for the latest case study exploring manual steel polishing. Data 
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was collected during normal working hours whilst ensuring minimal intrusion upon normal 

working conditions. Four current and experienced operators were observed and interviewed 

over four sessions of ranging up to 6 hours. The researcher also conducted some elements of 

the task themselves providing additional introspective insight. As with the previous case 

study, a HTA was first constructed which served as a structural basis for the skills analysis 

proper. For subtasks which appeared to include elements of continuous skills a ConTA was 

constructed via talk-throughs and informal operator questioning for each unique subtask. An 

extract from the DTA is shown in table 4 whilst the corresponding ConTA is shown in table 

5. 

[tables 4 and 5 near here] 

Recognition of both the discrete and continuous elements within subtasks whilst also 

recognising their differing contributions to task performance provided a more holistic view of 

the skills being employed. Specifically within mixed task types the ConTA complemented 

the DTA by providing information about how perceptual information is being used; for 

example, in all of the three ConTA‟s related subtasks the DTA identified pressure based 

tactile feedback while the accompanying ConTA showed how it is used to monitor the 

pressure being applied to the surface and counteract torque. Additionally the DTA 

complimented the ConTA by giving the „information flow‟ captured by the ConTA context.   

The modifications of the DTA methodology can be considered successful in 

increasing the resolution of the skill capture. The addition of the motor program category was 

able to highlight crucial differences between otherwise similar tasks; for example differing 

strategies employed by operators during two different stages of polishing: „rough mopping‟ 

and „disking‟, during the former operators would polish an area and then inspect it, whilst in 

the latter the operator would constantly monitor the condition of the surface and adjust their 

polishing accordingly.  From an automation perspective these represent two vastly different 
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approaches: the first represents a „pre-programmed‟ physical action followed by a quality 

check whilst the latter represents a continuous feedback and adjustment of the polishing 

action. Whilst it is possible to identify these opposing strategies with traditional task analysis 

methods the advantage of the DMA is that output from the ConTA also makes salient that the 

critical factor which facilitates successful performance is visual monitoring of the surface 

condition. 

 The taxonomy of decision making skills was able to accommodate all the decisions 

observed and provided an extra dimension of information regarding option generation within 

the decision making process. A specific example, the expanded taxonomy allowed the 

analysis to identify fundamental differences in the decision making process between selection 

of disk/mop shape and grade: the former requires selecting between nominal options whilst 

the latter requires selecting between interval options. In terms of the implication for a 

potential automated solution this could suggest the former would require a simpler algorithm 

to model the human operator‟s decision process due more salient differences in options 

compared with the more subtle differences of options on an interval scale. 

 Within the current case study the analysis found all the subtasks to be internally 

paced, however it is likely that analysis of further case studies would find mixed paced tasks, 

as such it is this scenario that the pacing category would improve skill capture resolution.  

In conclusion the modifications and synchronisation of DTA and ConTA appear to 

have improved their effectiveness and increased the level of detail they can provide. 

Furthermore by recognising the importance of the interaction between continuous and 

discrete elements within tasks, the DMA provides a more holistic view of how human 

faculties deployed during task completion. 
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Discussion 

As progress towards the goal of a robust, formal skill capture methodology for assessing the 

feasibility and implementation of intelligent automation the methodologies proposed in this 

paper represent a step forward. DTA supplements traditional HTA methods to provide a 

framework upon which to explore factors which facilitate operations, with regards to the 

implications for automation implementation this allows system designers to map out how an 

automated system would match human performance physically (FMS, GMS, Motor 

program), perceptually (Visual, Tactile, Auditory judgement) and cognitively (Decision 

Making, Communication) for discrete tasks. What DTA offers over standard HTA is a 

classification system which guides the analyst to identify the action-facilitating factors and 

thus an insight into the range and type of capabilities an automated solution would require. 

This was demonstrated in case study 2; within the 107 unique tasks identified DTA classified 

the range of human faculties being deployed from various physical manipulations, visual and 

tactile judgements and decision making. 

ConTA frees the analysis from attempting to force an arbitrary chronological order on 

more fluid, context reactionary tasks, which in terms of automation implementation allows 

system designers to see the flow of information between the operator and the stimulus, which 

in turn assists the development of analogous sub routines for automated solutions. Whilst this 

may not provide information which cannot be revealed by an experienced analyst using 

traditional methods, the advantage of ConTA is that it is structured to explore the tacit 

decisions and actions based on sensory inputs individually, making it salient how each input 

influence decisions. The implication for automation design is that the designer can easily 

identify which sensory inputs may be of greater or lesser importance for achieving desired 

levels of performance. In turn each sensory input is grounded to the root parameter so the 

reader can also begin to model how sensory inputs triangulate. Furthermore by formally 
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structuring the analysis around the identification of real world parameters this can facilitate 

the creation of completely novel ways to monitor a parameter. For example in case study 1 it 

was shown that human welders monitor the heat in the weld piece tactilely by 

thermoreception and visually by the size of the weld pool, redness in the weld piece, yet an 

automated solution could simply use a thermal camera to precisely monitor the temperature. 

When used in conjunction as the Dual Methodology Approach the methodologies 

provide a more comprehensive view of the action-facilitating factors of human performance 

by probing not only what human faculties are being used but also addressing how they are 

being used (i.e. in a rigid, discrete manner or in a fluid, continuous manner). Furthermore 

Shepherd (2001) reported that the practice of recording constraints the notes column of HTA 

lack rigor, by incorporating ConTA into DTA or even HTA it provides a simple, accessible 

structure in which to represent the continuous strategies employed by human operators to 

cope with constraints experienced during discrete task performance.  

Within the automation implementation process these methodologies are ideally suited 

for two purposes: assessment of automation feasibility and human to automation skill 

transfer. With regards to the first application the use of taxonomy to reveal the action 

facilitating factors allows designers to approximately „map out‟ potential automated 

solutions, including hardware capabilities, sensory systems and decision making artificial 

intelligence. This in turn allows system designers to assess the theoretical system‟s feasibility 

from both a technical standpoint as well as cost effectiveness. In the context of complex 

multifaceted tasks it can used to ascertain which parts of a task may be suitable for 

automation, and those which may be more suited to human operators. 

 With regards to the second application the methodologies are limited by the fact that 

they are merely theoretical frameworks upon which rely upon traditional qualitative human 

factors techniques such as ethnography and interviewing. Their strength lies in the 
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identification of critical factors which facilitate tacit human skill but they are limited in that 

the techniques upon which they rely cannot produce technical data regarding those critical 

factors within tacit skill. In order to be able to truly match human performance quantifiable 

data regarding these parameters must be obtained (e.g. Newtons of force required for steel 

polishing). Whilst arguably beyond the scope of human factors, the development of technical 

measurement of human skills for transfer to automation presents an important avenue for 

future research. It is envisioned that the methodological paradigms proposed in this paper will 

form the former in a two-step, multidisciplinary process; the identification of critical factors 

followed by technical measurement. 

The development of a more structured task analysis model for intelligent automation 

implementation outlined is still in its infancy and as such it is subject to some limitations. 

Firstly, the bulk of the data collection and analysis has been carried out by a single researcher 

and so the study has been unable to empirically demonstrate internal reliability of the 

methodology. Whilst it could be argued that task analysis is by its nature a subjective process 

and that it is possible for two or more differing but equally valid interpretations to exist, this 

is rooted in the flexibility of common task analysis methods such as HTA and CWA. As 

DMA is intended to be a more structured analysis tool the immediate concern of future 

developmental work should be the demonstration of inter-rater reliability. Secondly, the case 

studies presented are intended solely to evaluate the practicality of the methodology in use 

and were not linked to a specific automation project. Thus the next logical step in the 

methodology development is a test of the methodology as part of „live‟ automation project to 

assess the contribution of the output data to actual automation design decisions. The main 

purpose of this paper is to introduce and outline the early development of the DMA, it is 

anticipated that in the course of future publications that the methodologies will evolve and 

these limitations resolved or reduced.  
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In conclusion, the primary advantage of the proposed DMA to the more generic task 

analysis methodologies currently proposed (HTA, CWA, GOMS) is its rigid structure which 

makes it more accessible to automation designers for conducting analysis, comprehension of 

the critical factors, and making inferences. Finally these methodologies demonstrate the value 

of applying human factors knowledge, beyond HTA, to capturing human skill for the purpose 

of implementing intelligent automation. However, human factors are only one part of what 

must be a multidisciplinary effort. 
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Parameter Perception Decision Action(s) 

Size/width of the 

weld pool 

Visual - depends 

upon material and 

thickness 

Correct width  

Too big 

  

  

Reduce current 

Reduce filler 

Lift torch away 

from weld pool 

Too small 

  

  

  

Increase current 

Increase filler 

Concentrate the 

heat 

Lowering the torch 

Position of the weld 

pool 

Visual Evenly distributed 

over both work 

pieces 

 

Skewed towards one 

work piece 
Adjust torch away 

from over-

melted/towards 

under-melted work 

pieces 

Anticipation - More 

heat in a work piece 

will mean faster 

melting. See: Heat in 

the work piece(s) 

Even temperature 

across work pieces 

  

Uneven temperature 

across work pieces 
Adjust torch away 

from over-

melted/towards 

under-melted work 

pieces 

Shape of the weld 

pool 

Visual Flat  

Concave Increase filler 

Convex Decrease filler 

Heat in the weld 

pool 

Visual - indicated by 

width of weld pool 

see: Size/width of 

weld pool 

 

Tactile Weld pool "nips" the 

filler rod 

 

Too much resistance 

to filler rod 
Increase current 

  Concentrate the 

heat 

  Lowering the torch 

Too little resistance 

to filler rod 
Reduce current 

  Lift torch away 

from weld pool 

Gap between work 

pieces 

Visual Gap size consistent  

 Gap getting larger Reduce current 

   Increase filler 

 Gap getting smaller Increase current 

   Reduce filler 
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Heat in the work 

piece(s) 

Anticipation - 

position of the work 

piece 

  

Anticipation - 

thickness of work 

piece 

  

Visual - indicated by 

width of weld pool 

see: Size/width of 

weld pool 

 

Visual - red glow on 

work piece 

No red glow  

Red glow Reduce current 

  Lift torch away 

from weld pool 

Tactile - feel the heat 

on the hand 

Feel heat Reduce current 

 No feeling of heat Lift torch away 

from weld pool 

    Misc Auditory "Nice crackle"  

 Change of pitch Depends on other 

stimuli 

 Pop Lift torch away 

from weld 

   Stop weld 

Table 1  
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HTA Task FMS GMS Visual judgement Tactile judgement 

3 Primary
 
rigging     

3.1 Rotate component A to 0 

degrees (T) 

  Spatial  - track position 

of component A 

    

3.2 Recheck component C 

alignment (see 1.1) 

    

3.3 Attach component D     

3.3.1 Place component D on 

track beam 3 

    

3.3.1.1 Place component D on aft 

end of component E 

Grasp (T) Place   

3.3.1.2 Secure with locating 

screws by hand (x4) 

Precision grasp 

and screw 

Place  Pressure - detect when sufficiently 

fastened. 

3.3.2 Place component D on 

track beam 4 

    

3.3.2.1 Place component D on aft 

end of component E 

Grasp (T) Place   

3.3.2.2 Secure with locating 

screws by hand (x4) 

Precision grasp 

and screw 

Place  Pressure - detect when sufficiently 

fastened. 

Table 2: Please note that categories not used have been omitted. 
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HTA Task FMS GMS Visual judgement Tactile 

judgement 

Decision 

making 

Ergonomic issues 

5.2 Install component F      Posture - for the entirety of the component F 

installation the operator has to bend over 

(approx 30 degrees) the flap in order to access 

the mid cruise roller.  

5.2.1 Insert washer into bolt hole Precision 

grasp and 

push 

Place  Pressure - detect 

when washer is 

correctly inserted 

  

5.2.2 Position component F in line 

with bolt hole 

Precision 

grasp 

Position     

5.2.3 Decide if within tolerance 

(<3mm gap, 0mm gap if 

movement is permitted, 1mm 

gap is ideal) 

nil nil Spatial - observe 

gap between 

component A and 

component F 

 Decide if 

suitable gap 

is achieved 

 

5.2.4 Replace component F if 

necessary, repeat 5.2.2. and 

5.2.3. 

      

5.2.5 Insert bolt Precision 

grasp and 

push 

Place     

5.2.6 Secure with nut (20Nm) (T) Precision 

grasp and 

grasp (T) 

Screw     

5.3 Rig component F       

5.3.1 Unscrew nut from component 

G 

Precision 

grasp 

     

5.3.2 Lift locking plate (T) Grasp (T)      

5.3.3 Rotate eccentric bearing to 

adjust gap between 

component F and „dagger 

bracket‟ until it‟s <2mm but 

allows movement 

Precision 

grasp and 

screw 

 Spatial - observe 

gap between 

component F and 

'dagger bracket' 

 Decide if 

suitable gap 

is achieved 

 

Table 3: Please note that categories not used have been omitted. 
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HTA Task FMS GMA MP Visual 

judgement 

Tactile 

judgement 

Decision 

making 

Pacing ConTA 

4.5 Perform radding         

4.5.1 Perform first sweep         

4.5.1.1 Apply power to radding tool Bi-Grasp/Precision 

grasp (T) 

 Open 

loop 

   Internal 

pacing 

 

4.5.1.2 Make contact with target edge at either 

extremity perpendicular to the edge and 

at an acute angle  

Bi-Grasp/Precision 

grasp (T) 

Place Open 

loop 

   Internal 

pacing 

 

4.5.1.3 Move mop/cone down the edge to other 

extremity. 

Bi-Grasp/Precision 

grasp (T) 

Position Closed 

loop 

 Pressure  Internal 

pacing 

ConTA 

(table 5)  

4.5.2 Perform second sweep         

4.5.2.1 Apply power to radding tool Bi Grasp/Precision 

grasp (T) 

 Open 

loop 

   Internal 

pacing 

 

4.5.2.2 Make contact with target edge at either 

extremity perpendicular to the edge and 

at an acute angle 

Bi Grasp/Precision 

grasp (T) 

Place Open 

loop 

   Internal 

pacing 

 

4.5.2.3 Move mop/cone down the edge to other 

extremity. 

Bi-Grasp/Precision 

grasp (T) 

Position Closed 

loop 

 Pressure  Internal 

pacing 

ConTA 

(table 5) 

4.5.3 Perform final sweep         

4.5.3.1 Apply power to radding tool Bi Grasp/Precision 

grasp (T) 

 Open 

loop 

   Internal 

pacing 

 

4.5.3.2 Make contact with target edge at either 

extremity perpendicular to the edge and 

at an angle equal to both surfaces (fig.3) 

Bi Grasp/Precision 

grasp (T) 

Place Open 

loop 

   Internal 

pacing 

 

4.5.3.3 Move mop/cone down the edge to other 

extremity. 

Bi-Grasp/Precision 

grasp (T) 

Position Closed 

loop 

 Pressure  Internal 

pacing 

ConTA 

(table 5) 

4.6. Determine if edge is sufficiently radded Non-prehensile 

contact 

Place/Smear Closed 

loop 

Spatial 

recognition 

 2-way 

nominal based 

decision 

Internal 

pacing 

 

Table 4
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Parameter Perception Decision Action(s) 

Pressure 

against edge 

Tactile Appropriate 

pressure 

applied 

 

 

 Too much 

pressure 
Ease off pressure 

 

 Too little 

pressure 
Apply more 

pressure 

Torque 

Tactile Fluctuation of 

torque effect 
Adapt forces 

applied to maintain 

steady movement 

Table 5 


