8 research outputs found

    A Logical Characterization of Constraint-Based Causal Discovery

    Get PDF
    We present a novel approach to constraint-based causal discovery, that takes the form of straightforward logical inference, applied to a list of simple, logical statements about causal relations that are derived directly from observed (in)dependencies. It is both sound and complete, in the sense that all invariant features of the corresponding partial ancestral graph (PAG) are identified, even in the presence of latent variables and selection bias. The approach shows that every identifiable causal relation corresponds to one of just two fundamental forms. More importantly, as the basic building blocks of the method do not rely on the detailed (graphical) structure of the corresponding PAG, it opens up a range of new opportunities, including more robust inference, detailed accountability, and application to large models

    Marginal log-linear parameters for graphical Markov models

    Full text link
    Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parametrizations under linear constraints induce a wide variety of models, including models defined by conditional independences. We introduce a sub-class of MLL models which correspond to Acyclic Directed Mixed Graphs (ADMGs) under the usual global Markov property. We characterize for precisely which graphs the resulting parametrization is variation independent. The MLL approach provides the first description of ADMG models in terms of a minimal list of constraints. The parametrization is also easily adapted to sparse modelling techniques, which we illustrate using several examples of real data.Comment: 36 page

    Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints

    Full text link
    Unsupervised estimation of latent variable models is a fundamental problem central to numerous applications of machine learning and statistics. This work presents a principled approach for estimating broad classes of such models, including probabilistic topic models and latent linear Bayesian networks, using only second-order observed moments. The sufficient conditions for identifiability of these models are primarily based on weak expansion constraints on the topic-word matrix, for topic models, and on the directed acyclic graph, for Bayesian networks. Because no assumptions are made on the distribution among the latent variables, the approach can handle arbitrary correlations among the topics or latent factors. In addition, a tractable learning method via 1\ell_1 optimization is proposed and studied in numerical experiments.Comment: 38 pages, 6 figures, 2 tables, applications in topic models and Bayesian networks are studied. Simulation section is adde

    Towards characterizing Markov equivalence classes for directed acyclic graphs with latent variables

    No full text
    Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, UAI 200510-1
    corecore