2,457 research outputs found

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Communications for Next Generation single chip computers

    Get PDF
    It is the thesis of this report that much of what is presently thought to require specialized VLSI functions might instead be achieved by combinations of fast general purpose single chip computers with upgraded communication facilities. To this end, the characteristics of applications of this nature are first surveyed briefly and some working principles established. In the light of these, three different chip philosophies are explored in some detail. This study shows that some upgrading of typical single chip I/O will definitely be necessary, but that this upgrading does not have to be complex and that true multiprocessor-multibus operation could be achieved without excessive cost

    Probabilistic Routing Protocol for Intermittently Connected Networks

    Get PDF
    This document is a product of the Delay Tolerant Networking Research Group and has been reviewed by that group. No objections to its publication as an RFC were raised. This document defines PRoPHET, a Probabilistic Routing Protocol using History of Encounters and Transitivity. PRoPHET is a variant of the epidemic routing protocol for intermittently connected networks that operates by pruning the epidemic distribution tree to minimize resource usage while still attempting to achieve the best-case routing capabilities of epidemic routing. It is intended for use in sparse mesh networks where there is no guarantee that a fully connected path between the source and destination exists at any time, rendering traditional routing protocols unable to deliver messages between hosts. These networks are examples of networks where there is a disparity between the latency requirements of applications and the capabilities of the underlying network (networks often referred to as delay and disruption tolerant). The document presents an architectural overview followed by the protocol specification

    Work Analysis with Resource-Aware Session Types

    Full text link
    While there exist several successful techniques for supporting programmers in deriving static resource bounds for sequential code, analyzing the resource usage of message-passing concurrent processes poses additional challenges. To meet these challenges, this article presents an analysis for statically deriving worst-case bounds on the total work performed by message-passing processes. To decompose interacting processes into components that can be analyzed in isolation, the analysis is based on novel resource-aware session types, which describe protocols and resource contracts for inter-process communication. A key innovation is that both messages and processes carry potential to share and amortize cost while communicating. To symbolically express resource usage in a setting without static data structures and intrinsic sizes, resource contracts describe bounds that are functions of interactions between processes. Resource-aware session types combine standard binary session types and type-based amortized resource analysis in a linear type system. This type system is formulated for a core session-type calculus of the language SILL and proved sound with respect to a multiset-based operational cost semantics that tracks the total number of messages that are exchanged in a system. The effectiveness of the analysis is demonstrated by analyzing standard examples from amortized analysis and the literature on session types and by a comparative performance analysis of different concurrent programs implementing the same interface.Comment: 25 pages, 2 pages of references, 11 pages of appendix, Accepted at LICS 201
    • …
    corecore