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Abstract 

This report is Dot intended as a. survey in the fieJd of remote procedure calls. Neither do 
we claim it to be complete in some way or a.nother. What we do claim is that we present 
the reader the major principles of remote procedure call design. We start off by investigating 
those principles that seem to be most generally applicable. These principles are illustrated 
by a. number of rather different, but equally beautiful examples. One example is the Rajdoot 
protocol of Shrivistava and Pa.nz.ieri, that is in some respect complete. Another example is the 
REX protocol of Otway and Oskiewicz, tha.t perhaps is less complete, but certainly not less 
elegant. Although these two protocols originated from different starting points, they do share 
some important characteristics. These common characteristics emerged from the common 
design principles discussed in the introduction. 

1 Introduction 
One of the main issues designers of distributed systems are faced with is the choice of appro­
priate communication primitives. The computers forming a distributed system normally do not 
share primary memory t so communication via shared memory techniques such as semaphores and 
monitors is generally not applicable. Instead message passing in one form or another is used. 

In distributed systems most communication takes the form of a request message from a client 
to a server, followed by a reply message from the server back to the client. From the client's point 
of view, sending a message to a server and then waiting for a reply looks very much like calling a 
procedure and then waiting for it to finish. 

The similarity between this communication model, called the client-server model and the well­
known procedure mechanism has led towards the introduction of remote procedure calls (RPC) 
as a message passing primitive in distributed systems. 

In this report the key issues concerning the design for an apc are discussed, together with a 
number of RPC implementation examples. Chapter 1 discusses these key design issues. In chapter 
2, the RPC mechanism for the Cambridge Ring Local Area Network is considered. As a second 
example of an RPC implementation, the Rajdoot RPC mechanism is discussed in chapter 3. In 
chapter 4 the REX protocol, which uses the RPC mechanism, is described. Also a similar protocol, 
called Cedar, will be briefly discussed. In chapter 5, some concluding remarks are given. 

2 Key issues for RPC design 

The design issues for any RPC system can be divided into four broad categories (cf. [Tan88]): 

1. Interface design 
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2. Client design 

3. Server design 

4. Protocol design 

In the following sections we wiD deal with each of these categories seperately. 

2.1 Interface design 

2.1.1 Transparency 

The purpose of the RPC mechanism is to give the caller the iDusion that it is making a local call. 
There are, however, some difficulties involved with obtaining fuD transparency. 

The principal problem occurs with the parameter passing. Passing parameters by value is easy, 
but problems arise when the language allows parameters to be passed by reference. For a local call, 
a pointer (the address of the parameter) is normally passed to the called procedure. Obviously, 
this strategy fa.ils completely for a remote procedure call. 

One possible solution is to replace the call-by-reference mecbanism by a call-by-copy/restore 
mechanism. The call-by-copy /restore mechanism locates the item that is pointed to and passes it 
to the (remote) procedure. The called procedure puts the item in its local memory and is able to 
access it in the usual way. Whenever control is returned to the caller, the data item is sent back 
to the caller, which uses it to overwrite the original reference parameter. 

Although this copy/restore mechanism frequently works well, it can fa.il in certa.in pathological 
situations. Consider for instance what may happen if very large datastructures are passed as 
reference parameters, using the copy/restore mechanism. If these parameters are too large to fit 
into a single message, then this wiD at least introduce considerable communication problems. 

Many RPC systems get rid of the whole problem by prohibiting the use of reference parameters, 
pointers and procedure or function parameters in remote calls. Such a design decision makes the 
implementation easier, but the transparency is l06t, because the application rules for local and 
remote calls are different. 

A similar situation occurs with exception handling. Using an RPC mechanism, three different 
types of exceptions can be distinguished: 

• exceptions raised during execution of the (remote) procedure call (e.g. division by zero), 

• exceptions raised because of a server fa.ilure (the server crashed during execution of the call), 

• exceptions raised because of communication failures (e.g. messages are corrupted during 
transportation) . 

To ma.inta.in transparency, the client process should only be concerned with the first type of 
exceptions, since this type is not different from the local case. The second type has to be dealt with 
by the RPC mechanism, underlying the call made by the client process (see also section 2.2.1). 
Finally, the third type of exceptions can be handled by the communication protocol underlying the 
RPC mechanism. There are well-known mechanisms (based on checksums and sequence numbers, 
see e.g. [Tan88]) that enable a receiver to treat messages that arrive out of order, corrupted or 
are copies of previously received messages. 

2.1.2 Binding 

In the Client/Server model (which is recognised in distributed systems based on the RPC paradigm), 
binding leads to a relation between dient and server, and facilitates the exchange of request/reply 
messages between the two. Binding requires that the (logical) name of the intended server is 
known. It follows that a mechanism (a mapping) is required to map names to addresses. This 
naming problem in distributed systems is well-known. Names are needed to (uniquely) identify 
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servers but are often required to be location-independent (for transparency reasons). It is therefore 
that a distributed or centralized name seMler has to be used. 

A server can now make its service(s) available to clients by exporting them to the name 
server. A client wishing to use a service imports it by communicating with the name server, 
thus establishing a binding between the client and the server. Precisely how servers export their 
services, and how and when rebinding works (e.g. after a server crash) are all issues that have to 
be considered. 

Beside translating from (logical) names to (physical) addresses the name server must also check 
whether a client is allowed to use a particular service. In this case the name server becomes also 
an access control server. 

Note that binding only has to take place when the client makes its first remote call. From this 
point on the client knows how to locate the server, so binding is not required for subsequent calls 
(provided no crashes occur). So after the first call the client can keep the server's address in local 
memory (e.g. local cache, for efficiency) for subsequent calls. Note also that the distribution of 
names by the name server implies that the name server has to prevent any name inconsistencies 
(e.g. non-unique or ambigue names) to occur. 

As a final remark on binding it can be said that the name server can also be used for encryption­
based secure (RPC) communication. The design of such a communication protocol, built as 
part of an RPC package, is described in [Birr84]. Here the analogon of the name server is the 
authentication seMler. When a client wishes to communicate securely with a server, they negotiate 
with the authentication server to obtain a shared, secret, conversation key. This conversation key 
is used to encrypt/decrypt subsequent calls/replies between the client and the server. 

Finally, unbinding is simply the act of disconnecting (releasing) a binding. However, if the 
binding process was also used for access control or authentication it must be ensured that all 
copies of access rights or conversation keys are destroyed. This revocation of capabilities might 
be very difficult in case of local caching or if the client has distributed its capabilities in an 
uncontrolled way. 

2.2 Client design 

2.2.1 Server crashes and thne outs 

In this section we consider problems caused by server crashes. Consider what will happen if the 
server crashes after carrying out a request, but before sending a reply. To deal with this situation, 
at least three possibilities are available to the client. 

I. Wait forever for the reply. 
This approach is similar to what happens when a program calls a local procedure containing 
an infinite loop. Manual intervention is required to kill the program. If semantic trans­
parency is a main design issue, this approach can be considered. 

2. Time-out and raise an exception. 
In this approach the fault-recovery is done by a higher-layer entity. It is analogous to what 
happens if a called procedure gets a memory protection error or tries to divide by zero. 

3. Time-out and retransmit the request. 
In this approach the fault-recovery is done by the client itself. The client usually has to 
rebind (possibly to another server) and try the call again. In this approach it is possible 
tbat the operation will be carried out more than once. 

Operations that can be repeated over and over again, each time yielding the same results 
without any side effects are said to be idempotent. If all operations could be carried out in an 
idempotent form, then the third approach is obviously a good choice. 

However, if all services are made idempotent, it is rather difficult to provide servers with 
arbitrary services (e.g. a server cannot easily provide an increment operation). 
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In view of this kind of problems, a daasification for the RPC semantics can be introduced: 
[N el811 [Raj doot 1 

I. At least once semantics. 
A normal termination (i.e. a reply message from the called service is received) implies one 
or more executions at the called server. This semantics is not suitable for operations that 
are not idempotent. 

2. Exactly once semantics. 
A normal termination implies exactly one execution at the called server. 

3. At most once semantics. 
This is the same as exactly once semantics, but in addition calls that do not terminate 
normally do not produce any side e/fects. 

Choosing appropriate fault-tolerant capabilities and semantics is one of the most important 
design decisions to be taken in RPC design. The goal of fully transparent RPC semantics is 
considerably complicated by the possibility of crashes that affect the server but not the dient. 

2.2.2 Client crashes and orphans 

Now consider what may happen when a dient crashes after starting an RPC. If the dient resumes 
execution after recovery by reissuing the call to the same server, it is possible that a server can 
receive multiple call messages for a single invocation by a client, thereby causing superfluous, un­
desirable and possibly interfering executions. Such executions are referred to as orphan executions, 
since they have no clients (parents) waiting for their results. 

Orphans can cause trouble in a variety of ways. At the very least they waste CPU time 
and other resources, or may even lock them. In addition, results sent back by orphans may cause 
confusion, because of the possible interference. This is especially troublesome in case of operations 
which are not idempotent. 

From the above discussion it should be clear that some provision for orphan detection and 
killing must be available. How this is done, may differ for different implementations of the RPC 
mechanism. 

One method is to have each server periodically check to see if the client that started the current 
computation is still interested. A variation on this idea is dead man's handle. A client is expected 
to poll a server working for it periodically. If a poll fails to come in on schedule, the server just 
kills all computations for this client. 

A different approach is to program all clients to log all RPCs on stable storage before making 
them. When a client reboots after a crash, it checks to see if there were any servers working for it, 
and if so, tells them to stop. This solution is expensive because writing a log for each call about 
doubles the cost of each RPC. 

Another, more sophisticated, approach to orphan detection and killing is described in chapter 
4, when the Rajdoot RPC mechanism is discussed. 

No matter which method is chosen for detecting and killing orphans, there is always the danger 
an orphan will be in the middle of a critical section at the time it is killed, or that it holds many 
locks on resources. In this case, killing the orphan can lead to race conditions and deadlocks. 

2.3 Server design 

In this section, we briefly discuss two issues concerning server design. The first issue is parallelism, 
the second is a mechanism for fa.ult-tolerance. Two issues concerning server design will be discussed 
briefly in this section. The first issue is that of parallelism and the second issue is that of a 
mechanism for fault-tolerancy. 
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2.3.1 Parallelism 

At one extreme, whenever a request comes in for exeeution of a. server procedure, a new process is 
created and the procedure is run as part of that process. If other requests come in from other clients 
before the first one is finished, more processes are created and run independently in parallel. At 
the other extreme, tbere exists a single process associated with eacb server procedure. If a second 
request comes in before tbe first one is finished, it is queued and must wait for its turn. 

Tbe first approach bears tbe burden of process creation on each RPe, but allows (quasi) parallel 
execution of RPes. Tbe second is simpler and faster if there is only one call at a time but does 
not allow any parallelism if tbere are multiple calls. 

Tbe cboice between tbese two approacbes will heavily depend on tbe particular function of the 
server. 

2.3.2 Fault Tolerance 

In this section a scbeme for fault tolerant RPe is outlined as presented in [Yap88]. 
In the proposed scbeme, fault tolerance is provided by having copies of a service reside on 

multiple (server) nodes. Eacb copy is known as an incarnation. Tbe incarnations are organized in 
a linear chain. For the i,h incarnation the (i + I)" incarnation forms its backup. A service request 
is made by the client (caller) to the primary incarnation, which is the first copy in tbe cbain tbat 
bas not failed. All other (active) incarnations in tbe chain are called secondary incarnations. 

Tbere are four types of messages in the proposed scbeme. A call message invokes an RPe call. 
A result message contains the return values of an RPe call. A done message is sent to inform 
a secondary incarnation tbat the call is completed. Tbese tbree types of messages require their 
recipients to acknowledge by means of an ack message. 

We now discuss bow tbe scbeme functions, in case wben there are no failures and under failure 
conditions. 

Execution without failures On receiving a call message, the primary incarnation propagates 
this message to its immediate subordinate. In this way, the call message is propagated to all 
secondary incarnations. Acknowledgements are then propagated back through the chain of incar­
nations. On receiving an acknowledgement to tbe call message it bas sent, an incarnation performs 
the requested service. After completing a call, a secondary incarnation waits for a message from 
its immediate superior. The primary incarnation will send a result message to the caller and waits 
for an acknowledgement. On receiving tbis acknowledgement, the primary sends a done message 
to inform its immediate subordinate tbat tbe call is completed. Tbis message is propagated to all 
otber secondary incarnations and acknowledgements are propagated back. 

Execution with failures After sending an RPe message to tbe primary incarnation, the caller 
waits for an acknowledgement. If before this acknowledgement is received, the caller detects tbat 
the primary has failed, the same RPe message is sent to the primary's immediate subordinate. 
If this backup incarnation has already received a similar call message from the old pimary, it 
acknowledges the message) but takes no further action. 

If the primary crashes after sending the request acknowledgement, tbe caller takes no action. 
The immediate subordinate of the crashed primary will take over its role and will eventually send 
the result to the caller. 

If a secondary incarnation fails before it acknowledges a call message, its immediate superior 
will detect the failure and send the same call to the immediate subordinate of the failed incarnation. 
Between sending the call message and sending the done message) an incarnation need not be aware 
of its immediate subordinate's status. If an incarnation fails to acknowledge the done message, 
this message will be sent to its immediate subordinate. 

It is claimed in [Yap88] that with this scheme a fault tolerant RPe mechanism is established, 
althougb it is possible that under certain circumstances the client/caller may receive more than 
one copy of the (correct) result. 
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2.4 Protocol design 

For an RPC mechanism, the main issue with respect to protocol design is achieving correctness 
and high performance, using some kind of interprocess communications facility. Sucb a facility 
can be based on either of the following two major approaches: one which favors the provision of a 
connection-oriented or "virtual circuit" interface (e.g. tbat ofaX.25 network) or one wbicb favors 
the provision of a connection-less or "datagram" interface. 

Tbe protocol supporting a virtual circuit interface generally implements features sucb as end­
tcrend acknowledgements, flow control and detection and recovery from various errors. Moreover t 
tbe protocol guarantees tbat messages are kept in sequence, so tbey are delivered in tbe same 
order as they were sent. 

A datagram service, instead, provides its user processes with rather primitive operations for 
transmitting and receiving individually addressed messages. Each message is encapsulated as a 
distinct data object, termed a datagram. Eacb datagram is transmitted and received indepen­
dently of other datagrams, that is to say, the datagram service does not guarantee sequenced 
and ordered delivery of distinct datagrams. Flow control and end-to-end acknowledgements are 
also not implemented and tbe service does not provide the facility of guaranteed deliverance of 
datagrams. 

Since reliable communication facilities would obviously simplify RPC protocol implemen tation, 
it may appear reasonable to base an RPC implemen tation on a virtual circuit based service. 
However, tbe maintenance of state information and tbe messages needed to implement flow control 
and end-to-end acknowledgements introduce overbead that may very well result in a considerable 
reduction of the communication bandwitb available on tbe network. A simple datagram service 
migbt be much more efficient. In [ShriPanj it is furthermore noted tbat from tbe view of the 
client tbe acknowledgement is not the affirmation tbat its message (the call) bas been delivered, 
but that tbe requested service bas been performed. Tbis is implicit in tbe reply (result) message 
from the server. In [ShriPan] it is tberefore concluded tbat especially in case of local area networks 
(providing a rather high reliahility) datagrams certainly provide an attractive alternative to virtual 
circuits. 

3 The Cambridge Ring Local Area Network 

This chapter discusses a remote procedure call implementation for the Cambridge Ring Local Area 
Network. For a more comprebensive discussion of tbe Cambridge Ring LAN we refer to [SbriPan]. 
The protocol is also used as a basis for tbe remote procedure call implementations used in the 
distributed UNIX system built at Newcastle. The outline of this section is as follows. We start 
with a summary of tbe characteristics of the protocol. Then we discuss the protocol, followed by 
a survey of the clock management needed for tbe implementation of tbis protocol. 

3.1 Characteristics 

The main characteristics of tbe protocol are: 

• exactly once semantics are supported (see section 2.2.1), 

• a sequential execution model is used (ef. section 2.3.1), 

• tbe implementation is based on a datagram service. 

3.2 The protocol 

In absence of node crasbes tbe RPC mecbanism behaves as follows. Tbe client sends its call request 
with a sequence number and waits for tbe reply. Any exceptions during the send phase are dealt 
with by timeouts and retransmission with the same sequence number. 
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The server receives a call request (discarding further requests with the same sequence number), 
executes the requested service and sends back the result, thereby forgetting that the call ever 
happened. 

In presence of server crashes a complication arises. After a crash a server must be initialized 
so as to reject pre-crash requests, thus guaranteeing abnormal termination of those requests. This 
requires that the sequence numbers are monotonically increasing despite the occurrence of crashes. 
This requirement is met by making use of synchronized clocks for generating the sequence numbers. 
A sequence number is derived by concatenating the current value of the local clock of the node 
with the unique node number. This method is known as time .tamping, a well known method to 
detect delayed duplicates. 

3.3 Clock management 

The clocks of the system are kept loosely synchronized, i.e. they roughly represent the same 
physical time. To achieve this it is necessary for each node to maintain two processes: a broadcaster 
process that regularly sends its current time to the rest of the nodes and a synchronizer process 
that receives the times sent by others and advances its clock if it is behind that of a given sender. 
This implies that the fastest clock determines the local time at each node. 

The problem arises that a client with a slow clock can experience difficulty in obtaining services 
from a server, if the server relies on its own clock for deciding whether to accept or reject a request. 
Therefore a table (called the 'lIsn-array') containing the last largest sequence number (lIsn), i.e. 
the highest sequence number, received for every node is maintained by the server. This array is 
initialized with the current clock value at startup time. 

Since the clock is always advanced 'fast' clock errors will accumulate. Therefor a facility for 
setting the clocks back is provided. The authority for setting clocks is vested in the broadcaster 
of one node only. This broadcaster will be referred to as the Time Lord. 

For the sake of efficiency a broadcaster only sends its time to nodes that are currently 'up'. To 
achieve this an 'uplist' is maintained at every node containing the nodes that are currently 'up'. 
The 'uplist' is shared with the synchronizer process and protected by a semaphore. 

3.3.1 The broadcaster 

The broadcaster process of each node regularly sends synchronization messages, containing its 
current time, to all nodes in its 'uplist'. On initialization it sends a 'I am alive' message, i.e. 
a synchronization message with time zero, to all possible nodes in the system. The responses 
received are used for the initialization of the 'uplist'. 

3.3.2 The time lord 

The Time Lord is a special broadcaster. The user at the Time Lord's node has to supply a 
GOBACK command after which the Time Lord sends a goback message to aU 'up' nodes (including 
its own synchronizer) thereby stopping all broadcasters. When the Time Lord gets the user 
supplied new time it sends this time to all 'up' nodes llsing the 'set' message. 

3.3.3 The synchronizer 

The synchronizer process performs the following actions upon receipt of a message: 

• synchronization message: advance its clock if the time contained in the synchronization 
message is greater than the current clock value and update the 'uplist'. 

• goback message: stop the broadcaster. 

• set message: set the clock to the time contained in the set message and restart the broad­
caster. 

7 



, 

After the clocks have been set back tbe 'llsn-array' should be re-initialized. This is achieved 
by a reject count maintained by each server. Wben a server bas to reject many requests it is to 
be expected that the time has been set back, so tbe IIsn array i. re-initialized. 

4 Rajdoot 

Rajdoot is a protocol design by Shrivastava and Pan.ieri, as discussed in [Rajdoot]. Only tbe 
novel orphan bandling aspects of Rajdoot are addressed here. First we look at tbe characteristics 
of tbe Rajdoot protocol, next we will discuss tbe orphan handling aspects, wbicb are divided in 
tbree subproblems. This section is concluded with some remarks on the design decisions. 

4.1 Characteristics 

Rajdoot implements exactly once semantics (cC. section 2.2.1). The execution model used is a 
one-server-per-client model; at the first call of a client to a node a server is created wbich only 
executes calls of this client. The client on the otber hand sends aU its call intended for that node 
to the created server. Like the Cambridge ring LAN protocol Rajdoot uses a datagram service for 
interprocess communication. 

Rajdoot is a rather complete protocol design. It allows for orpban detection and killing, with­
out introducing unacceptable many overhead messages. Moreover Rajdoot meets the correctness 
(seriali.ability) criterium (CR): 

Let C; denote a call made by a client and W; the corresponding computation invoked 
at tbe called server. 
Let C; and Cj be sucb that: 

• Cj happens after C; (C; then Cj) 

• Wi and Wi share some data 

then, 
CR: C; then Cj ~ W; then W j . 

In presence of a fixed finite number of communication failures all calls will terminate normally. 
The call will terminate abnormally if the number of communication failures exceeds tbis fixed 
number. If a server crashes, any unfinished call is guaranteed to terminate abnormally. Like REX, 
Rajdoot allows for arbitrary nesting of remote procedure calls. 

4.2 Orphan handling 

Before we explain the three orphan handling mechanisms employed by Rajdoot, we discuss tbe 
RPC protocol itself. 

As mentioned before, the first remote procedure call issued by a client to a node is converted 
by the RPC mechanism into a request for the manager of that node to create a server. The created 
server replies by sending the client its address in a 'createserver' message. The client then directs 
all its remote calls intended for this node to the created server. When no reply is received within 
a predefined timeout interval, the 'createserver' message is retransmitted. A newly created server 
starts an idle timeout and waits for a call request. If the timeout expires the server aborts itself, 
guaranteeing that only the active servers survives. The manager node is stateless: after creation 
of a server it forgets about the request. 

A client sends its calls to tbe server witb a sequence number. Exceptions during transmission 
of tbe call are dealt with by retransmitting the message witb the same sequence number. If the 
client does not receive the reply within the timeout interval and the 'retry' value is nonzero, the 
call message is sent again and the retry value is decremented by one. A server maintains the 
results of the most recently executed call, so it can cope with retry requests due to lost replies by 
retransmitting the result. 
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4.2.1 Abnormal Termination 

If a client call terminates abnormally, i.e. no reply message is received from the server, then it is 
guaranteed that any computations the call may have generated have terminated also. 

To meet the above property every call contains a deadline, representing the maximum amount 
of time available for executing the call by the server. The server sets a timer based on the deadline. 
If the deadline expires and the server is still executing the call, execution is aborted. 

4.2.2 Client node crashes 

After the crash of a client node there are two possibilities. Either the node makes a call to some 
service on some node C after recovery, or it makes no further call to node C. 

A call to C is made after recovery In this case it is guaranteed that aU orphans the client 
may have left on node C will be terminated before execution of the call starts. 

Every call contains a crashcount value (the local, stable clock value at the time of rebooting). 
Every node maintains a table of crashcount values of all nodes that have made calls to it, the 
so-called 'C-list'. A newly created server checks the client supplied crashcount value against the 
corresponding entry in the 'C-list'; if the former is greater, then this indicates that the caller had 
a crash since the last call, so there could be orphans on the server node. The newly created server 
aborts aU other servers created by the client before executing the call. 

No further calls are made to C If the client is not restarted or after recovery no calls are 
made to C, it is guaranteed that any orphans on node C wiD be detected and killed within finite 
amoun t of time. 

After a server finishes a call it waits for the next call to come. If this call has not arrived 
within a predefined timeout interval (a few minutes), the server marks itself a potential orphan 
and resumes waiting. On receipt of a call the server unmarks itself before executing the call. Every 
node has a terminator process that regularly constructs a list of aU potential orphans on its node 
and calls relevant nodes to see if they are running. The managers of these nodes send their current 
crashcount values in the reply. If no reply is received after a few retries or the received crashcount 
value is larger than the one in the table, the terminator process aborts aU relevant orphans. 

4.3 Concluding remarks 

Given the provision of stable clocks at each node, no stable storage facility is required, neither is 
there any need for keeping clocks synchronized. The amount of state information is minimized; 
the manager maintains no state information and a server only maintains the last sequence number 
and the result of the last call. 

The most controversial choice is the use of a deadline mechanism. A possible solution to the 
problem of estimating deadlines could be found in the binding mechanism. A server could add 
the estimated execution time to the exported information. 

5 REX: a remote execution protocol for object-oriented 
distributed applications 

In this section we discuss the REX protocol as described in [REX88). At the end of the section 
we shaIl also look at an ancestor of REX, called the Cedar protocol ([BiNe84)). We start with a 
description of the environment the REX protocol is desigued for. 
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5.1 The Distributed Applications Support Environment (DASE) 

The DASE is a reference model for distributed processing that is currently under development by 
ECMAjTC32-TG2. It is intended for cooperating open systems and can thus be considered as 
an extension of the OS1 reference model. It comes thus not as a suprise that REX is connection 
oriented and has a rather large overhead, i.e. it is not suited for real time applications. 

The main concept in the DASE is the object. An object is an abstract datatype with a set 
of operations which are the only means to access and manipulate that datastructure. These 
operations are specified by defining their external effect on the object. In a way processes are also 
objects. Objects can interact with each other by invoking operations. Because objects may reside 
on different sites, there is a need for an RPC mechanism. 

There are two ways in which objects can interact (i.e invoke) each others operations. One 
way is interrogation, which means that requests and responses are synchronized. Another way 
of invocation is announcement, which means there are asynchronous requests without responses 
(results). Objects react to invocations by executing the requested service and possibly sending 
a response. As already mentioned in section 2.1.2 a binding is created when one object imports 
an operation exported by another object. The creation of bindings, called associations in REX 
terminology, is provided by the REX protocol. 

5.2 The Remote Executions protocol (REX) 

The DASE protocol that is responsible for the creation of associations is REX. In the previous 
section we said that there are two ways of invoking objects, viz. interrogation (synchronous) 
and announcement (asynchronous). This means that REX should support both synchronous and 
asynchronous interactions. As a matter of fact REX supports three types of interrogation: 

1. synchronous, reliable interactions called calls (figure 1); 

2. asynchronous, unreliable interactions known as casts (figure 1); 

3. sessions of nested bidirectional calls and casts. 

Moreover, REX is designed in such a way that both client and server applications can use en­
cryption to protect message contents from disclosure, modification, reply and insertion of fake 
messages (cr. [Birr85]). 

Client REX REX Server 

I I 
I I 

l-__ .... ....,_ - t - _JNU~.!! - - - - ___ ~~ t-...... __ ..., 

I I 
I 1 I I response ____ - - - T - ,........,r---~ 

.. --'-..... "'-T------- I 
I I 

dispatch 

call 

cast 
'----t,-,.,.. - ~ - - £O!I}_ - - - - - - _ -1-..... -;.--..... 0; 

I I - I 
I I. 
I I ..... 
I I , 

dispatch 

Figure 1 

We will look at the implementation of each of the above mentioned types of invocation seper­
ately. But first we will describe the creation of an association in REX. 

5.2.1 Creation of associations in REX 

Before a REX association can be created, the server must export its service by calling the export 
function. The export function registrates the instance of the interface and nominates a dispatch 
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procedure to react to incoming invocations and assigns a locally unique export time stamp. This 
means that each node should have a locally stable clock. The export time stamp together with 
the node address of the server uniquely identify the instance of the interface being exported. The 
time stamp is included in every message to detect whether the server has crashed or rebooted 
during the lifetime of the association. 

The client uses the import function to send a message to the specified server node, requesting 
for details of a particular instance of the interface. If the interface specification matches one 
exported by that node, the request is accepted and the export time stamp is returned; otherwise 
the request is rejected. 

5.2.2 Synchronous, reliable interactions 

Calls are interactions that resemble remote procedure calls as described in previous sections. 
They are used to implement interrogations. For synchronization purposes REX uses buffers which 
are called threads. Threads are not part of the REX protocol itself (they are used only for 
optimization). 

A simple call starts with a request message and ends with a response message. Request and 
response messages have a sequence number and, to ensure reliable delivery, they are retransmitted 
at regular intervals until an acknowledgement is received. The receipt of a response implicitly 
acknowledges the arrival of the corresponding request, and the receipt of the next request implicitly 
acknowledges the arrival of the previous response. 

If both the call duration and the time between calls are less than the retransmission timeout, 
no explicit acknowledgements are needed and thus only two messages are necessary per call. 
Unfortunately these assumptions need not to hold, because 

l. messages may be lost; 

2. the call duration may be longer than the retransmission timeout; 

3. servers may acknowledge without responding promptly; 

4. the time between calls may be longer than the retransmission timeout. 

In case 1. the message will not previously have been seen by the receiver, 80 provided the original 
assumptions hold it can process this message without any problems. In cases 2. and 4. the receiver 
will already have received a copy or the message, allowing it to recognize from the sequence number 
that this message is a copy. So the receiver sends an acknowledgement, but discards the message. 
In case 3. the client has received an acknowledgement, but not yet a response. The client will 
send probe messages to the server to make sure it is still functioning. Probe messages must 
be acknowledged in the same way as requests (figure 2). In this way it is possible to detect 
communication failures and node crashes and to preserve the local procedure call semantics for 
the client. 
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dispatch 

dispatch 

If the server continues to acknowledge the prohes, the client wiu wait forever. To protect clients 
from cheating servers one could include timeouts. However, these timeouts should be similar with 
those in local procedure calls so that transparency is preserved. 

It can be easily seen that REX calls have exactly-once semantics. 

5.2.3 Asynchronous, unreliable interactions 

To implement DASE announcements, REX also provides asynchronous unreliable interactions, 
called casts. In contrast to calls, casts are not acknowledged or retransmitted. The reliability 
of their delivery is determined by the underlying network. Requests transmitted by casts are 
dispatched in the same way as those sent by calls, except for the responses generated by the 
invoked operation. These responses are simply surpressed by the server. 

Casts are sequenced in the same way as calls; if a cast arrives out of sequence it will be 
discarded. This strategy ensures the at-most-once semantics of REX casts. 

5.2.4 Nested bidirectional calls and casts 

A REX session is initiated and terminated by ~ server simply by entering and returning from the 
dispatch procedure. The simplest form of session is constructed from nested back calls (figure 3). 
Back calls rely on an implicit token that confers to the recipient the right to make a call back 
instead of sending a reply. In terms of sequencing, this means that the token confers the right to 
generate the next sequence number. Naturally, nested call backs are strictly two way alternate. 
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Client REX REX Server 

call 

call 

reply 

reply 

Figure 3 

The session Cacility in REX allows Cor blast protocols. A forward blast session starts with a 
call which synchronizes both ends and checks that all the starting conditions have been satisfied. 
The data can then be transCerred quickly, without acknowledgements, by using casts. When all 
the data has been transmitted, another call resynchronizes both ends and checks that all data has 
been received correctly (figure 4). Any Caulty message can then be retransmitted using calls Cor 
reliable transCer. The reverse blast protocol is almost a mirror image ofthe Corward blast protocol, 
but Cor a different distribution oC calls and casts. In particular, the second message (reply-t in 
fig. 4) is a cast in the reverse protocol, because the server needs to retain the token to transmit 
Curther messages containing the data to be transCerred. 

Client REX REX Server 
I I 

caD 
I I 

'--~--tI.,.. - ~ - - !C9!!.e.!!t_l _______ L .. o--+_--;~ 
I I 
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I I 

reply 

cast I castl I 
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.. __ ..L....~ I I 

I I 

cast '----i-.....- - ~- - £'l..s!.. 2.. _ _ _ _ : 
I -----.-.. -+--..... ~ 
I I 
I I 

cast '-__ ;-;...-_ ~ __ £!I!t) _ _ _ _ : 
I -----,-~-~--~ 
I I 
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call Lo __ -;-_,.. _ ~ __ t"1'!.~t l_ _ : 
I -----,-~-~--~ 
I I 
: ~~~~ ________ ~_,4_+--~ 

04---;----,- - I 

reply 

I I 
I I 

Figure 4 

Now consider a blast protocol in wich all casts are lost. In this case both protocols degenerate 
to a reliable two way alternate sequence, where each request message reliably transCers the token 
that gives the right to transmit (Casts do not transCer this token and thereCore do not change the 
direction oC the transmissions). The token is used to enCorce coordination oC the application level 
protocol by only allowing the node whicb bolds tbe token to transmit messages (requests or casts). 
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Casts may be lost, but requests will still be delivered reliably, because they will be retransmitted 
until acknowledged. 

To avoid problems REX uses a rate control algorithm for How control, which seeks to prevent 
congestion, rather than make futile attempts to cure it. The rate of message transmission is limited 
to that which is sustainable by the slowest element in the end-ta-end communication path. The 
rate is negotiated at import time, starting with a value suggested by the clients application and 
asking every element in the data path to agree to support it or revise it downward. The rate is 
then enforced by REX by temporarily blocking a client that attempts to transmit too quickly; 
thus applying back pressure directly to the data source. 

5.3 The Cedar protocol 

The Cedar protocol is in some wayan early version of the REX protocol. Simple calls are carried 
out in the same way as in REX. To make a call, the caller sends a call packet containing a call 
identifier, data specifying the desired procedure and the arguments. The procedure returns a result 
packet containing the same call identifier and the results. The protocol is analogous to the REX 
protocol. This means that the same problems arise, which can be solved by the same strategies. 
For example, if the called server has entered an infinite loop while executing a service the client 
may wait forever, which is similar to local procedure call semantics. Like in REX local stable 
clocks are needed to guarantee unique call identifiers. 

There are however, some differences between REX and Cedar. In the Cedar protocol retrans­
mitted messages need to be acknowledged explicitly, whereas in REX implicit acknowledgements 
are sufficient. This seems to make REX more appropriate for complicated calls (sessions) than 
Cedar. 

Another important difference is the exception handling facility in Cedar. At this point the 
semantics of remote procedure calls differ from local procedure call semantics. The callee is per­
mitted to communicate only those exceptions that are defined in the exported interface. In this 
way simplicity is gained at the expense of transparency. 

Like REX Cedar also allows extensions for security mechanisms. 

6 Concluding Remarks 

In this report we have considered aspects of remote procedure call (RPC) design and illustrated 
aspects of implementation by examining several examples. Although Rajdoot seems to be the 
most complete protocol (it supports orphan detection and killing) it is hard to point out a 'best' 
protocol. For instance, if synchronized clocks already have been implemented one might choose 
a protocol like the Cambridge Ring protocol, because it is less complicated. In a purely object 
oriented environment it is nice to have an object oriented protocol like REX. So, the environment is 
an important factor in deciding what kind of RPC protocol should be implemented in a particular 
distributed system. 

At this point it is not yet clear what is the appropriate protocol for the DEDOS I project. 
We suspect that, because of its numerous facilities (for instance orphan detection and killing), 
Rajdoot might be a suitable choice. However, it may be advisable to redesign and implement 
Rajdoot in an object oriented way (for instance by using the C++ programming language). 
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