

Design and implementation aspects of remote procedure calls

Citation for published version (APA):
Coenen, J. A. A., van de Sluis, E., & van der Velden, H. A. A. M. (1990). Design and implementation aspects of
remote procedure calls. (Computing science notes; Vol. 9018). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/47dcb2f4-99be-492b-be46-71e63e9b2e70

Design and Implementation Aspects of
Remote Procedure Calls

by

J.Coenen E. van de Sluis E. van der Velden

90/18

November, 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Design and Implementation Aspects of Remote Procedure
Calls

J. Coenen
E. van de Sluis

E. van der Velden
Eindhoven University of Technology

November 30, 1989

Abstract

This report is Dot intended as a. survey in the fieJd of remote procedure calls. Neither do
we claim it to be complete in some way or a.nother. What we do claim is that we present
the reader the major principles of remote procedure call design. We start off by investigating
those principles that seem to be most generally applicable. These principles are illustrated
by a. number of rather different, but equally beautiful examples. One example is the Rajdoot
protocol of Shrivistava and Pa.nz.ieri, that is in some respect complete. Another example is the
REX protocol of Otway and Oskiewicz, tha.t perhaps is less complete, but certainly not less
elegant. Although these two protocols originated from different starting points, they do share
some important characteristics. These common characteristics emerged from the common
design principles discussed in the introduction.

1 Introduction
One of the main issues designers of distributed systems are faced with is the choice of appro­
priate communication primitives. The computers forming a distributed system normally do not
share primary memory t so communication via shared memory techniques such as semaphores and
monitors is generally not applicable. Instead message passing in one form or another is used.

In distributed systems most communication takes the form of a request message from a client
to a server, followed by a reply message from the server back to the client. From the client's point
of view, sending a message to a server and then waiting for a reply looks very much like calling a
procedure and then waiting for it to finish.

The similarity between this communication model, called the client-server model and the well­
known procedure mechanism has led towards the introduction of remote procedure calls (RPC)
as a message passing primitive in distributed systems.

In this report the key issues concerning the design for an apc are discussed, together with a
number of RPC implementation examples. Chapter 1 discusses these key design issues. In chapter
2, the RPC mechanism for the Cambridge Ring Local Area Network is considered. As a second
example of an RPC implementation, the Rajdoot RPC mechanism is discussed in chapter 3. In
chapter 4 the REX protocol, which uses the RPC mechanism, is described. Also a similar protocol,
called Cedar, will be briefly discussed. In chapter 5, some concluding remarks are given.

2 Key issues for RPC design

The design issues for any RPC system can be divided into four broad categories (cf. [Tan88]):

1. Interface design

1

,,-.

2. Client design

3. Server design

4. Protocol design

In the following sections we wiD deal with each of these categories seperately.

2.1 Interface design

2.1.1 Transparency

The purpose of the RPC mechanism is to give the caller the iDusion that it is making a local call.
There are, however, some difficulties involved with obtaining fuD transparency.

The principal problem occurs with the parameter passing. Passing parameters by value is easy,
but problems arise when the language allows parameters to be passed by reference. For a local call,
a pointer (the address of the parameter) is normally passed to the called procedure. Obviously,
this strategy fa.ils completely for a remote procedure call.

One possible solution is to replace the call-by-reference mecbanism by a call-by-copy/restore
mechanism. The call-by-copy /restore mechanism locates the item that is pointed to and passes it
to the (remote) procedure. The called procedure puts the item in its local memory and is able to
access it in the usual way. Whenever control is returned to the caller, the data item is sent back
to the caller, which uses it to overwrite the original reference parameter.

Although this copy/restore mechanism frequently works well, it can fa.il in certa.in pathological
situations. Consider for instance what may happen if very large datastructures are passed as
reference parameters, using the copy/restore mechanism. If these parameters are too large to fit
into a single message, then this wiD at least introduce considerable communication problems.

Many RPC systems get rid of the whole problem by prohibiting the use of reference parameters,
pointers and procedure or function parameters in remote calls. Such a design decision makes the
implementation easier, but the transparency is l06t, because the application rules for local and
remote calls are different.

A similar situation occurs with exception handling. Using an RPC mechanism, three different
types of exceptions can be distinguished:

• exceptions raised during execution of the (remote) procedure call (e.g. division by zero),

• exceptions raised because of a server fa.ilure (the server crashed during execution of the call),

• exceptions raised because of communication failures (e.g. messages are corrupted during
transportation) .

To ma.inta.in transparency, the client process should only be concerned with the first type of
exceptions, since this type is not different from the local case. The second type has to be dealt with
by the RPC mechanism, underlying the call made by the client process (see also section 2.2.1).
Finally, the third type of exceptions can be handled by the communication protocol underlying the
RPC mechanism. There are well-known mechanisms (based on checksums and sequence numbers,
see e.g. [Tan88]) that enable a receiver to treat messages that arrive out of order, corrupted or
are copies of previously received messages.

2.1.2 Binding

In the Client/Server model (which is recognised in distributed systems based on the RPC paradigm),
binding leads to a relation between dient and server, and facilitates the exchange of request/reply
messages between the two. Binding requires that the (logical) name of the intended server is
known. It follows that a mechanism (a mapping) is required to map names to addresses. This
naming problem in distributed systems is well-known. Names are needed to (uniquely) identify

2

servers but are often required to be location-independent (for transparency reasons). It is therefore
that a distributed or centralized name seMler has to be used.

A server can now make its service(s) available to clients by exporting them to the name
server. A client wishing to use a service imports it by communicating with the name server,
thus establishing a binding between the client and the server. Precisely how servers export their
services, and how and when rebinding works (e.g. after a server crash) are all issues that have to
be considered.

Beside translating from (logical) names to (physical) addresses the name server must also check
whether a client is allowed to use a particular service. In this case the name server becomes also
an access control server.

Note that binding only has to take place when the client makes its first remote call. From this
point on the client knows how to locate the server, so binding is not required for subsequent calls
(provided no crashes occur). So after the first call the client can keep the server's address in local
memory (e.g. local cache, for efficiency) for subsequent calls. Note also that the distribution of
names by the name server implies that the name server has to prevent any name inconsistencies
(e.g. non-unique or ambigue names) to occur.

As a final remark on binding it can be said that the name server can also be used for encryption­
based secure (RPC) communication. The design of such a communication protocol, built as
part of an RPC package, is described in [Birr84]. Here the analogon of the name server is the
authentication seMler. When a client wishes to communicate securely with a server, they negotiate
with the authentication server to obtain a shared, secret, conversation key. This conversation key
is used to encrypt/decrypt subsequent calls/replies between the client and the server.

Finally, unbinding is simply the act of disconnecting (releasing) a binding. However, if the
binding process was also used for access control or authentication it must be ensured that all
copies of access rights or conversation keys are destroyed. This revocation of capabilities might
be very difficult in case of local caching or if the client has distributed its capabilities in an
uncontrolled way.

2.2 Client design

2.2.1 Server crashes and thne outs

In this section we consider problems caused by server crashes. Consider what will happen if the
server crashes after carrying out a request, but before sending a reply. To deal with this situation,
at least three possibilities are available to the client.

I. Wait forever for the reply.
This approach is similar to what happens when a program calls a local procedure containing
an infinite loop. Manual intervention is required to kill the program. If semantic trans­
parency is a main design issue, this approach can be considered.

2. Time-out and raise an exception.
In this approach the fault-recovery is done by a higher-layer entity. It is analogous to what
happens if a called procedure gets a memory protection error or tries to divide by zero.

3. Time-out and retransmit the request.
In this approach the fault-recovery is done by the client itself. The client usually has to
rebind (possibly to another server) and try the call again. In this approach it is possible
tbat the operation will be carried out more than once.

Operations that can be repeated over and over again, each time yielding the same results
without any side effects are said to be idempotent. If all operations could be carried out in an
idempotent form, then the third approach is obviously a good choice.

However, if all services are made idempotent, it is rather difficult to provide servers with
arbitrary services (e.g. a server cannot easily provide an increment operation).

3

In view of this kind of problems, a daasification for the RPC semantics can be introduced:
[N el811 [Raj doot 1

I. At least once semantics.
A normal termination (i.e. a reply message from the called service is received) implies one
or more executions at the called server. This semantics is not suitable for operations that
are not idempotent.

2. Exactly once semantics.
A normal termination implies exactly one execution at the called server.

3. At most once semantics.
This is the same as exactly once semantics, but in addition calls that do not terminate
normally do not produce any side e/fects.

Choosing appropriate fault-tolerant capabilities and semantics is one of the most important
design decisions to be taken in RPC design. The goal of fully transparent RPC semantics is
considerably complicated by the possibility of crashes that affect the server but not the dient.

2.2.2 Client crashes and orphans

Now consider what may happen when a dient crashes after starting an RPC. If the dient resumes
execution after recovery by reissuing the call to the same server, it is possible that a server can
receive multiple call messages for a single invocation by a client, thereby causing superfluous, un­
desirable and possibly interfering executions. Such executions are referred to as orphan executions,
since they have no clients (parents) waiting for their results.

Orphans can cause trouble in a variety of ways. At the very least they waste CPU time
and other resources, or may even lock them. In addition, results sent back by orphans may cause
confusion, because of the possible interference. This is especially troublesome in case of operations
which are not idempotent.

From the above discussion it should be clear that some provision for orphan detection and
killing must be available. How this is done, may differ for different implementations of the RPC
mechanism.

One method is to have each server periodically check to see if the client that started the current
computation is still interested. A variation on this idea is dead man's handle. A client is expected
to poll a server working for it periodically. If a poll fails to come in on schedule, the server just
kills all computations for this client.

A different approach is to program all clients to log all RPCs on stable storage before making
them. When a client reboots after a crash, it checks to see if there were any servers working for it,
and if so, tells them to stop. This solution is expensive because writing a log for each call about
doubles the cost of each RPC.

Another, more sophisticated, approach to orphan detection and killing is described in chapter
4, when the Rajdoot RPC mechanism is discussed.

No matter which method is chosen for detecting and killing orphans, there is always the danger
an orphan will be in the middle of a critical section at the time it is killed, or that it holds many
locks on resources. In this case, killing the orphan can lead to race conditions and deadlocks.

2.3 Server design

In this section, we briefly discuss two issues concerning server design. The first issue is parallelism,
the second is a mechanism for fa.ult-tolerance. Two issues concerning server design will be discussed
briefly in this section. The first issue is that of parallelism and the second issue is that of a
mechanism for fault-tolerancy.

4

2.3.1 Parallelism

At one extreme, whenever a request comes in for exeeution of a. server procedure, a new process is
created and the procedure is run as part of that process. If other requests come in from other clients
before the first one is finished, more processes are created and run independently in parallel. At
the other extreme, tbere exists a single process associated with eacb server procedure. If a second
request comes in before tbe first one is finished, it is queued and must wait for its turn.

Tbe first approach bears tbe burden of process creation on each RPe, but allows (quasi) parallel
execution of RPes. Tbe second is simpler and faster if there is only one call at a time but does
not allow any parallelism if tbere are multiple calls.

Tbe cboice between tbese two approacbes will heavily depend on tbe particular function of the
server.

2.3.2 Fault Tolerance

In this section a scbeme for fault tolerant RPe is outlined as presented in [Yap88].
In the proposed scbeme, fault tolerance is provided by having copies of a service reside on

multiple (server) nodes. Eacb copy is known as an incarnation. Tbe incarnations are organized in
a linear chain. For the i,h incarnation the (i + I)" incarnation forms its backup. A service request
is made by the client (caller) to the primary incarnation, which is the first copy in tbe cbain tbat
bas not failed. All other (active) incarnations in tbe chain are called secondary incarnations.

Tbere are four types of messages in the proposed scbeme. A call message invokes an RPe call.
A result message contains the return values of an RPe call. A done message is sent to inform
a secondary incarnation tbat the call is completed. Tbese tbree types of messages require their
recipients to acknowledge by means of an ack message.

We now discuss bow tbe scbeme functions, in case wben there are no failures and under failure
conditions.

Execution without failures On receiving a call message, the primary incarnation propagates
this message to its immediate subordinate. In this way, the call message is propagated to all
secondary incarnations. Acknowledgements are then propagated back through the chain of incar­
nations. On receiving an acknowledgement to tbe call message it bas sent, an incarnation performs
the requested service. After completing a call, a secondary incarnation waits for a message from
its immediate superior. The primary incarnation will send a result message to the caller and waits
for an acknowledgement. On receiving tbis acknowledgement, the primary sends a done message
to inform its immediate subordinate tbat tbe call is completed. Tbis message is propagated to all
otber secondary incarnations and acknowledgements are propagated back.

Execution with failures After sending an RPe message to tbe primary incarnation, the caller
waits for an acknowledgement. If before this acknowledgement is received, the caller detects tbat
the primary has failed, the same RPe message is sent to the primary's immediate subordinate.
If this backup incarnation has already received a similar call message from the old pimary, it
acknowledges the message) but takes no further action.

If the primary crashes after sending the request acknowledgement, tbe caller takes no action.
The immediate subordinate of the crashed primary will take over its role and will eventually send
the result to the caller.

If a secondary incarnation fails before it acknowledges a call message, its immediate superior
will detect the failure and send the same call to the immediate subordinate of the failed incarnation.
Between sending the call message and sending the done message) an incarnation need not be aware
of its immediate subordinate's status. If an incarnation fails to acknowledge the done message,
this message will be sent to its immediate subordinate.

It is claimed in [Yap88] that with this scheme a fault tolerant RPe mechanism is established,
althougb it is possible that under certain circumstances the client/caller may receive more than
one copy of the (correct) result.

5

2.4 Protocol design

For an RPC mechanism, the main issue with respect to protocol design is achieving correctness
and high performance, using some kind of interprocess communications facility. Sucb a facility
can be based on either of the following two major approaches: one which favors the provision of a
connection-oriented or "virtual circuit" interface (e.g. tbat ofaX.25 network) or one wbicb favors
the provision of a connection-less or "datagram" interface.

Tbe protocol supporting a virtual circuit interface generally implements features sucb as end­
tcrend acknowledgements, flow control and detection and recovery from various errors. Moreover t
tbe protocol guarantees tbat messages are kept in sequence, so tbey are delivered in tbe same
order as they were sent.

A datagram service, instead, provides its user processes with rather primitive operations for
transmitting and receiving individually addressed messages. Each message is encapsulated as a
distinct data object, termed a datagram. Eacb datagram is transmitted and received indepen­
dently of other datagrams, that is to say, the datagram service does not guarantee sequenced
and ordered delivery of distinct datagrams. Flow control and end-to-end acknowledgements are
also not implemented and tbe service does not provide the facility of guaranteed deliverance of
datagrams.

Since reliable communication facilities would obviously simplify RPC protocol implemen tation,
it may appear reasonable to base an RPC implemen tation on a virtual circuit based service.
However, tbe maintenance of state information and tbe messages needed to implement flow control
and end-to-end acknowledgements introduce overbead that may very well result in a considerable
reduction of the communication bandwitb available on tbe network. A simple datagram service
migbt be much more efficient. In [ShriPanj it is furthermore noted tbat from tbe view of the
client tbe acknowledgement is not the affirmation tbat its message (the call) bas been delivered,
but that tbe requested service bas been performed. Tbis is implicit in tbe reply (result) message
from the server. In [ShriPan] it is tberefore concluded tbat especially in case of local area networks
(providing a rather high reliahility) datagrams certainly provide an attractive alternative to virtual
circuits.

3 The Cambridge Ring Local Area Network

This chapter discusses a remote procedure call implementation for the Cambridge Ring Local Area
Network. For a more comprebensive discussion of tbe Cambridge Ring LAN we refer to [SbriPan].
The protocol is also used as a basis for tbe remote procedure call implementations used in the
distributed UNIX system built at Newcastle. The outline of this section is as follows. We start
with a summary of tbe characteristics of the protocol. Then we discuss the protocol, followed by
a survey of the clock management needed for tbe implementation of tbis protocol.

3.1 Characteristics

The main characteristics of tbe protocol are:

• exactly once semantics are supported (see section 2.2.1),

• a sequential execution model is used (ef. section 2.3.1),

• tbe implementation is based on a datagram service.

3.2 The protocol

In absence of node crasbes tbe RPC mecbanism behaves as follows. Tbe client sends its call request
with a sequence number and waits for tbe reply. Any exceptions during the send phase are dealt
with by timeouts and retransmission with the same sequence number.

6

'.

'.

The server receives a call request (discarding further requests with the same sequence number),
executes the requested service and sends back the result, thereby forgetting that the call ever
happened.

In presence of server crashes a complication arises. After a crash a server must be initialized
so as to reject pre-crash requests, thus guaranteeing abnormal termination of those requests. This
requires that the sequence numbers are monotonically increasing despite the occurrence of crashes.
This requirement is met by making use of synchronized clocks for generating the sequence numbers.
A sequence number is derived by concatenating the current value of the local clock of the node
with the unique node number. This method is known as time .tamping, a well known method to
detect delayed duplicates.

3.3 Clock management

The clocks of the system are kept loosely synchronized, i.e. they roughly represent the same
physical time. To achieve this it is necessary for each node to maintain two processes: a broadcaster
process that regularly sends its current time to the rest of the nodes and a synchronizer process
that receives the times sent by others and advances its clock if it is behind that of a given sender.
This implies that the fastest clock determines the local time at each node.

The problem arises that a client with a slow clock can experience difficulty in obtaining services
from a server, if the server relies on its own clock for deciding whether to accept or reject a request.
Therefore a table (called the 'lIsn-array') containing the last largest sequence number (lIsn), i.e.
the highest sequence number, received for every node is maintained by the server. This array is
initialized with the current clock value at startup time.

Since the clock is always advanced 'fast' clock errors will accumulate. Therefor a facility for
setting the clocks back is provided. The authority for setting clocks is vested in the broadcaster
of one node only. This broadcaster will be referred to as the Time Lord.

For the sake of efficiency a broadcaster only sends its time to nodes that are currently 'up'. To
achieve this an 'uplist' is maintained at every node containing the nodes that are currently 'up'.
The 'uplist' is shared with the synchronizer process and protected by a semaphore.

3.3.1 The broadcaster

The broadcaster process of each node regularly sends synchronization messages, containing its
current time, to all nodes in its 'uplist'. On initialization it sends a 'I am alive' message, i.e.
a synchronization message with time zero, to all possible nodes in the system. The responses
received are used for the initialization of the 'uplist'.

3.3.2 The time lord

The Time Lord is a special broadcaster. The user at the Time Lord's node has to supply a
GOBACK command after which the Time Lord sends a goback message to aU 'up' nodes (including
its own synchronizer) thereby stopping all broadcasters. When the Time Lord gets the user
supplied new time it sends this time to all 'up' nodes llsing the 'set' message.

3.3.3 The synchronizer

The synchronizer process performs the following actions upon receipt of a message:

• synchronization message: advance its clock if the time contained in the synchronization
message is greater than the current clock value and update the 'uplist'.

• goback message: stop the broadcaster.

• set message: set the clock to the time contained in the set message and restart the broad­
caster.

7

,

After the clocks have been set back tbe 'llsn-array' should be re-initialized. This is achieved
by a reject count maintained by each server. Wben a server bas to reject many requests it is to
be expected that the time has been set back, so tbe IIsn array i. re-initialized.

4 Rajdoot

Rajdoot is a protocol design by Shrivastava and Pan.ieri, as discussed in [Rajdoot]. Only tbe
novel orphan bandling aspects of Rajdoot are addressed here. First we look at tbe characteristics
of tbe Rajdoot protocol, next we will discuss tbe orphan handling aspects, wbicb are divided in
tbree subproblems. This section is concluded with some remarks on the design decisions.

4.1 Characteristics

Rajdoot implements exactly once semantics (cC. section 2.2.1). The execution model used is a
one-server-per-client model; at the first call of a client to a node a server is created wbich only
executes calls of this client. The client on the otber hand sends aU its call intended for that node
to the created server. Like the Cambridge ring LAN protocol Rajdoot uses a datagram service for
interprocess communication.

Rajdoot is a rather complete protocol design. It allows for orpban detection and killing, with­
out introducing unacceptable many overhead messages. Moreover Rajdoot meets the correctness
(seriali.ability) criterium (CR):

Let C; denote a call made by a client and W; the corresponding computation invoked
at tbe called server.
Let C; and Cj be sucb that:

• Cj happens after C; (C; then Cj)

• Wi and Wi share some data

then,
CR: C; then Cj ~ W; then W j .

In presence of a fixed finite number of communication failures all calls will terminate normally.
The call will terminate abnormally if the number of communication failures exceeds tbis fixed
number. If a server crashes, any unfinished call is guaranteed to terminate abnormally. Like REX,
Rajdoot allows for arbitrary nesting of remote procedure calls.

4.2 Orphan handling

Before we explain the three orphan handling mechanisms employed by Rajdoot, we discuss tbe
RPC protocol itself.

As mentioned before, the first remote procedure call issued by a client to a node is converted
by the RPC mechanism into a request for the manager of that node to create a server. The created
server replies by sending the client its address in a 'createserver' message. The client then directs
all its remote calls intended for this node to the created server. When no reply is received within
a predefined timeout interval, the 'createserver' message is retransmitted. A newly created server
starts an idle timeout and waits for a call request. If the timeout expires the server aborts itself,
guaranteeing that only the active servers survives. The manager node is stateless: after creation
of a server it forgets about the request.

A client sends its calls to tbe server witb a sequence number. Exceptions during transmission
of tbe call are dealt with by retransmitting the message witb the same sequence number. If the
client does not receive the reply within the timeout interval and the 'retry' value is nonzero, the
call message is sent again and the retry value is decremented by one. A server maintains the
results of the most recently executed call, so it can cope with retry requests due to lost replies by
retransmitting the result.

8

4.2.1 Abnormal Termination

If a client call terminates abnormally, i.e. no reply message is received from the server, then it is
guaranteed that any computations the call may have generated have terminated also.

To meet the above property every call contains a deadline, representing the maximum amount
of time available for executing the call by the server. The server sets a timer based on the deadline.
If the deadline expires and the server is still executing the call, execution is aborted.

4.2.2 Client node crashes

After the crash of a client node there are two possibilities. Either the node makes a call to some
service on some node C after recovery, or it makes no further call to node C.

A call to C is made after recovery In this case it is guaranteed that aU orphans the client
may have left on node C will be terminated before execution of the call starts.

Every call contains a crashcount value (the local, stable clock value at the time of rebooting).
Every node maintains a table of crashcount values of all nodes that have made calls to it, the
so-called 'C-list'. A newly created server checks the client supplied crashcount value against the
corresponding entry in the 'C-list'; if the former is greater, then this indicates that the caller had
a crash since the last call, so there could be orphans on the server node. The newly created server
aborts aU other servers created by the client before executing the call.

No further calls are made to C If the client is not restarted or after recovery no calls are
made to C, it is guaranteed that any orphans on node C wiD be detected and killed within finite
amoun t of time.

After a server finishes a call it waits for the next call to come. If this call has not arrived
within a predefined timeout interval (a few minutes), the server marks itself a potential orphan
and resumes waiting. On receipt of a call the server unmarks itself before executing the call. Every
node has a terminator process that regularly constructs a list of aU potential orphans on its node
and calls relevant nodes to see if they are running. The managers of these nodes send their current
crashcount values in the reply. If no reply is received after a few retries or the received crashcount
value is larger than the one in the table, the terminator process aborts aU relevant orphans.

4.3 Concluding remarks

Given the provision of stable clocks at each node, no stable storage facility is required, neither is
there any need for keeping clocks synchronized. The amount of state information is minimized;
the manager maintains no state information and a server only maintains the last sequence number
and the result of the last call.

The most controversial choice is the use of a deadline mechanism. A possible solution to the
problem of estimating deadlines could be found in the binding mechanism. A server could add
the estimated execution time to the exported information.

5 REX: a remote execution protocol for object-oriented
distributed applications

In this section we discuss the REX protocol as described in [REX88). At the end of the section
we shaIl also look at an ancestor of REX, called the Cedar protocol ([BiNe84)). We start with a
description of the environment the REX protocol is desigued for.

9

5.1 The Distributed Applications Support Environment (DASE)

The DASE is a reference model for distributed processing that is currently under development by
ECMAjTC32-TG2. It is intended for cooperating open systems and can thus be considered as
an extension of the OS1 reference model. It comes thus not as a suprise that REX is connection
oriented and has a rather large overhead, i.e. it is not suited for real time applications.

The main concept in the DASE is the object. An object is an abstract datatype with a set
of operations which are the only means to access and manipulate that datastructure. These
operations are specified by defining their external effect on the object. In a way processes are also
objects. Objects can interact with each other by invoking operations. Because objects may reside
on different sites, there is a need for an RPC mechanism.

There are two ways in which objects can interact (i.e invoke) each others operations. One
way is interrogation, which means that requests and responses are synchronized. Another way
of invocation is announcement, which means there are asynchronous requests without responses
(results). Objects react to invocations by executing the requested service and possibly sending
a response. As already mentioned in section 2.1.2 a binding is created when one object imports
an operation exported by another object. The creation of bindings, called associations in REX
terminology, is provided by the REX protocol.

5.2 The Remote Executions protocol (REX)

The DASE protocol that is responsible for the creation of associations is REX. In the previous
section we said that there are two ways of invoking objects, viz. interrogation (synchronous)
and announcement (asynchronous). This means that REX should support both synchronous and
asynchronous interactions. As a matter of fact REX supports three types of interrogation:

1. synchronous, reliable interactions called calls (figure 1);

2. asynchronous, unreliable interactions known as casts (figure 1);

3. sessions of nested bidirectional calls and casts.

Moreover, REX is designed in such a way that both client and server applications can use en­
cryption to protect message contents from disclosure, modification, reply and insertion of fake
messages (cr. [Birr85]).

Client REX REX Server

I I
I I

l-__,_ - t - _JNU~.!! - - - - ___ ~~ t-...... __ ...,

I I
I 1 I I response ____ - - - T - ,........,r---~

.. --'-..... "'-T------- I
I I

dispatch

call

cast
'----t,-,.,.. - ~ - - £O!I}_ - - - - - - _ -1-..... -;.--..... 0;

I I - I
I I.
I I
I I ,

dispatch

Figure 1

We will look at the implementation of each of the above mentioned types of invocation seper­
ately. But first we will describe the creation of an association in REX.

5.2.1 Creation of associations in REX

Before a REX association can be created, the server must export its service by calling the export
function. The export function registrates the instance of the interface and nominates a dispatch

10

procedure to react to incoming invocations and assigns a locally unique export time stamp. This
means that each node should have a locally stable clock. The export time stamp together with
the node address of the server uniquely identify the instance of the interface being exported. The
time stamp is included in every message to detect whether the server has crashed or rebooted
during the lifetime of the association.

The client uses the import function to send a message to the specified server node, requesting
for details of a particular instance of the interface. If the interface specification matches one
exported by that node, the request is accepted and the export time stamp is returned; otherwise
the request is rejected.

5.2.2 Synchronous, reliable interactions

Calls are interactions that resemble remote procedure calls as described in previous sections.
They are used to implement interrogations. For synchronization purposes REX uses buffers which
are called threads. Threads are not part of the REX protocol itself (they are used only for
optimization).

A simple call starts with a request message and ends with a response message. Request and
response messages have a sequence number and, to ensure reliable delivery, they are retransmitted
at regular intervals until an acknowledgement is received. The receipt of a response implicitly
acknowledges the arrival of the corresponding request, and the receipt of the next request implicitly
acknowledges the arrival of the previous response.

If both the call duration and the time between calls are less than the retransmission timeout,
no explicit acknowledgements are needed and thus only two messages are necessary per call.
Unfortunately these assumptions need not to hold, because

l. messages may be lost;

2. the call duration may be longer than the retransmission timeout;

3. servers may acknowledge without responding promptly;

4. the time between calls may be longer than the retransmission timeout.

In case 1. the message will not previously have been seen by the receiver, 80 provided the original
assumptions hold it can process this message without any problems. In cases 2. and 4. the receiver
will already have received a copy or the message, allowing it to recognize from the sequence number
that this message is a copy. So the receiver sends an acknowledgement, but discards the message.
In case 3. the client has received an acknowledgement, but not yet a response. The client will
send probe messages to the server to make sure it is still functioning. Probe messages must
be acknowledged in the same way as requests (figure 2). In this way it is possible to detect
communication failures and node crashes and to preserve the local procedure call semantics for
the client.

11

call

call

Client REX REX Server

! :
L-----"--II. _ _ ~ __ ~~:~lX

I requestl
-~--------------~- -..--.......

I I - •

: re8JK!.~ !. - - - - - - ~ -.,..~~-~ .. --;-.... -... ----I 'I I
, I request 2 :

-~-------------- ... - -~ i_
-~ __ ~u~l~__ :

I -----~
I ack2 _J._

~I------------- I
L~~_2 :

I --------~ : ack2 __ J._
<T------------ I

I response 2 ______ ~ - ""'>-i,i--~
.. ----,.-...... - .. -------- I .

: response2 _____ .1_

<T--------- I
-~-~2____ :

I -----~
I

Figure 2

dispatch

dispatch

If the server continues to acknowledge the prohes, the client wiu wait forever. To protect clients
from cheating servers one could include timeouts. However, these timeouts should be similar with
those in local procedure calls so that transparency is preserved.

It can be easily seen that REX calls have exactly-once semantics.

5.2.3 Asynchronous, unreliable interactions

To implement DASE announcements, REX also provides asynchronous unreliable interactions,
called casts. In contrast to calls, casts are not acknowledged or retransmitted. The reliability
of their delivery is determined by the underlying network. Requests transmitted by casts are
dispatched in the same way as those sent by calls, except for the responses generated by the
invoked operation. These responses are simply surpressed by the server.

Casts are sequenced in the same way as calls; if a cast arrives out of sequence it will be
discarded. This strategy ensures the at-most-once semantics of REX casts.

5.2.4 Nested bidirectional calls and casts

A REX session is initiated and terminated by ~ server simply by entering and returning from the
dispatch procedure. The simplest form of session is constructed from nested back calls (figure 3).
Back calls rely on an implicit token that confers to the recipient the right to make a call back
instead of sending a reply. In terms of sequencing, this means that the token confers the right to
generate the next sequence number. Naturally, nested call backs are strictly two way alternate.

12

,

Client REX REX Server

call

call

reply

reply

Figure 3

The session Cacility in REX allows Cor blast protocols. A forward blast session starts with a
call which synchronizes both ends and checks that all the starting conditions have been satisfied.
The data can then be transCerred quickly, without acknowledgements, by using casts. When all
the data has been transmitted, another call resynchronizes both ends and checks that all data has
been received correctly (figure 4). Any Caulty message can then be retransmitted using calls Cor
reliable transCer. The reverse blast protocol is almost a mirror image ofthe Corward blast protocol,
but Cor a different distribution oC calls and casts. In particular, the second message (reply-t in
fig. 4) is a cast in the reverse protocol, because the server needs to retain the token to transmit
Curther messages containing the data to be transCerred.

Client REX REX Server
I I

caD
I I

'--~--tI.,.. - ~ - - !C9!!.e.!!t_l _______ L .. o--+_--;~
I I

.. __ ..L....-I. _L __ ~!>: ~ __ -- -- -_~_""'i-4--~
I I

reply

cast I castl I

- ~- - - - - - - - - --- --~- ... '--+---.,
.. __ ..L....~ I I

I I

cast '----i-.....- - ~- - £'l..s!.. 2.. _ _ _ _ :
I -----.-.. -+--..... ~
I I
I I

cast '-__ ;-;...-_ ~ __ £!I!t) _ _ _ _ :
I -----,-~-~--~
I I
I I

call Lo __ -;-_,.. _ ~ __ t"1'!.~t l_ _ :
I -----,-~-~--~
I I
: ~~~~ ________ ~_,4_+--~

04---;----,- - I

reply

I I
I I

Figure 4

Now consider a blast protocol in wich all casts are lost. In this case both protocols degenerate
to a reliable two way alternate sequence, where each request message reliably transCers the token
that gives the right to transmit (Casts do not transCer this token and thereCore do not change the
direction oC the transmissions). The token is used to enCorce coordination oC the application level
protocol by only allowing the node whicb bolds tbe token to transmit messages (requests or casts).

13

•

Casts may be lost, but requests will still be delivered reliably, because they will be retransmitted
until acknowledged.

To avoid problems REX uses a rate control algorithm for How control, which seeks to prevent
congestion, rather than make futile attempts to cure it. The rate of message transmission is limited
to that which is sustainable by the slowest element in the end-ta-end communication path. The
rate is negotiated at import time, starting with a value suggested by the clients application and
asking every element in the data path to agree to support it or revise it downward. The rate is
then enforced by REX by temporarily blocking a client that attempts to transmit too quickly;
thus applying back pressure directly to the data source.

5.3 The Cedar protocol

The Cedar protocol is in some wayan early version of the REX protocol. Simple calls are carried
out in the same way as in REX. To make a call, the caller sends a call packet containing a call
identifier, data specifying the desired procedure and the arguments. The procedure returns a result
packet containing the same call identifier and the results. The protocol is analogous to the REX
protocol. This means that the same problems arise, which can be solved by the same strategies.
For example, if the called server has entered an infinite loop while executing a service the client
may wait forever, which is similar to local procedure call semantics. Like in REX local stable
clocks are needed to guarantee unique call identifiers.

There are however, some differences between REX and Cedar. In the Cedar protocol retrans­
mitted messages need to be acknowledged explicitly, whereas in REX implicit acknowledgements
are sufficient. This seems to make REX more appropriate for complicated calls (sessions) than
Cedar.

Another important difference is the exception handling facility in Cedar. At this point the
semantics of remote procedure calls differ from local procedure call semantics. The callee is per­
mitted to communicate only those exceptions that are defined in the exported interface. In this
way simplicity is gained at the expense of transparency.

Like REX Cedar also allows extensions for security mechanisms.

6 Concluding Remarks

In this report we have considered aspects of remote procedure call (RPC) design and illustrated
aspects of implementation by examining several examples. Although Rajdoot seems to be the
most complete protocol (it supports orphan detection and killing) it is hard to point out a 'best'
protocol. For instance, if synchronized clocks already have been implemented one might choose
a protocol like the Cambridge Ring protocol, because it is less complicated. In a purely object
oriented environment it is nice to have an object oriented protocol like REX. So, the environment is
an important factor in deciding what kind of RPC protocol should be implemented in a particular
distributed system.

At this point it is not yet clear what is the appropriate protocol for the DEDOS I project.
We suspect that, because of its numerous facilities (for instance orphan detection and killing),
Rajdoot might be a suitable choice. However, it may be advisable to redesign and implement
Rajdoot in an object oriented way (for instance by using the C++ programming language).

References

[Birr84] Birrell, A.D., Secure Communications Using Remote Procedure Calls, ACM Trans. on
Compo Systems, Vol. 2, No. 1(1984), pp 39-59.

1 DEDOS is a DEpendable Distributed Operating System, CUITeD.tly being developed at Eindhoven University of
Technology.

14

"

• ,
•
r

[Birr85] Birrell, A.D. and B.J. Nelson, Implementing Remote Procedure Calls, ACM Trans. on
Compo Systems, Vol. 3, No. 1(1985), pp 1-14.

[NeI81] Nelson, B.J., Remote procedure call, Ph.D. dissertation, Comput. Sci., Carnegie-Mellon
Univ., Pittburgh, PA, Rep. CMU-CS-81-119, 1981.

[Rajdoot] F. Panzieri and S.K. Shrivastava, Rajdoot: A Remote Procedure Call Mechanism Sup­
porting Orphan Detection and Killing, IEEE Transactions on Software Engineering,
Vol. 14, No. 1(1988), pp 30-37.

[REX88] D. Otway and E. Oskiewicz, REX: a remote erecution protocol for object-oriented
distributed applications, Proceedings 7th Int. Conf. on Distributed Computing Systems
(1988), pp. 113-118.

[ShriPan] Shrivastava, S.K. and F. Panzieri, Reliability Aspects of Remote Procedure Calls, in:
B.K. Bhargava ed. Concurrency Control and Reliability in Distributed Systems Van
Nostrand Reinhold 1987.

[Tan88] Tanenbaum, A.S., Computer Networks (lind edition), Englewood Cliffs, NJ: Prentice
Hall, 1988.

[Yap88] Yap, K.S., Fault Tolerant Remote Procedure Call, Proceedings 8th Int. Conf. on Dis­
tributed Computing Systems (1988), pp. 48-54.

15

In this series appeared :

No. Author(s)

85/01 R.H. Mak

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.MLJ.Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/07 R. Gerth
L. Shira

86/08 R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/13 R. Gerth
W.P. de Roever

Title

The formal specification and derivation of CMOS-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace structures.

The partition of an information system in several
systems.

A framewoIK for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM -like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFlP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
tlmf}dng object oriented systems (Fund. Informatica

86/14 R. Koymans

87/01 R Gerth

87/02 Simon J. Klaver
Chris F.M. Verbeme

87/03 G.J. Houben
J .Paredaens

87/04 T.Verhoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 R.Koymans

87/08 H.M.I.L. Schols

87/09 I. Kalisvaan
L.RA. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 I.C.S.P. van der Woude

87/14 I. Hooman

87/15 C. Huizing
R Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J.C.F. Wilmont

87/17 K.M. van Hee
G.-I.Houben
I.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage­
ment toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statechans.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces.

87/19 A.J.Seebregts Optimalisering van file allocatie in
gedistribueerde database system en.

87/20 G.J. Houben The R' -Algebra: An extension of an algebra
J. Paredaens for nested relations.

87/21 R. Gerth Fully abstract denotational semantics for concurrent
M. Codish PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the Milbius Sequence.

88/02 K.M. van Hee Executable Specification for Information Systems.
GJ. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples.

88/04 GJ. Houben The Nested Relational Algebra: A Tool to Handle
l.Paredaens Structured Information.
D.Tahon

88/05 K.M. van Hee Executable Specifications for Information Systems.
G.J. Houben
LJ. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Jnsensitive Communication.

88/07 C. Huizing Modelling Statechans behaviour in a fully abstract
R. Gerth way.
W.P. de Roever

88/08 K.M. van Hee A Formal model for System Specification.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aens A Tutorial for Data Modelling.
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Jnsensitive Circuits.

88/11 GJ. Houben A graphical interface formalism: specifying nested
J .Paredaens relational databases.

88/12 A.E. Eiben Abstract theory of planning.

88/13 A. Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.MM. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types.

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorboeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verboeff
J.T.Udding

89/6 T.Verhoeff

89/7 P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT. the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paraleU program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

89/13

89/14

89/15

89/16

89/17

90/1

90{l.

90/3

90/4

90/5

90/6

90n

90/8

90/9

90/10

90/11

90/12

90/13

90/14

90/15

AT.M.Aens
K.M. van Hee
M.W.H. Hesen

H.C.Haesen

J.S.C.P. van der Woude

AT.M.Aens
KM. van Hee

M.J. van Diepen
K.M. van Hee

W.P.de Roever-H.Barringer
C .Courcoubetis-D.G abbay
R.Genh-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

KM. van Hee
P.M.P. Rambags

R. Genh

A Peeters

J.A. Brzozowski
J.C. Ebergen

A.I.J.M. Marcelis

A.J.J.M. Marcelis

M.B. Josephs

A.TM. Aens
P.M.E. De Bra
KM. van Hee

M.J. van Diepen
KM. van Hee

P. America
F.S. de Boer

P.America
F.S. de Boer

KR. Apt
F.S. de Boer
E.R. Olderog

F.S. de Boer

F.S. de Boer

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

Formal methods and tools for the development of
distributed and real time systems, pp. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networlcs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A formal semantics for Z and the link between Z and the
relational algebra. p. 30. (Revised version of CSNotes 89{17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs. p. 7.

A proof system for the language POOL. p. 70.

Compositionality in the temporal logic of concurrent systems,
p. 17.

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

90/18 I.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

A fully abstract model for concurrent logic languages, p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences,
p.29.

Desigu and implementation aspects of remote procedure calls,
p. 15.

Two Case Studies in ExSpect, p. 24.

Tbe Nature of Delay-insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p.

	Abstract
	1. Introduction
	2. Key issues for RPC design
	2.1 Interface design
	2.1.1 Transparency
	2.1.2 Binding
	2.2 Client design
	2.2.1 Server crash and time outs
	2.2.2 Client crashes and orphans
	2.3 Server design
	2.3.1 Parallelism
	2.3.2 Fault tolerance
	2.4 Protocol design
	3. The Cambridge ring local area network
	3.1 Characteristics
	3.2 The protocol
	3.3 Clock management
	3.3.1 The broadcaster
	3.3.2 The time lord
	3.3.3 The synchronizer
	4. Rajdoot
	4.1 Characteristics
	4.2 Orphan handling
	4.2.1 Abnormal termination
	4.2.2 Client node crashes
	4.3 Concluding remarks
	5. REX: a remote execution protocol for object-oriented distributed applications
	5.1 The Distributed Applications Support Environment (DASE)
	5.2 The Remote Executions protocol (REX)
	5.2.1 Creation of associations in REX
	5.2.2 Synchronous, reliable interactions
	5.2.3 Asynchronous. unreliab
	5.2.4 Nested bidirectional calls and casts
	5.3 The Cedar protocol
	6. Concluding remarks
	References

