1,244 research outputs found

    Threat Scenarios and Monitoring Requirements for Cyber-Physical Systems of Flexibility Markets

    Full text link
    The ongoing integration of renewable generation and distributed energy resources introduces new challenges to distribution network operation. Due to the increasing volatility and uncertainty, distribution system operators (DSOs) are seeking concepts to enable more active management and control. Flexibility markets (FMs) offer a platform for economically efficient trading of electricity flexibility between DSOs and other participants. The integration of cyber, physical and market domains of multiple participants makes FMs a system of cyber-physical systems (CPSs). While cross-domain integration sets the foundation for efficient deployment of flexibility, it introduces new physical and cyber vulnerabilities to participants. This work systematically formulates threat scenarios for the CPSs of FMs, revealing several remaining security challenges across all domains. Based on the threat scenarios, unresolved monitoring requirements for secure participation of DSOs in FMs are identified, providing the basis for future works that address these gaps with new technical concepts.Comment: Published in the proceedings of the 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition - Latin America (IEEE PES GTD Latin America

    On the Definition of Cyber-Physical Resilience in Power Systems

    Full text link
    In recent years, advanced sensors, intelligent automation, communication networks, and information technologies have been integrated into the electric grid to enhance its performance and efficiency. Integrating these new technologies has resulted in more interconnections and interdependencies between the physical and cyber components of the grid. Natural disasters and man-made perturbations have begun to threaten grid integrity more often. Urban infrastructure networks are highly reliant on the electric grid and consequently, the vulnerability of infrastructure networks to electric grid outages is becoming a major global concern. In order to minimize the economic, social, and political impacts of power system outages, the grid must be resilient. The concept of a power system cyber-physical resilience centers around maintaining system states at a stable level in the presence of disturbances. Resilience is a multidimensional property of the electric grid, it requires managing disturbances originating from physical component failures, cyber component malfunctions, and human attacks. In the electric grid community, there is not a clear and universally accepted definition of cyber-physical resilience. This paper focuses on the definition of resilience for the electric grid and reviews key concepts related to system resilience. This paper aims to advance the field not only by adding cyber-physical resilience concepts to power systems vocabulary, but also by proposing a new way of thinking about grid operation with unexpected disturbances and hazards and leveraging distributed energy resources.Comment: 20 pages. This is a modified versio

    Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions

    Get PDF
    The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical, and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the most critical assets of the distribution grid. Combined with machine learning algorithms, the demands put on the distribution grid by the energy and mobility revolutions can be handled. In this paper, we review the current state-of-the-art of all aspects of condition monitoring for medium voltage switchgear. Furthermore, we present an approach to develop a predictive maintenance system based on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure can adapt these new needs on an economic scale

    Using Reputation Based Trust to Overcome Malfunctions and Malicious Failures in Electric Power Protection Systems

    Get PDF
    This dissertation advocates the use of reputation-based trust in conjunction with a trust management framework based on network flow techniques to form a trust management toolkit (TMT) for the defense of future Smart Grid enabled electric power grid from both malicious and non-malicious malfunctions. Increases in energy demand have prompted the implementation of Smart Grid technologies within the power grid. Smart Grid technologies enable Internet based communication capabilities within the power grid, but also increase the grid\u27s vulnerability to cyber attacks. The benefits of TMT augmented electric power protection systems include: improved response times, added resilience to malicious and non-malicious malfunctions, and increased reliability due to the successful mitigation of detected faults. In one simulated test case, there was a 99% improvement in fault mitigation response time. Additional simulations demonstrated the TMT\u27s ability to determine which nodes were compromised and to work around the faulty devices when responding to transient instabilities. This added resilience prevents outages and minimizes equipment damage from network based attacks, which also improves system\u27s reliability. The benefits of the TMT have been demonstrated using computer simulations of dynamic power systems in the context of backup protection systems and special protection systems

    Vulnerability and resilience of cyber-physical power systems: results from an empirical-based study

    Full text link
    Power systems are undergoing a profound transformation towards cyber-physical systems. Disruptive changes due to energy system transition and the complexity of the interconnected systems expose the power system to new, unknown and unpredictable risks. To identify the critical points, a vulnerability assessment was conducted, involving experts from power as well as information and communication technologies (ICT) sectors. Weaknesses were identified e.g.,the lack of policy enforcement worsened by the unreadiness of involved actors. The complex dynamics of ICT makes it infeasible to keep a complete inventory of potential stressors to define appropriate preparation and prevention mechanisms. Therefore, we suggest applying a resilience management approach to increase the resilience of the system. It aims at a better ride through failures rather than building higher walls. We conclude that building resilience in cyber-physical power systems is feasible and helps in preparing for the unexpected

    Reputation-Based Trust for a Cooperative, Agent-Based Backup Protection Scheme for Power Networks

    Get PDF
    This thesis research explores integrating a reputation-based trust mechanism with an agent-based backup protection system to improve the performance of traditional backup relay methods that are currently in use in power transmission systems. Integrating agent technology into relay protection schemes has been previously proposed to clear faults more rapidly and to add precision by enabling the use of adaptive protection methods. A distributed, cooperative trust system such as that used in peer-to-peer file sharing networks has the potential to add an additional layer of defense in a protection system designed to operate with greater autonomy. This trust component enables agents in the system to make assessments using additional, behavioral-based analysis of cooperating protection agents. Simulation results illustrate the improved decision-making capability achieved by incorporating this cooperative trust method when experiencing abnormal or malicious communications. The integration of this additional trust component provides an added push for implementing the proposed agent-based protection schemes to help mitigate the impact from wide-area disturbances and the cascading blackouts that often follow. As the push for electric grid modernization continues, an agent-based trust system including this type of behavioral-based analysis will also benefit other smart components connecting critical grid control and monitoring information systems

    Reliability Evaluation and Defense Strategy Development for Cyber-physical Power Systems

    Get PDF
    With the smart grid initiatives in recent years, the electric power grid is rapidly evolving into a complicated and interconnected cyber-physical system. Unfortunately, the wide deployment of cutting-edge communication, control and computer technologies in the power system, as well as the increasing terrorism activities, make the power system at great risk of attacks from both cyber and physical domains. It is pressing and meaningful to investigate the plausible attack scenarios and develop efficient methods for defending the power system against them. To defend the power grid, it is critical to first study how the attacks could happen and affect the power system, which are the basis for the defense strategy development. Thus, this dissertation quantifies the influence of several typical attacks on power system reliability. Specifically, three representative attack are considered, i.e., intrusion against substations, regional LR attack, and coordinated attacks. For the intrusion against substations, the occurrence frequency of the attack events is modeled based on statistical data and human dynamics; game-theoretical approaches are adopted to model induvial and consecutive attack cases; Monte Carlo simulation is deployed to obtain the desired reliability indices, which incorporates both the attacks and the random failures. For the false data injection attack, a practical regional load redistribution (LR) attack strategy is proposed; the man-in-the-middle (MITM) intrusion process is modeled with a semi-Markov process method; the reliability indices are obtained based on the regional LR attack strategy and the MITM intrusion process using Monte Carlo simulation. For the coordinated attacks, a few typical coordination strategies are proposed considering attacking the current-carrying elements as well as attacking the measurements; a bilevel optimization method is applied to develop the optimal coordination strategy. Further, efficient and effective defense strategies are proposed from the perspectives of power system operation strategy and identification of critical elements. Specially, a robustness-oriented power grid operation strategy is proposed considering the element random failures and the risk of man-made attacks. Using this operation strategy, the power system operation is robust, and can minimize the load loss in case of malicious man-made attacks. Also, a multiple-attack-scenario (MAS) defender-attack-defender model is proposed to identify the critical branches that should be defended when an attack is anticipated but the defender has uncertainty about the capability of the attacker. If those identified critical branches are protected, the expected load loss will be minimal

    A Cacophony of Speech, Law, and Persona: Battling Against the Vortex of #MeToo in France and the U.S.

    Get PDF
    The pervasive proliferation of rumors, through #MeToo and #BalanceTonPorc, communicates meaningful and meaningless-making processes on misconducts both in the French and U.S. con-texts. Such rumors have transformed the online practices by culti-vating both verbal and non-verbal hate speech free and/or free speech. This cacophony of speech, law, and persona has led to a debate relayed on social media platforms, exposing people to a dan-ger zone mostly based as shame, hate, fear, or even destruction, as anonymity and due process no longer prevail
    • …
    corecore