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Abstract: The development of renewable energies and smart mobility has profoundly impacted
the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of
the distribution grid, especially medium voltage switchgear. This calls for improved maintenance
strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on
current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical,
and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the
most critical assets of the distribution grid. Combined with machine learning algorithms, the demands
put on the distribution grid by the energy and mobility revolutions can be handled. In this paper,
we review the current state-of-the-art of all aspects of condition monitoring for medium voltage
switchgear. Furthermore, we present an approach to develop a predictive maintenance system based
on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure
can adapt these new needs on an economic scale.

Keywords: energy revolution; condition monitoring; switchgear; infrared sensor; predictive
maintenance; machine learning; thermal monitoring; business model

1. Introduction

Germany’s energy policy requires the electricity system to be more efficient,
environmentally friendly, and a source of affordable energy for everyone [1,2]. At the same time,
the upcoming mobility revolution has a significant impact on the use of the grid. As a result, there will
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be substantial changes to our distribution grid system’s characteristics. On the generation side,
renewable energy will eventually replace a large portion of current conventional energy production
from fossil fuels. Therefore, we face a decentralization of the creation of energy. Centralized fossil fuel
power plants provided stable and easily controllable energy production. In contrast, many renewables,
such as wind and solar, can destabilize the production through their unplannable production patterns
that are highly weather-dependent [3,4]. Both production overloads and gaps will occur. On the
demand side, electric mobility will result in higher consumption peaks and a higher demand for
energy. This is caused by coupling mobility to the power sector and the specific consumption patterns
of mobility applications. The combination of these developments leads to a major challenge for the
distribution grid.

To accomplish this challenge, system operators must renew the assets in their grids to increase
the system’s flexibility [5,6]. Although Germany’s grid is currently one of the most stable grids in
the world, some of its essential components will have to be replaced. There is an unusually high
renovation demand on the medium voltage range because increased electric mobility and decentralized
electricity production mainly affect switching patterns and peak performances within the medium
voltage range [7,8]. We must put in place an efficient monitoring system for both the existing and the
new components to avoid disturbances and failures.

To achieve the necessary grid stability, grid operators must improve monitoring and asset
communication so that network operations can be as flexible as possible. Because of the high
occurrences and irregularities of switching events, the essential components for power grids, e.g.,
switchgear (Section 2.1) and circuit breakers, cannot be maintained at fixed intervals anymore.
In general, there are three strategies for maintaining industrial equipment: reactive, preventive,
and predictive maintenance [9], visualized in Figure 1. When applying reactive maintenance, no action
is taken until machines or equipment fail. In this case, the full lifetime of the system is exploited,
but severe failures can occur unexpectedly, which will result in expensive maintenance and potentially
dangerous situations.

Figure 1. Example sketch of the maintenance strategies: reactive maintenance, where maintenance is
applied after a failure occurred; preventive maintenance, where maintenance is always applied when
the health index reaches 25%; predictive maintenance, where maintenance is done directly before the
failure occurs.
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Preventive maintenance is triggered based on statistics, e.g., hours of operation, or elapsed time
since the last maintenance, leading to periodic maintenance processes, where the actual conditions
of the equipment are not considered. Usually, there is some healthy lifetime left at the points of
maintenance, and there is a risk of over-maintenance, e.g., excessive lubrification of moving parts.

Predictive maintenance combines condition monitoring, system efficiency, and other indicators to
identify failures or loss of efficiency in the future. Maintenance is scheduled based on the monitored
status of the equipment so that changes in its condition may trigger corrective actions. This exploits the
lifetime of the system to a maximum without failing. Predictive maintenance combines cost-, work-,
and environmental efficiency, making it the desired maintenance strategy to use on the supply grid.
Unlike preventive maintenance, predictive approaches require intelligent algorithms to determine the
most effective and risk-free maintenance plan. These algorithms can be based on simulations or AI
methods such as expert systems or machine learning [10]. In fact, predictive maintenance is currently
the most common application of AI in the industrial sector [11,12].

In medium voltage switchgears, three main challenges can be pointed out by applying predictive
maintenance concepts [13]. The first difficulty is to find suitable sensors that are capable to measure
the critical physical quantities in a reliable and a robust way over the lifetime of the switchgear.
Additionally, the sensors must withstand extreme environmental conditions under which switchgears
are operated all over the world. A further challenge is given by the lack of measurement data.
For temperature monitoring, continuous measurements are rare or even not existent for the switchgear
over its long lifetime. Regarding breaker drive monitoring, switching operations are only performed
few times a year mostly for maintenance purposes. Therefore, measurement data is only rarely
available for both use-cases which builds the fundament for the development of AI/ML algorithms.
In breaker drive monitoring, the situation is further exacerbated by the fact that the duration of
a switching operation is extremely short in the range of tens of millisecond. Thus, the interpretation of
the measured data and the development of reliable prediction algorithms is very challenging.

To create an optimized computerized maintenance management system (CMMS) [14] for predictive
maintenance in the distribution grid, grid operators must provide and analyze the right data.
This aligns with the interest of operators to increase awareness in predictive maintenance and condition
monitoring [13,15]. For data acquisition, remote terminal units (RTU) and sensor technologies are
essential. As an example, temperature monitoring via infrared can provide data for early failure
detection cost-efficiently [16]. For the data analysis, a defragmented infrastructure for big data analysis
and the use of artificial intelligence (AI) methods [17] help to simplify and initiate decision support
from complex industrial data sets [18–20]. Combining methods of industrial AI with novel sensing
technology enables new economical, technical solutions, such as condition monitoring and predictive
maintenance (Figure 2). Furthermore, the combination of the data analysis with geographic information
systems (GIS) accelerates the maintenance process [21].

Figure 2. Novel sensors combined with industrial artificial intelligence methods can lead to more
economical condition monitoring solutions.

Within this work, we present an industrial use case, based on the current and future situation of
Germany’s power distribution grid. This paper builds upon these changes and the resulting challenges,
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also addressed in the FLEMING (https://www.projekt-fleming.de) research project. The focus lies on
efficient predictive maintenance for the essential components of the grid’s medium voltage range.

In the following, we describe our approach to predictive maintenance of medium voltage
switchgear systems. The reasoning is illustrated in Figure 3. Existing and novel sensors build the
technical foundations for this approach. The signals generated in these sensors are processed in
condition monitoring platforms, e.g., in the form of mechanical systems attached to switchgear systems.
Using the platform, we determine the current condition state of the different parts of the switchgear.
Maintenance and operations actions can be derived from the condition. Predictive algorithms utilize
machine learning methods and process the data from the condition monitoring platform. For this
purpose, the data can be linked to further data sources, e.g., other switchgear or sensors, to predict
changes in asset condition in the future. This enables the planning of an improved maintenance strategy
for the individual switchgear. For industrial players to adopt such technological advances, a suitable
and scalable business model for condition monitoring and predictive maintenance of medium voltage
switchgear needs to be developed and tested.

Figure 3. A comprehensive view of condition monitoring and predictive maintenance of medium
voltage switchgear.

The proposed approach corresponds with more holistic concepts like the digital twin and
cyber-physical systems (CPS) [22]. These concepts cover a broader range of the industrial asset life-cycle,
i.e., from engineering and commissioning to operations and maintenance. Applications within CPS,
so-called smart services [23], therefore range from integrated engineering tools, over production
optimizations to predictive and prescriptive maintenance. The basis for these smart services is
multi-model data from a wide variety of computer systems used in the different life-cycle phases by
the asset manufacturers, integrators and operators [24]. The data are to be collected in an industrial
internet of things (IIoT) fashion and form a digital twin of the asset in the virtual, or cyber, world.
Originally, the concept of digital twins focusses on the engineering phase of the asset life-cycle in
production systems [25], but more and more extends to all product life-cycle phases [26].

In the present use-case, the medium-voltage switchgear is the physical asset, the condition data can
be considered its digital twin in the virtual world, and the predictive maintenance applications are the
smart service. The use-case is currently limited to the operations and maintenance life-cycle phase but
may utilize data from other phases in the development of the smart service, i.e., simulation know-how
of the switchgear for the development of machine learning applications. This is mostly due to

https://www.projekt-fleming.de
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the brownfield market, and thus retrofit solutions are to be favored over novel systems addressing
greenfield installations.

This review intends to combine a survey of real-world industrial problems with an overview of
technological state-of-the-art. Some remarkable challenges of energy and mobility revolutions are
elaborated, and promising solutions, e.g., regarding the future of switchgear operations, are discussed.
These solution proposals are planned to be investigated in the near future to enable transformations in
the energy sector, which have been identified as of public interest.

The structure of the paper is as follows: First, we introduce switchgear function and its components,
as well as failure modes and monitoring approaches for each switchgear component (Section 2). We then
describe the sensors technology required for such monitoring approaches (Section 3), followed by
an overview of the state-of-the-art machine learning methods for predictive maintenance as well as
a motivation for using machine learning instead of alternative approaches (Section 4). In Section 5,
a service-based business approach is detailed, which can leverage recent technological developments.
In the end, we discuss our findings.

2. Technology: Distribution Grid Assets and Monitoring

Switchgear is an essential element in an electrical grid that has both protective and control roles.
With switchgear, it is possible to interrupt an electrical circuit, e.g., to prevent further damage after
a fault or to modify parts of the circuit. There are many different types of switchgear. In this paper,
we focus on medium voltage switchgear (Figure 4) and its key component, the circuit breaker.

Figure 4. Medium voltage switchgear with five panels.

2.1. Medium-Voltage Switchgear

Medium voltage switchgear deployed inside closed buildings is a so-called line-up consisting of
typically tens of switchgear panels (Figure 4). Often, air is used as an insulation medium, allowing for
greater flexibility in designing and extending the line-up. The main functionality and requirements of
a medium voltage switchgear panel are the following: Segregation of electrical failures, e.g., arc flash,
inside of one switchgear, guarantee safe operation by persons, serviceability & compactness, ability to
disconnect and ground parts of the switchgear, long-time operation for several decades and limitation
of heat-up of current-carrying parts. These aspects mainly dictate the fundamental design of a modern
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medium voltage switchgear. The entire electrical system is metal-enclosed, with doors often supervised
by interlock systems. The switchgear is protected towards its neighboring switchgear by segregation
walls and may be equipped with an air blast duct to guide away hot gas from an arc flash via
a chimney integrated into the switchgear. Typically, switchgear is furthermore divided into several
compartments: cable, breaker, and bus bar compartment for the high voltage carrying components (e.g.,
current-carrying, opening, and closing, insulation) as well as a compartment for the low-voltage control
equipment (Figure 5). The leading protection equipment, e.g., circuit breakers, can be removed from
the switchgear by a sliding mechanism allowing to take out the breakers for service or replacement.
Additional functionality, e.g., current and voltage transformers and sensors, are integrated into the
switchgear. For safe service operation and reconfiguration, the switchgear is typically equipped with
an earthing switch.

Figure 5. A medium voltage switchgear panel.

Generally, the medium voltage line-up consists of a central bus bar system running through all
panels of the line-up. The central system consists of three horizontal individual bus bars, one for each
phase. Inside each panel, vertical feeder bus bars are connected to the central system to connect to
the components in the individual panel electrically. The individual panels can be configured as an
incomer, feeder, bus-coupler, etc. A large variety of panel topologies can be found in the field as its
detailed geometry highly depends on rated voltage (7.2 kV–36 kV) and current ratings (630–3150 A).

2.2. Breaker Drive Monitoring

In switchgear, the critical task of a circuit breaker is to protect the electrical current from damage
by interrupting fault currents and isolating faulty parts from the power grid. From a mechanical point
of view, the circuit breaker is often grouped into four subsystems: drive, linkage, pole, and housing
(Figure 6a). Spring-driven mechanisms are widely used in most of the applications where the
drive subsystem provides the energy for closing and opening operations. The linkage represents
the transmission mechanism between the drive and the pole that contains the electrical contacts
interrupting the fault currents. The metal housing surrounds the drive and the linkage where the pole
is enclosed with unique insulating material.

A German study of failure data of electrical components in the medium voltage distribution
grid [27,28] reveals that the circuit breaker is the main component prone to failure in medium voltage
switchgear. About 90% of all circuit breaker failures are mechanical [27,28] and therefore occur in the
operating mechanism [29] and the breaker drive, respectively (Figure 6b).
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Figure 6. (a) Typical medium voltage circuit breaker (CAD model); (b) Operating mechanism failures
of circuit breakers according to [29].

The IEEE guideline [30] gives a generic overview of several failure modes that may occur for
circuit breakers in general. Each failure mode is described in detail with possible causes, effects,
and characteristics, as well as offering monitoring options. Based on [30,31], the authors in [13] identify
the most critical failure modes for today’s medium voltage circuit breakers, also with a focus on
the breaker drive. Several methods can be concluded from the state-of-the-art for monitoring the
breaker drive. One method is to evaluate the contact travel time of closing and opening operation,
which indicates the need for maintenance of the breaker drive [32]. The detailed measurement of the
contact travel gives further insight into the breaker health status [33]. A further common method
is to analyze the vibration signals at one location of the circuit breaker during closing and opening
operations [34,35]. Mechanical anomalies can be detected by comparing it with a healthy state.
Signal processing methods like short-time FFTs and Wavelet analyses can support failure detection [36].

However, the review of the technical maturity of monitoring options [13] concludes that the
condition monitoring and diagnostics of the breaker drive still represents an open research topic. This is
because the kinematic chain to the poles, representing the breaker drive, is very complex and consists
of many mechanical parts (joints/bearings, springs, dampers, lever arms, sheet metal, rubber stops,
electrical contacts, etc.) which may potentially fail.

2.3. Thermal Monitoring

The passage of electric current through a conductor generates heat in a process called Joule heating
(Figure 7). According to Joule’s first law, both the current as well as the resistance influence the amount
of heat generated: P ∝ I2R. Since many faults (e.g., deterioration, lose connections, or corrosion)
increase the resistance of electrical contacts, their presence can be detected via temperature monitoring
(e.g., [16,37–39]). Moreover, an increased current will also produce more heat, which can speed up
deterioration and reduce the life expectancy of electrical equipment [16].
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Figure 7. Current in cables visible due to increased heat.

In switchgear, several electrical connections are established by screwing together metal conductors
such as the busbars. These connections can become loose due to ambient vibration, e.g., if mounted on
nautical vessels or next to heavy-duty production facilities. Another common cause of looseness is the
attachment of the screws at the wrong torque, e.g., after a maintenance operation.

2.4. Partial Discharge Monitoring

According to IEC standard 60,270 [40], partial discharge (PD) is a localized dielectric breakdown
of a small portion of an electrical insulation system under high voltage stress, which partially bridges
the gap between two conductors which are put on different electrical potential. PD is generally divided
into two major sub-groups, internal and external PD, depending on their occurrence [41].

These discharges indicate that locally the electric insulation cannot withstand the electric field
stress applied to them. While the correlation of PD occurrence with a subsequent imminent breakdown
of an electric system is often not clear, PDs are known to be visible in a large number of cases,
where a breakdown occurred later. PDs usually have small magnitude, but over time they can cause
progressive deterioration of insulation. The electrical insulation subjected to high electrical fields starts
to degrade due to mechanical, thermal, and electrical stress. PD is both symptomatic of insulation
breakdown and a mechanism for further insulation damage. Therefore, the detection of PD strength and
type can be used to evaluate the instantaneous condition of the insulation. Furthermore, its degradation
over time (see, e.g., [42] and references therein) may be predicted based on sensing a gradual increase
in PD activity. Sensing concepts for PD detection are briefly described in Section 3.3.

A specific field of recent interest [43] which will be addressed by studies in this project, is to
gather data to be able to derive correlations between PD activity and power quality. The ongoing trend
towards renewables and electrical mobility, both of which are inherently coupled with an increase in the
use of semiconductor-based switching power converters, changes the electrical stress that the insulation
system must undergo. While previously, the voltage on an AC network contained the rated frequency
predominantly with low harmonic content and flicker, the situation has changed with the increase in
power electronic-based converters. Not only has this caused an increase in the harmonic content (in
the total harmonic distortion, or THD [44]), switching transients has also increased. The critical case of
switchgear, which is used as supplies for large electric vehicle charging stations, is an example where
this phenomenon could become increasingly relevant.
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3. Technology: Sensors

The interest of operators of electrical equipment and machinery in condition monitoring and
predictive maintenance is continuously increasing (cf. Section 1). The primary motivation is the
avoidance of catastrophic failures, the reduction of operational cost, and the lifetime extension of the
equipment. A key enabler for condition estimation and prognostic systems is sensor information
capturing the relevant physical quantities. In the context of medium voltage switchgear, these are:
(1) thermal status, (2) mechanical aspects of the switching and control equipment, as well as (3)
partial discharge.

3.1. Infrared Radiation Detectors for Remote Temperature Measurement

Thermal considerations are critical design criteria for electrical switchgear. Therefore, a continuous
assessment of the thermal state is an important input to condition monitoring and prognosis
systems. Several contacting temperature measurement techniques for electric equipment have
been employed, based on surface acoustic wave sensors [45], RFID-sensors [46], or wireless
sensors [47]. Contactless methods, such as infrared thermography (IRT) [48], have several advantages.
Most importantly, the measurement does not interfere with the dielectric requirements of the equipment
since it is non-contact [16,49–51] and free from electromagnetic interference [16,52] due to placement in
regions of low magnetic or electric field. Furthermore, there is no need to shut down an energized system
for inspection [16,53–55]. Moreover, IRT can cover a large area [16,51,54] unlike point measurement
sensors. This drastically reduces the number of sensors needed.

Generally, there are three measuring principles for remote infrared temperature measurements:
bolometric, pyroelectric, and thermoelectric. Pyroelectric sensors utilize the pyroelectric effect,
which changes the spontaneous polarization in the pyroelectric crystal. Pyroelectric sensors are
sensitive to changes in the IR scenery only. That means for constant measurement, modulation of the
image on the sensor is required. Usually, this is realized by a “chopper wheel,” which covers the aperture
of the sensor in a given frequency. Besides that, pyroelectric sensors show a high dependency on
ambient temperature changes. Bolometers utilize the temperature dependency of electrical resistance,
structured on a thin membrane. Incoming radiation heats the membrane and therefore changes
the resistance. For high detectives, a high-temperature coefficient of the resistor material is needed,
since the temperature changes of the membrane are relatively small. Therefore, ambient temperature
changes will cause dramatic offset effects, if not compensated appropriately, as these temperature
changes can be several magnitudes higher than the actual measurement signal caused by infrared
radiation. Consequently, many microbolometers utilize a “shutter”, an element which can cover the
optical path of the sensor and is used for an offset adjustment.

Thermoelectric sensors like thermopiles generate an output voltage proportional to the detected
infrared radiation. In general, they consist of a series of thermocouples, structured on a thin membrane.
The cold junctions of the thermocouples are structured on a heat sink to ensure a high-temperature
gradient between the hot and cold junctions when the incoming infrared radiation changes the
membrane temperature. Thermopiles (Figure 8a) are long time stable and do not require a mechanical
movable element like a shutter or chopper. Besides that, the drift of sensitivity and offset is shallow,
which makes them the ideal technology for long term monitoring and radiometric measurement.
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Figure 8. (a) Different optics and enclosures of the thermopile array sensors; (b) thermopile array
sensors in different resolutions ranging from 8 × 8 to 120 × 84.

All these sensor principles are available as a single point sensor or as arrays of several pixels,
resulting in infrared images. Image sensors usually provide some monolithic integrated processing
such as amplification, analog-digital-conversion units (ADCs), calibration data, and even sometimes
image processing (Figure 8b).

To ensure a reliable, long-term stable high measurement accuracy over an extensive ambient
temperature range, the thermopile technology was chosen in the FLEMING project.

3.2. Sensors for Breaker Drive Monitoring

In the development of breaker drives, endurance tests are performed for the kinematic chain
from the operating mechanism to the poles where the travel curve, speed, torsion, contact pressure,
bouncing as well as vibrations are evaluated [56]. Therefore, the reliable and robust monitoring
of breaker drives needs to be based on those quantities. The position of the moving contact and,
accordingly, the travel curve is preferred to be measured directly by a linear transducer/potentiometer
at the pushrod [33]. Figure 9a outlines a typical travel curve measurement for the closing and the
opening operation of a circuit breaker. From the travel curve, the opening and closing speeds of the
breaker drive are usually calculated. Alternatively, rotational transducers are used to derive the travel
curve from the rotation of the main shaft, which only gives an estimation of opening and closing
speeds [15]. The main characteristics of the breaker drive can be extracted from the travel curve for
the development of a monitoring and diagnostics approach. In [57], new kinds of resistance strain
force sensors are developed to measure the contact force in the operating mechanism of the circuit
breaker. Furthermore, acceleration sensors offer the possibility of analyzing the vibrations of the circuit
breaker [34,35]. Figure 9b shows representative vibration measurements at the circuit breaker housing
for the closing and the opening operation. By performing signal processing methods and developing
algorithms, the vibration signals can be used to detect mechanical anomalies of the breaker drive.
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Figure 9. Monitoring options with possible sensor solutions: (a) Typical travel curve measured by
a potentiometric position transducer; (b) Typical housing vibrations of a circuit breaker due to switching
operations measured by a piezoelectric accelerometer. Source: Schematic measurements derived from
own (ABB) tests of circuit breakers.

Further condition assessment methods and the developed sensing technology can be taken
from [15], which provides a comprehensive but not exhaustive overview of relevant research work
in the area of high voltage and medium voltage circuit breakers. To establish a robust and reliable
monitoring and diagnostics system, sensors must be further developed to fit the requirements for
measuring the main characteristics of a breaker drive.

3.3. Sensors for Partial Discharge Monitoring

As discussed in Section 2.2, partial discharge (PD) measurements are among the main measurement
techniques to assess the health of the electrical insulation in high voltage equipment.

Several different measurement systems or approaches exist and are well-documented in literature
and standards (cf., e.g., [58] and references cited therein, in particular [40,59,60].) [60] Capacitive,
inductive, UHF/VHF, acoustic, and optical approaches are options to detect PD, often with the additional
aim of identifying the short pulses corresponding to the discharges occurring at critical voltages or
times. The main aim of such an analysis is to identify the defect concerning either its type, magnitude,
or its origin. The localization of the origin of the defect is particularly crucial for large high or medium
voltage equipment, to enable selective repair or replacement.

A candidate for carrying out tests is an electro-magnetic, capacitive-coupling measurement system
like the one given in [60]. Within the scope of this project, PD measurements will be carried out using
both standard capacitive and inductive coupling methods together with high-end PD acquisition
systems as well as the sensor mentioned above. Signal processing methods could then be used in
the post-processing stage to evaluate PD activity. The sensor will then be benchmarked against the
high-end PD acquisition systems.

4. Technology: Machine Learning for Predictive Maintenance

Artificial intelligence and autonomy are heavily discussed topics in politics, business networks,
as well as industry associations and bodies [61]. In the industrial environment, AI seems to be following
Industry 4.0 [62–64] as the next big hype. It is enhancing industrial systems from automation to
production optimization to supply chain management [65,66]. Furthermore, industrial players are
building on advancing autonomy in industrial systems through the application of AI methods [66–68].

In the previous section, different technologies have been shown, which can be used to monitor the
condition of assets of the distribution grids and transfer planning information to a CMMS. These sensor
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data can then be used to make predictions about the health state of the system, or how much productive
time is left until a failure occurs (RUL – remaining useful lifetime [69]). This information can then be
used to schedule maintenance in advance of the predicted failure. In general, those techniques are
used to avoid unplanned downtimes, which results in the more effective usage of resources.

Of course, there are alternatives to machine learning approaches, which have different advantages
and disadvantages. Expert systems are based on a set of human-defined rules. They collect and
conserve the knowledge of multiple experts and use it to make decisions. Simulation-based systems
follow a similar approach. Simulations use the laws of physics and models of the system under
observation to predict future states. The strength of both these approaches is their foundation in
explainable principles that can be used to rationalize decisions. However, the cost of knowledge
acquisition can be quite high. In our example, building adequate models for all types of switchgear is
a Herculean task that few are willing or able to undertake.

Machine learning on the other hand has the advantage that it can (theoretically) work without any
domain knowledge if enough data is available. With today’s technology, such data can be collected
automatically at low cost. There is a major caveat, however, in that the complete data covering all
states is rarely available.

For these reasons, we see the use of data-driven approaches as a key enabler for industrially
scalable systems. Still, human expertise can (and must) augment a machine learning approach and
reduce the required amount of data through clever feature engineering. A non-expert would need
to collect all data related to switchgear and would suffer heavily from the curse of dimensionality.
Expert knowledge on the other hand can help to focus on the promising data sources and eliminate
noise values. In the remainder of this section, we describe the principles of machine learning as used
in our vision.

4.1. Data

In predictive maintenance, one usually deals with time-series data, which is collected from one
(univariate) or multiple (multivariate) sensor(s) and contains dependencies in time. The training data
can be collected from different settings, like reactive or preventive maintenance (Section 1). Using data
collected in a reactive maintenance setting is an advantage for the learner, as the characteristics
of failures can be found in the data. Therefore, precise predictions can be expected. If data from
a preventive maintenance setting is used for machine learning, usually there is some healthy lifetime left
at the point of maintenance, which will not be exploited. That is a disadvantage for machine learning,
as no information about the failure could be collected, which makes precise predictions difficult.

4.2. Preprocessing

An integral part of machine learning is to design a feature representation carrying information
that can be exploited by a learning algorithm. One of the major problems of this part is the variability
in length and measurement frequency of sensors often found in time series data, since many learning
algorithms assume fixed-length feature vectors. An elegant way of tackling this problem is the use of
tsfresh [70] which automatically constructs various features motivated by existing research and offers
methods to choose from such a generated set. Alternatively, due to the recent rise of neural networks
and deep learning, various attempts have been made to use architectures for creating fixed-length
feature representations for time series data, for example, using an LSTM [71]. For more methods,
we refer to [72].

Once such a fixed-length but potentially significant representation has been computed, one usually
tries to limit the number of features to a reasonable amount to keep learning computationally tractable
and to avoid the curse of dimensionality [73], while minimizing loss of relevant information concerning
the original data. A common method to accomplish this is the Principal Component Analysis [74],
creating new features as combinations of original ones, and only select those new features explaining
most of the variance in the data.



Sensors 2020, 20, 2099 13 of 24

Frequency data can be extracted by decomposing any signal into a sum of periodic components,
sinusoidal functions, which can be used to transform the signal from the time domain to the frequency
domain. The process of discovering the frequencies at which a signal oscillates by transforming it to
the frequency domain is called the Fourier Transform. For discrete signals, the Fourier Transform is
usually calculated using the Fast Fourier Transform (FFT) algorithm [75]. Similarly, the Power Spectral
Density (PSD) describes the frequency spectrum of a signal. Besides, it also factors in the power
distribution at each frequency bin, so that the surface below the frequency peaks correspond to the
power distribution at each frequency [76]. Importantly, although FFTs have a very high resolution
in the frequency domain, they do not provide any information about the time domain. In other
words, the FFT tells us at which frequencies the signal oscillates, but not when the oscillations occur.
Hence, performing an FFT is most suitable when the frequency spectrum is stationary as opposed to
time-dependent. By contrast, a Wavelet Transformation has both frequency and temporal resolution.
It is better suited for analyzing signals with a dynamic frequency spectrum, i.e., when the frequency
spectrum changes over time. The Wavelet Transform uses functions that are localized in time that are
convolved with the original signal.

IRT-based data also needs to be preprocessed with a series of algorithms. For example, IRT images
are typically low-contrast. Since most object-recognition algorithms rely on color or brightness, measures
to improve the contrast are often useful (see [77] or [78] as examples). Furthermore, especially at small
resolutions, border pixels tend to be quite noisy. If an approach based on histograms, max/min values,
and similar features is to be used, these pixels must be removed to avoid false conclusions.

4.3. Machine Learning for Predictive Maintenance

There are different typical targets for prediction, which will be described in the following.
One target is to predict the health state of a system, e.g., good, bad, or worse, where the last state usually
describes a faulty system. This prediction can also be used to estimate the remaining useful lifetime of
a system. [79] use a support vector machine [80] to predict the probability distribution over a set of
health states. Combined with the average RUL of the historical data of each state, a weighted sum of
the average historical RULs for each health state is weighted by its associated probability, to receive
a RUL prediction. [81] use a multiple binary classifier approach, where each classifier predicts healthy
or faulty for a different prediction horizon. For each prediction horizon, the cost of maintenance is
computed based on the probability of unplanned breaks and the probability of unexploited lifetime.
The returned RUL equals the prediction horizon with the cheapest costs.

Another way is to predict the health index of the system, which describes the degradation of
a system. [82] use a recurrent neural network (RNN) [83] to get a feature representation for the time
series. This feature vector was used to train a k-nearest neighbor [84] algorithm. At prediction time,
the RUL is estimated based on the weighted average of the RULs of the k most similar health index
curves of the training process.

There are also approaches to predict the RUL of the system directly. One approach is to first divide
each instance into fixed-size non-overlapping windows, which are labeled with the corresponding
RUL given by the instance. Based on these training instances, a support vector machine is trained.
At prediction time, the given instance is also divided into the same fixed size windows, which overlap.
For each of these instances, a support vector machine is used to predict the RUL. The returned value of
this approach is the average of all RULs predicted for the windows of the given instance [85].

4.4. Artificial Intelligence Used in Switchgear Monitoring

Given the current popularity of AI, it is not surprising that there is already a large body of work
addressing AI-based monitoring of electrical equipment. There are several IRT-based approaches to
electrical equipment monitoring. For example, [86] trained an SVM with the Zernicke moments (i.e.,
polynomials that are orthogonal to the unit disk) of binarized IRT images in a substation [86]. [78]
enhance IRT images of rotating machinery with nonsubsampled contourlet transform (NSCT) and
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feed a series of features taken from the image histogram to several machine learning algorithms such
as SVM and feed-forward neural networks (NN) [78]. [87] test a series of features extracted from IRT
images of electrical equipment with an SVM and a NN to classify faulty phases in switchgear [87].
A comprehensive overview of the advantages and disadvantages of various types of features taken
from IRT images is given in [53]. However, all these approaches have in common that they require
costly equipment that usually could not economically be installed in a switchgear.

Some work has also been done in the context of PD detection based on Artificial Intelligence
algorithms. Among the methods used are K-means clustering [88,89], NN [90–92], and SVMs [90].
A relatively new approach uses a LSTM Recurrent Neural Network (RNN) and Ultra-High Frequency
signals to diagnose PD [93]. Moreover, in [94], a boosting algorithm (i.e., RankBoost) is used to
prioritizing maintenance of circuit breakers based on timing parameters, and in [95], rule-based
algorithms are used to develop expert systems that output a composite risk index for circuit breakers
based on monitoring parameters such as the age of the device and its history of failures. In [96],
the authors incorporate known limits of circuit breaker monitoring values (e.g., number of operations,
contact resistance, gas temperature) to develop fuzzy expert systems, as well as unsupervised learning
algorithms (i.e., k-means and hierarchical clustering) to form clusters of data that correlate with the
circuit breakers’ probability of failure. Finally, the same inputs were used to train a neural network
that predicts the age of a circuit breaker.

Based on the requirements of different stakeholders, we plan to develop an appropriate machine
learning approach for predictive maintenance of medium voltage switchgear. Therefore, we would
start with an analysis of the data to choose adequate preprocessing steps. Afterwards, we would want
to compare different machine learning approaches. Each approach requires specific data preparation
steps to prepare the data for the training process. Additionally, the parametrization of the preprocessing
and the machine learning approach affect the performance. That is why we want to find a combination
of preprocessing, machine learning approach, and parametrization that fits the given data.

5. Business Models

Building on power grids and sensors as smart infrastructure, the analysis of data with artificial
intelligence, ultimately, must provide value to the stakeholders involved in manufacturing, using,
and maintaining electrical switchgear. As an interdisciplinary research approach that combines
engineering, information systems, and computer science, service science provides methods and tools
with which networked business models, processes, and organizational structures can be designed
and managed. The core property of ‘service’ is that value is co-created by stakeholders that cooperate
in what is called a service system—a configuration of people, technologies, and other resources that
interact with other service systems to create mutual value ([97], page 395).

The service system we set out to design will enable stakeholders—including grid providers,
manufacturing companies, and service providers—to improve the effectiveness and efficiency of
maintaining switchgear in medium voltage energy grids. Further, is shall contribute to evolving
the current supply grid into a smart grid [98]. This smart grid is expected to accommodate
bidirectional energy flows since customers will get involved in energy generation, transmission,
and consumption [99]. Also, the European Union’s vision of the smart grid is that it needs to be flexible,
accessible, reliable, and economically sensible [5]. In case of an incident, some businesses using medium
voltage switchgear will be unable to repair them because they lack expertise. Furthermore, repairing or
replacing is more expensive and can account for power cuts, while foresighted maintenance makes
resources plannable, thus ultimately improving lifespans of essential parts of the supply grid.
Therefore, maintaining essential parts will become more crucial for a smart grid, putting it center-stage
in our service system.

In our case, we want to minimize downtime while maximizing the lifespan of our equipment, thus,
applying predictive maintenance (Sec 1). Predictive maintenance has been applied for different domains,
e.g., agricultural [100], automotive [101] and industrial machinery [102]. The key to establishing
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predictive maintenance in the energy grid is the availability and analysis of appropriate data [103],
enabled by the different sensors and monitoring techniques previously explained. With predictive
maintenance, the quality of the supply grid may be improved. At the same time, repair costs
can be minimized, failures can be reduced, and the longevity of essential components can be
extended—assuming that sufficient amounts of data are at hand and algorithms identify data patterns
that precede incidents with sufficient predictive accuracy.

Apart from predictive maintenance, we consider current trends for our service system to enhance
the value co-created by the stakeholders involved, e.g., the Internet of Things (IoT), and digital
platforms, to recombine resources possessed by service systems [104]. The IoT refers to physical
objects networked to the internet, enabling ubiquitous intelligence [105]. In our case, switchgear and
other parts of the supply grid might be enabled to provide detailed condition data to an information
system that predicts the failure of the components. Digital platforms can provide applications,
shared commodities, social media, products, or digital services that extend the predictions. They can
be multi-sided, mediating different stakeholders on the same technical core [106]. Digital platforms
enable stakeholders to exchange information, goods, and services, which facilitates new business
models [107,108]. In the case of our business model, a platform can be the medium on which switchgear
manufacturers communicate with their customers. In a future scenario, customers might also rent
switchgear from their providers, outsourcing maintenance processes in exchange for a time-/use-based
fee instead of paying a fixed price to buy the switchgear.

DIN SPEC 33,453 prescribes a nominal process for smart service systems engineering [109].
An overview of the process is presented in Figure 10. The reference process consists of three
phases—analysis, design, and implementation—and specifies a series of activities and methods
to instantiate these phases. The order in which to carry out the phases depends on the given
context in which the service system is supposed to work, making the process flexible to instantiate.
Also, designers can repeat a phase, e.g., if results obtained in any phase are insufficient. At the end of
each phase, there is a decision point, at which users analyze the results of the phase and decide on how
to proceed. This adds flexibility to the reference process and makes it applicable to a broader context
by reacting to different requirements of the service system design.

Figure 10. A reference process for designing smart service systems, translated from [109].

During the analysis phase, the customer requirements are analyzed to identify new ideas for
digital services, prioritized, and tested for their feasibility and profitability. Activities in the analysis
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phase include market analysis, stakeholder analysis, and idea generation. The design phase aims
to develop new services fulfilling the requirements analyzed previously. The digital service and the
service system must be conceptualized, stakeholders and their roles must be defined, a prototype must
be developed, and the prototype needs to be evaluated. The decision point of the design phase relies on
the results of the evaluation. If it is enough, an implementation phase can follow. Otherwise, the design
phase might be repeated. The implementation phase serves as a transition to manifest the designed
service in the business. Activities include the planning of this transition, developing launch strategies,
implementation of the service system, and lessons learned. In a ring around the reference process in
Figure 10, there are the different design dimensions of a service system. They are subject to be defined
and detailed as the process commences.

For developing a service system for realizing the mobility and energy transition, we start with an
analysis phase to collect, structure, and prioritize the requirements of different stakeholders. We plan
to continue with a design phase, designing and evaluating a prototype for the predictive maintenance
of medium voltage switchgear. Next, we want to refine our service system with another analysis and
design phase before transitioning to an implementation phase. We will adjust the process dynamically
according to the results of each phase. After successfully applying this reference process, we will have
designed a feasible and profitable business model for economic predictive maintenance of medium
voltage switchgear, which builds on smart grid infrastructure and condition monitoring.

6. Limitations

This review paper presents an overview of the challenges and state-of-art for predictive
maintenance for medium voltage switchgear and present a potential solution approach. We do
not present a fully worked-out technical solution here, but instead provide detailed insights into
the foundations and challenges for an economic ML-based predictive maintenance solution. Due to
this nature, we might be missing technical challenges that only become visible when implementing
the solutions.

The presented solution focusses on the use of machine learning for the predictive maintenance
model development. Other solution approaches utilizing e.g., purely 1st principle models, are not
covered in detail. As the market is dominated by existing installations of customer-tailored medium
voltage switchgear cabinets (“brownfield”), retrospective engineering of 1st principle models does not
economically scale, additionally to the technological challenges provided in Section 4. Similar solutions
have been proposed for e.g., predictive maintenance of power substation equipment using infrared
thermography and machine learning [110].

Apart from the presented fault-monitoring of switchgear, other sensing options could be introduced
to detect and predict further faults [111]. For example, partial discharge may also be predicted by
analyzing data from differential electric field sensors [112,113] or using the transient earth voltage
method [114]. Overall, the selection of the right monitoring aspects strongly depends on the switchgear
type and its intended application [111].

The paper assumes a limited scope for the monitoring systems. It explicitly excludes using
the information in a SCADA system, or incorporating novel monitoring systems for multiple
switchgear [115].

The described use-case and solution focus on a particular life-cycle phase of the switchgear i.e.,
maintenance. Concepts like digital twin and cyber-physical systems cover a broader range, or even the
complete, life-cycle of assets. As predictive maintenance is the main use-case for industrial AI [11,12],
focusing on this use-case initially seems to be reasonable, before broadening the scope to other life-cycle
aspects like engineering or operation in future research.
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7. The Future Direction of Research

Besides the current state-of-the-art in switchgear monitoring described above and the potential
developments of predictive maintenance for assets based on novel sensors and machine learning
methods proposed above, further topics of open research remain.

7.1. Distribution Grid Assets and Monitoring

It is of interest if PD detection systems at an affordable price will find widespread acceptance
in everyday operation. There seem to be good chances regarding the opportunities of digitalization
and data analytics, that performance and usability levels can be reached, which generate convincing
business cases. In real-world environments, still, separating the real PD from disturbances represent
one of the biggest challenges in this kind of measurements [116]. This challenge is expected to increase
with the higher penetration of power electronic devices.

Condition monitoring and diagnostics of the breaker drive are a further topic of future research,
as the kinematic chain is complex and consists of many mechanical parts, which may potentially
fail [13].

The development of communication and sensor technology was strongly driven by the consumer
electronics industry during the last decade. These technologies nowadays enter industrial applications
and enable them to equip machinery with sensor networks [117]. The first examples of such sensor
systems for usage in electrical installations have been demonstrated recently [118] and promise to pave
the way to a digitalization of the electricity network.

7.2. Machine Learning for Predictive Maintenance

Even though IRT condition monitoring has a long and successful tradition, there are still many
open questions that need to be addressed to allow its widespread use. Unusual but harmless situations
that can occur during grid operation need to be identified and understood. For example, a strong
phase imbalance might appear as a fault even though it only reflects an unusual usage pattern.
Machine learning algorithms must be trained in such a way that they correctly classify these cases
as healthy.

The foundation of predictive maintenance is the collection of data via a variety of sensors.
Each sensor can be of a different type, so that different sensor signals are collected. Each signal can be
prepared for a machine learning approach via an appropriate preprocessing method, which results in
a vast amount of parallel preprocessing steps for multiple sensors, where each of the preprocessing
methods can have multiple hyperparameters. After preprocessing, the data can be used by a variety of
machine learning approaches, suggesting maintenance, where each of the machine learning approaches
can have multiple hyperparameters resulting in different performance. Manually creating pipelines
consisting of preprocessing and learning algorithms, together with their hyper parametrization, is both
a tedious and time-consuming task for data scientists and thus very costly. Accordingly, the field of
automated machine learning (AutoML) is rapidly growing as it promises to automate this task partially.
For other types of machine learning, there already exist a few AutoML tools, like ML-Plan [119]
for multiclass classification, but one for predictive maintenance is still missing. This is an excellent
opportunity for us to create such an AutoML tool and investigate challenges in the setting of predictive
maintenance compared to the standard setting.

7.3. Requirements for the Adoption of AI Solutions in Industrial Practice

Adaptation of industrial AI solutions needs to be moderated, and AI providers need to address
industry-specific requirements [120], like the introduction of Industrie 4.0 technologies [62–64].
Especially ethical implications need to be addressed, as they are currently heavily discussed in
politics [121] and among industrial partners [122].
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To develop a business model suitable for a CMMS based on predictive maintenance using artificial
intelligence, we plan to apply a standard for service system engineering [109]. With this approach,
we can assure to include the different requirements of all stakeholders included in the smart service
system, e.g., network providers, municipal utilities, sensors manufacturers, and asset manufacturers.
These requirements will be used to conceptualize a digital platform using the results of the machine
learning algorithms for predictive maintenance in an economically viable way.

The development process for data-driven services needs to be integrative and put the customer
value into focus [123]. Furthermore, it should follow a structured process like CRISP-DM [124] with
particular attention to process simplicity [125].

7.4. Security of Digital Systems

The renovation of the electricity distribution grid demands well-functioning information and
communication technology to prevent system failures. To control and maintain the grid efficiently,
grid operators must add interconnected components to their grids and establish an extensive networked
CMMS. Due to the complexity of the emerging smart grid and its significant status for public order
(critical infrastructure), experts expect higher risks to cyber-attacks, which include conventional attacks
like DoS (Denial of Service) attacks, replay attacks, or false data injection.

Furthermore, the skill level needed to attack industrial control systems is decreasing, as respective
tools are becoming more available [126]. The surface for cyberattacks on grid infrastructure is also
increasing, as traditional network protocols and commodity IT hardware are taking their place in the
smart grid [126]. Potentially, approaches for analysis of anonymized or encrypted data, e.g., [127],
may be evaluated to increase the security level for data leaving secured IT networks in the future.

Additionally, load frequency control devices, and new grid components that are connected to the
internet are vulnerable to polluted input and output data that can corrupt the network performance
enormously [128,129]. Currently, traditional IT protection techniques like VPNs, intrusion detection
systems, and anti-virus software are used to protect the grid. However, the increasing interconnectivity
between soft- and hardware creates a larger-scale cyber-physical system that potentially requires
additional protection mechanisms compared to traditional protection measures [128].

8. Conclusions

The electrical grid is currently undergoing significant changes, as energy production becomes
more volatile through the increase in renewable energy sources and the increase in distributed demand
sources, e.g., fast-charging stations for electric vehicles. Many activities have been initiated to address
this challenge for the high voltage transmission grid, but few activities target the retrofitting of the
medium voltage grid.

With the present review paper, we show exemplarily how the existing medium voltage grid
infrastructure can be adapted to the novel needs on an economic scale. Combining novel sensor
technology and methods of machine learning may lead to predictive maintenance solutions for medium
voltage switchgear, which are accompanied by an industry-fitting business model.
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