439 research outputs found

    ARCHITECTURE-BASED RELIABILITY ANALYSIS OF WEB SERVICES

    Get PDF
    In a Service Oriented Architecture (SOA), the hierarchical complexity of Web Services (WS) and their interactions with the underlying Application Server (AS) create new challenges in providing a realistic estimate of WS performance and reliability. The current approaches often treat the entire WS environment as a black-box. Thus, the sensitivity of the overall reliability and performance to the behavior of the underlying WS architectures and AS components are not well-understood. In other words, the current research on the architecture-based analysis of WSs is limited. This dissertation presents a novel methodology for modeling the reliability and performance of web services. WSs are treated as atomic entities but the AS is broken down into layers. More specifically, interactions of WSs with the underlying layers of an AS are investigated. One important feature of the research is investigating the impact of dynamic parameters that exist at the layers, such as configuration parameters. These parameters may have negative impact on WSs performance if they are not configured properly. WSs are developed in house and the AS considered is JBoss AS. An experimental environment is setup so that controlled service requests can be generated and important performance metrics can be recorded under various configurations of the AS. On the other hand, a simulation model is developed from the source code and run-time behavior of the existing WS and AS implementations. The model mimics the logical behavior of the WSs based on their communication with the AS layers. The simulation results are compared to the experimental results to ensure the correctness of the model. The architecture of the simulation model, which is based on Stochastic Petri Nets (SPN), is modularized in accordance to the layers and their interactions. As the web services are often executed in a complex and distributed environment, the modularized approach enables a user or a designer to observe and investigate the performance of the entire system under various conditions. In contrast, most approaches to WSs analyses are monolithic in that the entire system is treated as a closed box. The results show that 1) the simulation model can be a viable tool for measuring the performance and reliability of WSs under different loads and conditions that may be of great interest to WS designers and the professionals involved; 2) Configuration parameters have big impacts on the overall performance; 3) The simulation model can be tuned to account for various speeds in terms of communication, hardware, and software; 4) As the simulation model is modularized, it may be used as a foundation for aggregating the modules (layers), nullifying modules, or the model can be enhanced to include other aspects of the WS architecture such as network characteristics and the hardware/operating system on which the AS and WSs execute; and 5) The simulation model is beneficial to predict the performance of web services for those cases that are difficult to replicate in a field study

    TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation

    Get PDF
    The paper is concerned with the issue of how software systems actually use Heterogeneous Parallel Architectures (HPAs), with the goal of optimizing power consumption on these resources. It argues the need for novel methods and tools to support software developers aiming to optimise power consumption resulting from designing, developing, deploying and running software on HPAs, while maintaining other quality aspects of software to adequate and agreed levels. To do so, a reference architecture to support energy efficiency at application construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 7 pages, LaTeX, 3 PNG figure

    Petri Nets for Smart Grids: The Story So Far

    Full text link
    Since the energy domain is in a transformative shift towards sustainability, the integration of new technologies and smart systems into traditional power grids has emerged. As an effective approach, Petri Nets (PN) have been applied to model and analyze the complex dynamics in Smart Grid (SG) environments. However, we are currently missing an overview of types of PNs applied to different areas and problems related to SGs. Therefore, this paper proposes four fundamental research questions related to the application areas of PNs in SGs, PNs types, aspects modelled by PNs in the identified areas, and the validation methods in the evaluation. The answers to the research questions are derived from a comprehensive and interdisciplinary literature analysis. The results capture a valuable overview of PNs applications in the global energy landscape and can offer indications for future research directions

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Vulnerability Analysis of CSP Based on Stochastic Game Theory

    Get PDF
    With the development of industrial informatization, the industrial control network has gradually become much accessible for attackers. A series of vulnerabilities will therefore be exposed, especially the vulnerability of exclusive industrial communication protocols (ICPs), which has not yet been attached with enough emphasis. In this paper, stochastic game theory is applied on the vulnerability analysis of clock synchronization protocol (CSP), one of the pivotal ICPs. The stochastic game model is built strictly according to the protocol with both Man-in-the-Middle (MIM) attack and dependability failures being taken into account. The situation of multiple attack routes is considered for depicting the practical attack scenarios, and the introduction of time aspect characterizes the success probabilities of attackers actions. The vulnerability analysis is then realized through determining the optimal strategies of attacker under different states of system, respectively

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    corecore