77 research outputs found

    Numerical simulation of microwave heating of a target with temperature dependent electrical properties in a single-mode cavity

    Get PDF
    This dissertation extends the work done by Hue and Kriegsmann in 1998 on microwave heating of a ceramic sample in a single-mode waveguide cavity. In that work, they devised a method combining asymptotic and numerical techniques to speed up the computation of electromagnetic fields inside a high-Q cavity in the presence of low-loss target. In our problem, the dependence of the electrical conductivity on temperature increases the complexity of the problem. Because the electrical conductivity depends on temperature, the electromagnetic fields must be recomputed as the temperature varies. We then solve the coupled heat equation and Maxwell\u27s equations to determine the history and distribution of the temperature in the ceramic sample. This complication increases the overall computational effort required by several orders of magnitude. In their work, Hile and Kriegsmann used the established technique of solving the time-dependent Maxwell\u27s equations with the finite-difference time domain method (FDTD) until a time-harmonic steady state is obtained. Here we replace this technique with a more direct solution of a finite-difference approximation of the Helmholtz equation. The system of equations produced by this finite-difference approximation has a matrix that is large and non-Hermitian. However, we find that it may be splitted into the sum of a real symmetric matrix and a relatively low-rank matrix. The symmetric system represents the discretization of Helmholtz equation inside an empty and truncated waveguide; this system can be solved efficiently with the conjugate gradient method or fast Fourier transform. The low-rank matrix carries the information at the truncated boundaries of the waveguide and the properties of the sample. The rank of this matrix is approximately the sum of twice the number of grid spacings across waveguide and the number of grid points in the target. As a result of the splitting, we can handle this part of the problem by solving a system having as many unknowns as the rank of this matrix. With the above algorithmic innovations, substantial computational efficiencies have been obtained. We demonstrate the heating of a target having a temperature dependent electrical conductivity. Comparison with computations for constant electrical conductivity demonstrate significant difference in the heating histories. The computational complexity of our approach in comparison with that of using the FDTD solver favors the FDTD method when ultra-fine grids are used. However, in cases where grids are refined simply to reduce asymptotic truncation error, our method can retain its advantages by reducing truncation error through higher-order discretization of the Helmholtz operator

    Geophysical subsurface imaging and interface identification.

    Full text link

    Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999

    Review on solving the forward problem in EEG source analysis

    Get PDF
    Background. The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods. While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results. It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion. Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem.peer-reviewe

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the accomplishments and activities at ICOMP during 1993

    [Activity of Institute for Computer Applications in Science and Engineering]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science

    NAS Technical Summaries, March 1993 - February 1994

    Get PDF
    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1993-94 operational year concluded with 448 high-speed processor projects and 95 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year

    NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990

    Get PDF
    Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995
    • …
    corecore