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ABSTRACT

NUMERICAL SIMULATION OF MICROWAVE HEATING OF A
TARGET WITH TEMPERATURE DEPENDENT ELECTRICAL

PROPERTIES IN A SINGLE-MODE CAVITY

by
Hoa Kien Tran

This dissertation extends the work done by Hile and Kriegsmann in 1998 on microwave
heating of a ceramic sample in a single-mode waveguide cavity. In that work, they
devised a method combining asymptotic and numerical techniques to speed up the
computation of electromagnetic fields inside a high-Q cavity in the presence of low-loss
target. In our problem, the dependence of the electrical conductivity on temperature
increases the complexity of the problem. Because the electrical conductivity depends
on temperature, the electromagnetic fields must be recomputed as the temperature
varies. We then solve the coupled heat equation and Maxwell's equations to determine
the history and distribution of the temperature in the ceramic sample. This complica-
tion increases the overall computational effort required by several orders of magnitude.

In their work, Hile and Kriegsmann used the established technique of solving the
time-dependent Maxwell's equations with the finite-difference time domain method
(FDTD) until a time-harmonic steady state is obtained. Here we replace this technique
with a more direct solution of a finite-difference approximation of the Helmholtz
equation. The system of equations produced by this finite-difference approximation
has a matrix that is large and non-Hermitian. However, we find that it may be
splitted into the sum of a real symmetric matrix and a relatively low-rank matrix.
The symmetric system represents the discretization of Helmholtz equation inside
an empty and truncated waveguide; this system can be solved efficiently with the
conjugate gradient method or fast Fourier transform. The low-rank matrix carries
the information at the truncated boundaries of the waveguide and the properties of
the sample. The rank of this matrix is approximately the sum of twice the number
of grid spacings across waveguide and the number of grid points in the target. As a
result of the splitting, we can handle this part of the problem by solving a system
having as many unknowns as the rank of this matrix.

With the above algorithmic innovations, substantial computational efficiencies
have been obtained. We demonstrate the heating of a target having a temperature
dependent electrical conductivity. Comparison with computations for constant electri-
cal conductivity demonstrate significant difference in the heating histories. The
computational complexity of our approach in comparison with that of using the
FDTD solver favors the FDTD method when ultra-fine grids are used. However,
in cases where grids are refined simply to reduce asymptotic truncation error, our
method can retain its advantages by reducing truncation error through higher-order
discretization of the Helmholtz operator.
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CHAPTER 1

INTRODUCTION

1.1 Volumetric Heating

Heating is a basic industrial operation required for processes ranging from smelting

to cooking. Conventionally, heating is achieved by exposing the surface of an object

to high temperature. The energy applied to the surface is then transferred inward

by thermal conduction. The prime example for this process is an oven with heated

atmosphere. Because heating is limited to the surface, this approach is typically slow

and nonuniform. In contrast, volumetric heating is a process in which an entire object

is heated more or less uniformly throughout its bulk. There are a number of ways to

achieve such a task. The simplest example is attaching the object to the terminals

of a battery. The battery passes a current through the object, and some energy

will dissipate as heat due to the object's electrical resistance. The other methods

include electron beams, and radio and microwave radiations. In each method, energy

penetrates the object and is deposited directly in its interior which in turn heats up

the object. The advantage of using microwave for heating is that it can heat the

object rapidly and uniformly.

1.2 Microwave Applicator

The electromagnetic frequency range from 108 to 10 11 Hz is classified as microwave

radiation. However, only a few of frequencies (915 MHz, 2.54 GHz, 5.8 GHz and

24.124 GHz) are used in practice to avoid potential interference with applications

besides heating. Every heating process requires a delivery system in order to transfer

energy to the desired target. In a conventional oven, air is the delivery medium.

For microwave heating, the delivery mechanism is a waveguide which allows electro-

magnetic waves to propagate with little attenuation from the source to the target. In a

1



2

common configuration, an aperture and a back wall are added to form a cavity housing

the target with intention to trap and amplify the waves. For a given frequency, the size

of the waveguide dictates the number of propagating modes. In this study, the single

mode applicator is chosen in favor of computational simplicity. Microwave applicators

using these frequencies can range from few millimeter to hundred of millimeters for

a single mode cavity.

Despite its extensive application, microwave heating has its limitations and

problems. The most noticeable weakness is cost; its equipment is more expensive than

equipment for conventional heating applications. We can heat a conventional oven

with any kind of combustible resource while a microwave applicator requires complex

systems to generate desired microwave power. The other disadvantage is intrinsic to

volumetric heating which is also its advantage. In short, it is heating by electrical

resistance. Thus, the process depends mainly on the electrical properties of the object

and the intensity of microwave radiation or the input power of the applicator. The

input power for a microwave applicator can ranges from a typical home oven of 1 kW to

powerful industrial microwave oven of 1 MW or more. Therefore, we can theoretically

estimate the dissipated power absorbed by the object for a given microwave applicator.

However, the unpredictability of the interaction between microwave and the interior

of the object at microscopic level can give rise control difficulties which in the worst

possible case can result in thermal runaway and melting the object. In contrast to

conventional heating where the oven is heated up to a certain temperature, and the

object is heated via thermal convection and radiation. Hence, thermal runaway will

never occur in a conventional oven because the object may never be hotter than the

surrounding air. In summary, it is more difficult to control the process with microwave

heating.
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1.3 Ceramic Sample

Ceramics are inorganic materials that are nonmetallic and have crystalline structure.

Some of the widely used ceramics include alumina, silicon carbide, and silicon nitride.

Ceramics have a wide range of properties that are unique and useful to many appli-

cations. For example, silicon nitride is light weight and has excellent thermal shock

and wear resistances; as a result, it is used for internal combustion engine parts and gas

turbine parts. On the other hand, silicon carbide has high temperature strength and

chemical resistance. It is suited for use in applications involving corrosive chemicals

such as sulfuric acid.

Since we intend to study the microwave heating process of a ceramic sample,

we desire to know their electrical properties. Their electrical properties are widely

varied as their physical properties. The electrical conductivities vary on the order of

109 for different ceramics. Most are electrical insulators but some have been designed

to be superconducting. Their conductivities also can change by several orders of

magnitude with temperature variations. The electrical conductivity of some forms

of silicon carbide increases by a hundred fold or more as temperature goes from

room temperature to 500 °C. The dependence of conductivity on temperature poses

a basic challenge for simulating microwave heating of ceramics. To determine the

heat deposited in a ceramic, it is necessary to compute the pattern of the electric

field. This pattern depends strongly on the conductivity of the material. Hence, the

electric field must be recomputed during the heating process. Besides its dependence

on temperature, electrical conductivity also depends on frequency. However, most

microwave applicators only produce one frequency. Thus, we avoid such consideration

in our study by choosing a single frequency applicator.

Typically, ceramics begin as a powder. The powder is then mixed with binders

and often water to hold them together for processing or catalyst to speed up the

sintering process. Finally, the mixture is shaped into proper form, and is ready for
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the sintering process. The sintering process is basically heating the ceramic body

to a high temperature below its melting temperature which still allows the sample

to retain its shape. As the temperature rises, the surface of ceramic grains soften

and fuse with the neighboring grains which reduces the porosity. Furthermore, it is

important to heat the sample uniformly to produce uniform structure. Therefore,

microwave heating is an attractive method for the sintering process.

1.4 Numerics

Microwave heating involves the interaction of electromagnetic waves with thermal

transport in the target body. Hence, it involves coupling Maxwell's equations with

heat equation. A fundamental difficulty with this coupling is that in the microwave

spectrum the time scale for electromagnetic processes is of the order of a nanosecond

while the time scale for heat conduction in a ceramic body of a few centimeters in size

is roughly a millisecond. It is well known, however, that this strong contrast in time

scales can be used to good advantage in analyzing this problem. The electric field can

be treated as a quasi-static time harmonic field satisfying the Helmholtz equation in

the problem analyzed here.

Interestingly, in microwave heating applications the numerical solution of the

Helmholtz equation is often obtained using finite difference computation of the time-

dependent problem until the steady solution emerges [2, 3, 4, 5]. This approach is at

best slow when applied in the case of temperature independent electrical properties

where the electric field needs to be computed until the transient disturbance is

radiated out of the applicator. Hile and Kriegsmann [1] significantly sped up the

computational process by inventing a hybrid method. Their method combines FDTD

with theory of scattering matrix which separates the iris from the rest of the cavity.

Without the iris, there is no resonance; hence, the FDTD converges to the time-

harmonic steady state faster than it would in presence of resonant state.



5

This study further explores their technique for the problem with temperature

dependent electrical conductivity using a direct solver for the Helmholtz equation

instead of FDTD method. However, direct solver always gives rise to a large system

of equations. There had been work done to solve the Helmholtz equation using

various methods such as eigenfunction expansion, or multigrid method [6, 7, 8].

For example, Abrahamsson and Kreiss [9] used eigenfunction expansion to solve

the Helmholtz equation in a multimode duct where the coupling modes could be

reduced to weakly coupled via Riccati transformation. This resulted in partition of

the matrix into diagonal dominant blocks which enabled a faster convergence for an

iterative scheme. They sped up the method further by splitting into left and right

traveling solutions which reduces the boundary value problem into two initial value

problems. Their method can be extended to include electromagnetic type problems.

However, it requires the traversal eigenfunctions to vary smoothly along the longi-

tudinal direction which may not applicable for our problem because the permittivity

and conductivity are discontinuous at the surface of the sample. In [8], Elman and

et al. showed that their generalized minimal residual (GMRES) multigrid method

for the exterior problem converged with fewer iterations than the standard multigrid

method. However, it is unclear to us that the method will apply to both the interior

and exterior problem such as ours. We note that the discretization of our problem

also yields a complex-symmetric matrix as in [8]. However, there is no mention of

whether the method could be generalized for any complex-symmetric matrix.

Because of rectangular geometry of the waveguide and the relatively small size

of the sample, we split the large matrix into the sum of a real symmetric matrix,

which can be solved efficiently using conjugate gradient or fast Fourier transform,

and a low-rank matrix. As a result, we reduce to solve a system having as many

unknowns as the rank of the low-rank matrix.



CHAPTER 2

DESCRIPTION OF THE PROBLEM

Our objective is to simulate numerically the heating of a ceramic sample in a microwave

cavity. The cavity is formed by sectioning the TE 103 waveguide with a symmetric iris

and a movable back wall. The sample is an uniform cross-section cylinder of arbitrary

shape which runs from top to bottom of the waveguide as shown in Figure (2.1).

Figure (2.2) shows the side view of the cavity. Then, the Maxwell's equations (2.1),

describe the electric field E' and magnetic field H' both inside the cavity and the

ceramic sample for appropriate choice of free charge density g' and current density

J'. Specifically, there are no free charge and current outside the ceramic sample

because the cavity is filled with air; hence, g' = 0 and J' = 0. Inside the sample, the

6



relationship of g' and J' to the electromagnetic fields are properties of a particular

ceramic. Similarly, dielectric displacement D' and magnetic induction B' dependence

on E' and H' also depends on position; e.g. D' = e0 E 1 and B' = po ll' for the

fields outside the sample. The dielectric displacement and magnetic induction obey

a different set of constituent laws inside the sample.

The loaded cavity is then excited by the TE 10 mode. A portion of the electro-

magnetic energy is converted to thermal energy by mean of doing work through

electrical resistance. This conversion of energy contributes as the heat source for the

diffusion equation describing the evolution of temperature of the sample.

where T' is the temperature of the sample, J' • E' is the rate of work done by the

field per unit volume, and p, Cps and IC I are mass density, heat capacity and thermal

conductivity of the sample, respectively.

To close the system, we need to prescribe the boundary conditions at the cavity

walls and the sample's surfaces. We are assuming that the cavity walls and iris are

perfectly conducting, then the tangential components of electric field vanishes at the
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At the surface of the sample, we have the continuity of tangential components of

electric and magnetic fields.

For the heat equation, we impose a combination of the convective and radiative

conditions at the surface of the sample,

where To denotes the ambient temperature, 'q is natural heat convection coefficient

for air, ç is the Stefan-Boltzmann constant which equals to 5.67 x 10 -8Wm'K -4 ,

and E is the emissivity of the surface. For an ideal blackbody, the emissivity would

be one, and polished surface would have emissivity near zero. The emissivity of all

other surfaces ranges between zero and one.

Together with boundary conditions (2.3)-(2.6) at the cavity wall and sample's

surface, we can solve the equations (2.1) and (2.2) numerically. However, the difficulty

arises when the properties of the sample are temperature dependent; e.g. thermal and

electrical conductivities. Since the heat source is generated from electrical resistance,

it depends on electrical resistivity or conductivity of the material. Like most physical

properties, electrical conductivity varies with temperature which makes the numerical

computation rather expensive. For each time step in the numerical method for heat

equation, we have to recompute the effective electrical conductivity. The electrical

conductivity in turn change the current density J' which requires updating the electro-
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magnetic fields. The updated fields are then fed back into the heat equation as the

source. The same process repeats at the next time step.

Depending on the geometry and properties of the sample together with the

position of the back wall, the fields inside the cavity can become resonant, which in

turn can rapidly heat the sample. Since the fields change with temperature variation,

the resonant length varies with temperature. Hence, by adjusting the position of the

back wall, we can control the field strength inside the cavity as well as the heating

process. It also possible that the sample may not heat appreciably with certain

geometry or properties. For example, a slab with high conductivity would act like a

back wall of the cavity.



CHAPTER 3

ANALYSIS OF PDE'S

We assume the sample is an isotropic and non-magnetic material with no free charge,

i.e.

where we have assumed J' = a'E' which is Ohm's law for electrical resistance. We note

that c' and a' are generally frequency dependent in complex media; this dependence

plays a significant role in our considerations as we study single frequency applications.

The temperature in the target is governed by the heat equation with new source term.

In general, the effective conductivity of the sample a' depends on temperature.

Because of such dependence, the Maxwell's equations are coupled with the heat

equation. However, it is possible to minimize the computational impact of this

coupling by exploiting the different time scales of the problem. We note that k'

also is often strongly temperature dependent over the temperature ranges typical in

ceramic processing. However, we do not explore this aspect of the problem in this

work.

10
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3.1 Time Harmonic Equations

In microwave heating the microwave source, typically a magnetron, is time harmonic.

Therefore, we expect the response of the fields is also time harmonic, i.e. the fields

have time dependence e-iwt . However, the fields are physical quantities, we choose

the real part of the complex solution.

Plugging these into equations (3.1), we obtain the time harmonic Maxwell's equations.

While the heat source o- '101 2 is expanded as,

Evidently, there are at least two time scales to the problem. The oscillation time of

the electromagnetic fields which is represented by the reciprocal of angular frequency

w. The diffusion time is the ratio of thermal diffusivity Ito area. For microwave pap

application, the oscillation time is on the order of nanosecond. On the other hand,

the thermal diffusivity for a very good thermal conductor such as silver is about

170 squared millimeters per second at room temperature. Hence, for the sample of

centimeter size, the diffusion time is on the order of milliseconds which is significantly

slower than the oscillation time.

3.2 Time Average Equations

For the difference of time scales on order of million, it is conventional to use time

average in the equation of slower time. Thus, the time average of the heat equation
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over one cycle of oscillation is,

Defining time-average temperature over one period as,

Then, according to fundamental theorem of calculus,

This implies that we can interchange integration and differentiation in equation (3.4).

In absence of thermal runaway, we assume that temperature variation is small over a

period of oscillation based on the existence of time scales difference. Hence,

Using above approximations to simplify the diffusion and source terms in Sequa-
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tea
The approximation is valid as long as 

E
—7-, << 1 . Such violation occurs in event ofET

thermal runaway. Similarly, the effective electric conductivity can be approximated,

(T' (x' , s)) 	 a' (I" (x' , t')) + (s — t' 	
Eo-i Br

w Bt Bt"

'
provided au < 1 Using equation (3.3), the source term is simplified to,

ET w

t+
E • E47/(11) 2 CV) H's  • -61 Cjj ft+1-7 E-2ic ds t* • t* c±)-- f w E2iws ds

2	 21 E1 ±	t, 	 t,

Since integration of a periodic function over its period is zero, the time average heat

equation becomes,

pad 	 2
P Bt,	 4=v • [lc' (tv 1T)1+ — (T)2

	 •
	 (3.5)

3.3 Non-Dimensionalization

We re-scale the variables as follow:

E =	— x = — t = 	
	 tto
	

/cot'
and T =A"'

E0' 	 60 EOM 7 	W	 papW2 	 TO 7

where e is the waveguide's width, To is the ambient temperature and 10 = KI (To).

The dimensionless Maxwell's equations are,

V • E = 0, 	 V • H = 0, 	
(3.6)

V x E = —ikH, V x H = ikEE + ka(T)E,

where dimensionless wavenumber k = we with c as speed of light, dielectric constant

E = —/ , and dimensionless conductivity o- (T) = 
o-V)

. And, the dimensionless heat
E

EC,
equation is,

ETA	 tiff 	 1E12,= VV. [K(T)VT] + o- (T) 	 an
Et	 toscill pupil 0

cow
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Due to the geometry of the sample, the electric field inside the cavity remains parallel

to the y-axis provided the incident electric field points in y direction. Then, we know
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the general solution of Helmholtz equation inside the cavity and outside the sample

via separation of variables. The modal representation of the solution is,

114-1Y1 T1

Suppose the loaded cavity is excited by the th propagating mode, the incident mode

is diffracted by the iris and creates a full spectrum of modes as a result. Part of

it will enter the cavity and is further diffracted by the sample. From the modal

expansion and definition of dimensionless wavenumber km , we know that (M + l)th

mode is the dominate evanescent mode because it decays slowest in comparison to

other evanescent modes. So, at some distance away from the aperture and the sample,

the magnitude of the wave corresponds to the (M + l)th mode will become insignif-

icantly small compared to the magnitude of propagating modes. Because of such

decay characteristics of waveguide, we intend to divide the problem into multiple

subproblems in hoping to achieve a smaller computation domain [l]. Specifically, the

objective is to determine the electric field inside the cavity, but it is impractical to add

an infinite number of terms even if we manage to obtain the coefficients. Alternatively,

we compute the field numerically. However, the evanescent modes decay away from

disturbance. Since we can add a finite number of propagating modes, it is logically
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to reduce the computation domain to a smaller region where evanescent modes are

insignificant. As shown in Figure (3.l), let zipand Brbe two imaginary planes where

all the evanescent modes diffracted from the aperture and sample are small. Then,

splicing the domain at B1 and Br will divide the problem into three regions I, II, and

III. The region III has the simplest problem; a wave composed of M propagating

modes impinge on a perfectly conducting wall. Therefore, it is simply reflect back

with a determinable phase shift. Regions I and II become the problems of determining

the field in a infinite waveguide with an obstacle. Three subproblems can be rejoined

using scattering matrices, and the scattering matrix for the region I can be obtained

asymptotically. We effectively reduce the computation domain to a smaller area of

region II.

Considering a object centered at the B = 0 in an infinite waveguide. Let F an and

F . be the left and right incident modes, respectively. The electric field away from

B = 0 is determined asymptotically as,
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Gin, and Grin are identified as the linear combinations of reflected and transmitted

coefficients corresponding to the modes of incident waves. They relate to the incident

modes via a scattering matrix.

GNP
G 7;

G72'

• • •R?	 Tr	 Ti!vi \	 Far

RI R3 • • • 41 To- T2	 TAM

R im Ram 	141 711 111 • • • TM	 FL,

7'11 Tr • • • TM Rib m • • • Br

7-71 71 • • • Tr

7 	 (3 . 9 )

GM) T14 7114 • • • TM Rim R2A  • • • R itAl

where /74, and Train are the reflection and transmission coefficients of ?nth mode excited

by the th mode. Thus, the asymptotic solution away from the iris and the sample

excited by the th mode of unit strength is,

A: 0(x, B) + pt 0* (x, B), B << i ,

rT 0(x, B) + pt (/)* , B), i < B < t,

7-7 (/)(x, B) + )010*(x,B), t < B,

(3.10)  

where 0(x, B) = (eidlz sin(27rx), eic2z sin(27x), , eikmz sin(M7rx)) T , Ai is the th  stan-

dard basis, and pi , ri, pt , rat, pti are column vectors as shown in Figure (3.2). Rewriting

the first two expressions of equation (3.10) by shifting the location of the iris i to

the origin.

Eye =
{APT Ai0(x, B — i ) + prig A iHcb*(x, B — i), B < i,

rib Aicb(x, B — ;) + ft ADO* (x, B — i), i < B < t,
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where Re and TT are reflection and transmission matrices corresponding to an incident

wave from the left of the sample while R.,. and Tr are reflection and transmission

matrices from the right incident wave. In general, At  is not equal to 11,, and T1

is not equal to Tr because of temperature dependent of electrical conductivity or

asymmetrical geometry of the sample. At has the same structure as A i with the

center of the sample, Zt, replaces Zi. Hence, p t and rt can be expressed in term of
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We recognize that pi is a linear fraction transformation that maps a unit circle e2ik"w

centered at origin to another circle in (-plane. Let F be the image of the unit circle

e2ikl zip via the transformation, then minimizing Bpi  1 2 is the same as finding a point

on the circle F closest to the origin. And this point is the intersection of the circle I'
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Figure 3.3 Finding the minimum via linear fraction
transformation.

with the segment connected its center and origin as show in Figure (3.3).

too
(min = G - Be

where circle F is defined as (0 + oei0, and 00 is the argument of (0 . Hence,

e2ikizw =
(l — k RI") (min — [1:?; ." — (TO — Ti ) RP]

— [R.;- — RI (ReRc — TTr)] (min + [frif-R  — (Id 
— 

T2) (ReR, — TeT„)] .

Figures (3.4) and (3.5) show the fields inside a cavity of width 109.2 mm for various

locations of the back wall. The cavity is loaded with a square post of size 40.l mm

centered at x = 54.6 mm and B = 144.9 mm. The effective electrical conductivity of

the post is 5 x 10 -4 Ci-lm -1 , and its dielectric constant is 9.7. The most noticeable

difference of Figures (3.4) and (3.5) is the huge gap in the magnitude of the electric

field. Figure (3.4) plots the magnitude of the dimensionless electric field when the

cavity set to the optimal length, the the maximum strength inside the sample is about

27. Whereas, the electric field in Figure (3.5) occurs when the position of the back

wall corresponding to the least amount energy deposited into the sample. Therefore,

the electric field inside the sample is very small; its maximum is 0.06. Figure (3.4)

also show some interesting behavior of electric field; i.e. the electric field inside a lossy

sample is larger than its surrounding. It is simply a coincidence that we place the

sample at optimal location. If we move the sample about 17 mm along cavity, we



observe entirely differently behavior as shown in Figure (3.6). This demonstrates that

the heating process also depends on where we place the sample.
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CHAPTER 4

DISCRETIZATION OF HEAT EQUATION

We chose to use energy balance method [10] to discretize the heat equation because the

energy balance method incorporates temperature dependence of thermal conductivity

and boundary condition into the formulation much more elegant than discretization

using numerical differentiation. It avoid differentiating thermal conductivity with

respected to temperature explicitly. On the other hand, we have to numerically

differentiate KIT. Similarly, we can discretize the Neumann's boundary condition

without differentiation. However, it is possible to derive the same discretization as

energy balance method using standard numerical differentiation. Figure (4.la) shows

a five-point stencil with a control area centered at point (m, n). We know that the

heat flow in an area is proportional to temperature gradient across its boundary. For

the purpose of discretization, we assume the mesh size h is small enough to adequately

approximate the temperature gradient by the ratio of differences, i.e.,
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on the edge of the sample, we have to consider cooling effect by convection and

radiation. Newton's law of cooling observes that heat flow in an area is proportional

to temperature difference across the surface.

We denote the ambient temperature by To and = Es. The fourth power terms

describe the radiation effect. Note that the one half factor on first two gradient terms

is because the area is halved on the edge as shown in Figure (4.lb). Finally, heat

flow inside an area is proportional to the rate of change of temperature. Including

the heat source due to electrical resistance, we obtain the following discretization for

interior mesh points.

gular post for ease of implementation. Thus, discrete formulation for a mesh point

along the edge of the sample except the corner is:
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Since we do not know the temperature at half mesh points, we can only approximate

the dimensionless thermal conductivity there. We can either approximate the thermal

conductivity using known thermal conductivity values of surrounding mesh points or

evaluate at an approximate temperature, i.e.,

We can employ more points to get a more accurate average. We can solve the above

discrete system either implicitly or explicitly. To solve the system implicitly, we have

to assume that temperature dependence parameters like thermal and electric conduc-

tivities varies slowly with respected to temperature. Based on such assumption, we

then linearize all the non-linear terms about previous time step. Let cp(T) be the

non-linear function of temperature, then (,o at time step j + 1 is approximately,
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radiation term (T4+2) 4 . However, we will solve heat equation explicitly in favor of

a simple implementation. As we mentioned in previous chapter, we do not consider

temperature dependence of thermal conductivity in the numerical simulation in order

to isolate the effect of the electrical conductivity. The general derivation is presented

for completeness. Also, we note that the choice of implementation or temperature

dependence of thermal conductivity does not affect the computational time signifi-

cantly. The most time consuming process is computing the electric field which we

discuss on the next chapter.



CHAPTER 5

DISCRETIZATION OF HELMHOLTZ EQUATION

5.K Derivation of Discrete Equation

Using the centered difference scheme on a five-point stencil to discretize the Laplace's

operator, we obtain a discrete representation of the Helmholtz's equation for all the

interior points,

where M and N are the number of points along x- and B-axis, respectively, and

h is spatial step size which equals to —
1

• Since the electric field vanishes at the
M

waveguide's walls,

Suppose that there is no target; we can solve the difference equation (5.l) analyt-

ically with boundary condition (5.2). The solution is:

Since it is a single mode waveguide, the field far from the target will exhibit

a single propagating mode. With this knowledge, we put the target back into the

problem and set the boundary conditions at n = 0 and n = N. Without loss of

generality, there is an incident wave from the left, i.e. eikzn sin (kim), scattered from

the target. We expect that part of the wave will be reflected back and other will pass

29



by the target and propagate to the right end of the waveguide. Hence,

30

These are exact non-reflecting boundary conditions for the propagating mode of the

discrete equations. They ensure that no artificial reflection introduced into the compu-

tational domain by the numerical method. Hence, the difference equation for n = 1
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where Imp is the identity matrix of order m and Om is the zero matrix of order m. As

we can see the information about boundary conditions of the truncated ends of the

waveguide is encoded in L 1 , LN_i and f 1 , while the information about the target is

scattered in a few other Len's due to the small size of the target.

5.3 Splitting Discrete Operator for Numerical Solution

It is impractical to directly invert L due its large scale. However, we can invert the

matrix by taking advantage of its structure. By the choice of stencil, L is a very

sparse matrix. And, it is almost symmetric because of the symmetry of the Laplacian

and the use of centered difference scheme. Therefore, we can decompose L into

the symmetric part and non-symmetric part. We then apply the conjugate gradient

method to solve the symmetric part. The non-symmetric part encodes information
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about the truncated ends of waveguide and the target. Since the size of the target is

small compared to the width of the waveguide, the non-symmetric part is a low rank

matrix. With some algebraic manipulation, we can invert L by inverting a sparse and

symmetric matrix and a low-rank matrix.

where A is a symmetric matrix that contains no information about target or boundary

conditions, B stores the information of the boundary conditions, and the diagonal

matrix a contains information of the target. Hence, A will have the same structure

as L except with constant diagonal elements, i.e., aid = 4 — h2 k2 . B and a have the

following form:

ne rang of is is 7 1vl — 1) anal tine rang cm L iS tine number OI aiscreuzatiun puitub

of the target which is small comparing to the total number of discretization points

MN. Since B and a are not full rank matrices, their sum can be expressed as the

product of MN-by-P matrix Q and P-by-MN matrix S, where P is sum of 2(M —l)

and number of grid point in the target. Thus, the linear system becomes,

We can solve for u as follow. Because A is a sparse matrix, we use the conjugate

gradient method to solve systems with A as their matrix. We apply the method to

each column of Q. However, A is not a positive definite matrix for certain range of
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The dimension of A-1Q  is the same as the rank of Q or S which is small in

comparison to the rank of A. Therefore, we use Gaussian elimination to invert

In practice, we expect to solve equation (5.4) repeatedly when the electrical conduc-

tivity a depends on temperature. However, we can avoid redundant computation by

put all the temperature dependence on S, and Q is left with only 0's and l's as its

entries. Although we, in theory, do not to have recompute SA-1Q when temperature

varies, it requires enormous amount of storage to save SA-1Q for reuse. Fortunately,

QT has the same structure as S by construction. Thus, QTA-1Q  stores enough infor-

mation to compute SA1Q  and requires much less storage than SA-1Q. As a result,

we are able to separate the temperature independence Q T A-1 Qfrom the temperature

dependence S.

5.4 Handling Negative Eigenvalues

When k = 0, the matrix A in the equation (5.3) corresponds to the discretization of

Laplace's operator on a rectangular domain with Dirichlet boundary conditions. Let

A0  be A when k = 0. A0 is a positive definite matrix; hence, we can use conjugate
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gradient method to solve the system,

If we perturb Ao by —61, the eigenvalues of Ao are shifted to the left for positive

6. For large enough 8, some of the eigenvalues of A o — 61 will be negative, and the

conjugate gradient method fails. However, we still can invert A o — 61 using conjugate

gradient method indirectly.

Suppose there are small number of a's eigenvalues of Ao  less than or equal to

6. Rewriting the system (A 0 — (1)x =b as follow:

where vac, are eigenvectors corresponding to those a's eigenvalues. Or, in the matrix

form,

positive definite; therefore, we can use conjugate gradient on A. As before, we take

advantage of low rank matrices, we can invert A by following the above procedure of

computing u. Replacing x, D , b, V, and —p8VT  for u, A, f,Q and S in equation (5.4),

respectively. We have,

Since the columns of V are eigenvectors of A, we can simplify the above expression

further. First, we express 0 -1 in its diagonalized form; however, we retain A lb

because it is the result of conjugate gradient method.
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Expressing F as (V W). V is the same matrix as in equation (5.5); hence, e contains

eigenvectors corresponding with eigenvalues of Ao  that are greater than 6.

A-1 = ( V TV )
( AV 00 ) ( VT

00, /V I- 	eb
)

where Ac  = diag ()c + (p — l)6) and AD = diag (A — 6). Multiplying by V to both

sides of the equation,

) ( A -,-,' 00 ) ( Vb
e	 V

	 OD  Ail	 WT

e

	

 AV 0,0 	 1-,

	

) 00, Ai 1 	00,

)) ( AV
e

00,

= VA -;; 1

Using the above equality, we can simplify other expressions such as,

I — p6VTA-1V = diag (  A' — 6 
Ace+(p — l)6) '

and ultimately,

x = A-lb + V diag (  136 	Vb Alb .
Ace—6

From the above expression, we can see that the modified method fails only when 6 is

an eigenvalue of A0.

Since A0  is the discretization of Laplace's operator, we know what its eigenvalues

and eigenvectors are,

A ('" ) = 4 — 2 cos ( 11=7 ) — 2 cos ( 171- )
N

(5.6)
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Each multiplication by F can be achieved quickly by a fast sine transform. We use the

fast sine transform from FFTW package, which stands for Fastest Fourier Transform

in the West, developed by Frigo and Johnson of MIT [12].



CHAPTER 6

NUMERICAL TESTS

Our numerical method is based on splitting the discrete operator L into A + QS. The

analysis from previous section has demonstrated that we can find the field inside an

infinite waveguide with the presence of an obstacle, i.e.,

It is clear from the analysis, that A is invertible provided that none of its eigenvalues

equals to h2 k2 . However, it is unclear that the matrix I + SAv 1 Q is invertible. We

believe that the solution u existed because the system is the discretization of a well-

posed continuous problem. Therefore, the purpose of this section is to provide a

definite confirmation that the numerical method does what we expect it to do. We

will perform three tests in which we know either the field or some quantity that

can check against the numerical result. The first of such tests is determining the

electric field inside an empty infinite single mode waveguide with the disturbance of

unit strength starting at negative infinity. We know the solution to the difference

equations is oilcan sin (kxm) which is the discrete version of the right-traveling wave.

However, the problem is viewed differently to the method; it is finding the field

inside an infinite waveguide with an obstacle of size zero. So, S only contains the

information at boundaries of the truncated waveguide, and their ranks reduce to

2(M — l). Figure (6.l) shows the real and imaginary parts of the electric fields

computed for a truncated waveguide of 109.22 mm in width and 222.9 mm in length.

The grid size his l.11 mm which corresponds to M = 98 and N = 200. The disturbance

frequency is 2.45 GHz, and the center of the sample is at B = 0. As we can see,

the field is simply a cosine or sine wave. More evidently, the magnitude of the

37
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Figure 6.1 Real and imaginary parts of electric field inside an infinite
empty waveguide.

electric field is sin(kxm) as show in Figure (6.2). We can further verify the numerical

method by checking various quantities such as wavelength, reflection and transmission

coefficients, etc. Figure (6.3) shows that the wavelength of the numerical solution is

about 147.11 mm as comparison to the exact discrete wavelength 27h = 148.02 which
k,

is accurate to the order of grid size h. Since it is an empty waveguide, we expect that

there is no reflection; hence reflection coefficient is zero and transmission coefficient is

one. The numerical reflection and transmission coefficients are accurate to the order

The second test is determining the electric field inside infinite single mode

waveguide in presence of a transparent square post; i.e. the post has the same

properties as its surrounding. Since the post is fictitious, the field is the same as

the case of empty waveguide. Suppose the incident wave of unit strength emerges

from negative infinity, then the field is simply a right-traveling wave, ei  sin (kxm).

Similar to the first test, the method does not realize the waveguide is empty; it stores

in S the information at boundaries of the truncated waveguide and the properties of

the post. The fields in Figure (6.4) is computed using the same set of parameters



Figure 6.2 Magnitude of the electric field inside an
empty waveguide

as the first test with the exception of the size of the post and its properties. The

post measures 41.07 mm by 41.07 mm, and its relative permittivity is one and its

effective conductivity is set to zero. As expected, the numerical results are the same

for both tests as shown Figure (6.l) and (6.4). The numerical wavelength, reflection

and transmission coefficients are computed with similar accuracy as the first test.

Another test that we can perform that has the exact solution is a slab of constant

electrical conductivity inside an infinite waveguide. We can solve this problem exactly

by applying the continuity of electric field and its derivative at the interfaces of the

slab. In this test, a slab of thickness 21.2 mm whose center is placed at z = 111.4

mm. The slab has a constant electrical conductivity of 5 x 10 -4 SZ-1m-1  and dielectric

constant of 9.7. The rest of the parameters such waveguide dimensions and microwave

frequency are the same as previous tests. Figure (6.5) plots the magnitude of the

dimensionless electric field which is accurate to the order 10 -3 . The absolute error

through the centerline x = 54.6 mm is shown in Figure (6.6).
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The setup for the final test is an infinite waveguide in presence of a lossless

square post. There is no simple expression for the field in this case, so we can not

really check the solution by investigating the graph of the solution, or the reflection

coefficient, etc. Instead, we verify other quantities that always true for certain set of

parameters. For example, the conservation of power for lossless material.

The equation (6.l) is derived in §A.2. We use the same setting as the second test with

9.7 as the relative permittivity. The numerical reflection and transmission coefficients

satisfies equation (6.l) to the order of 10 -6 accuracy. Based on the result of those

four tests, we are confident that our numerical method computes what we expect it

to.



Figure 6.5 Magnitude of the electric field inside an
infinite waveguide in presence of a 21.2-mm slab.
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CHAPTER 7

NUMERICAL RESULTS

For the heating problem we using the following set of physical parameters [10, 13, 14,

15]:

2 paperFor these particular values, the diffusion time tiff = 	  works out to be 119.3 Ko
seconds. As before, we lay a grid of size l.11 mm on the truncated waveguide with

2
M = 98 and N = 200. We choose sufficiently small At = —

h , which is roughly l.56
8

milliseconds per time step, to avoid the numerical instability. We then attempt to

heat a square post of size 40.l mm whose center locates at x = 54.6 mm and B = 144.9

mm by exciting the cavity with an electric field of magnitude E0 = l.75 x 104

Vm1 . We designate three different profiles for the electrical conductivity of the

post. Two electrical conductivity profiles are constant with a = 10 -4 11 -1 m -1 and

4 x 10v4c2 1 m -1 . For comparison, the third profile is a linear function of temperature
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profiles are shown in Figure (7.l). The numerical simulations run for those three

profiles until the temperature inside the post reach the equilibrium. For the constant

profiles, the electric field is computed only one and used for the entire heating process.

On the other hand, temperature dependent profile requires constantly updating of

the electric field. In order to obtain the result within a reasonable time, we decide to

update the electric field every 10°C in temperature variation. The temperature history

is recorded at every thousand time steps. Figures (7.2)-(7.4) plot the equilibrium

temperature distributions inside the sample. At first look, three temperature distri-

butions are qualitatively the same. Upon close inspection, we see that there are

noticeable differences. The most obvious difference is the temperature variation

among the figures. The temperature distribution corresponding with a = 4 x 10 -4

attains the highest maximum in all three at 1167.8°C. On the other hand, the

simulation associates with linearly varying a reaches its equilibrium in the shortest

time. The temperature gradient for all three distributions is about 50°C. Figures (7.5)

and (7.6) show the temperature history at the center and one of the corner. There
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is not much different between two graphs besides the obvious temperature difference.

The corners and edges are cooler than the interior is simply the consequence of

cooling effect on the surface. We note the temperature of linear profile overtakes the

temperature corresponding to a = 10 -4 . This is the result of two profiles intersect

as show in Figure (7.l). However, there is a delay for the temperature to build up

which may explain why the second intersection never occurs.

Those simulations requires storage of 60 MB and solving a 1600-by-1600 system

of equations. A Sun's 400 MHz Ultra 5 workstation takes about a minute of its CPU

time to solve 1600-by-1600 system of equations. Hence, it would take about two hours

to simulate the above heating process for the case of linear conductivity profile.

Since we want to optimize the energy deposition into the sample, we dynamically

adjust the cavity length when we recompute the electric field. However, we learn that

the variation of the electrical conductivity a has little effect on the optimal length.

Figure (7.7) shows the absorption power of a square post of size 40.l mm, whose

center locates at x = 54.6 mm and z = 144.9 mm, for different values of a. The blue
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triangle represents the absorption power at the optimal length while the red triangle is

the absorption power at the optimal length of a = 0. The absolute error in absorption

power and optimal length are shown in Figures (7.8) and (7.9), respectively. As we

can see, the error in power absorption is on the order of 10 -2 W, and the difference in

optimal length is on the order of 10 -2 mm. These differences are small comparing to

the absorption power of 100 W and optimal length of 260 mm. We also find that the

placement of the sample significantly effects the absorption power and optimal length.

The absorption power and optimal length for two different locations of a sample are

shown in Figures (7.10) and (7.11), respectively. The blue triangles are the results of

the same settings as before. The red triangles are the results of moving the sample

22.3 mm along the cavity.
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Figure 7.6 Temperature history of one of the corners
of the sample for three different a profiles.
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CHAPTER 8

CONCLUSIONS

It is impractical, if not impossible, to numerically simulate the coupled Maxwell's

equations (3.l) and heat equation (3.2) because of the vast difference in scales of the

electromagnetic oscillation time and thermal conducting time. The electromagnetic

fields oscillate about a million times faster than it takes heat to spread across the

sample. Therefore, the direct simulation would march millions of time steps in order

to observe any temperature variation and sufficiently capture the behavior of the

electromagnetic fields. As a consequence, time-average heat equation (3.5) is always

used in place of equation (3.2). It waits for the transient electromagnetic disturbance

to radiate out of the computational domain before marching to the next time step in

the heat equation. FDTD is often employed as a solver in determining the harmonic

steady state electromagnetic fields. Note that the number of time steps FDTD takes

until the steady state emerges is not related to the time step of the heat equation.

From the perspective of the heat equation, the change in electromagnetic field is

instantaneous. In this dissertation, we determine the electric field by solving the

Helmholtz equation with a finite-difference method. This direct approach has its

advantage. The time-harmonic steady state electric field can be found without time-

stepping; there is no concern with transient disturbances radiating out of the compu-

tational domain. The downside is the method requires a large amount of storage and

solving a large system of equations. However, we succeed in reducing the storage

requirement and computational time by splitting the matrix into the sum of a real

symmetric matrix and a low-rank matrix. Consequently, we reduce computational

time significantly by solving a smaller system having as many unknowns as the rank

of the low-rank matrix. Furthermore, the splitting process allows us to separate the

5K
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temperature independent and dependent parts. We only compute the temperature

independent part once. Therefore, we expect this would provide an advantage over

FDTD method when electromagnetic fields are recomputed at each time step in the

heat equation.

In effort to minimize the truncation error, we consider various approaches. First,

we use the exact non-reflecting conditions for the propagating mode of the discrete

equations at the truncated boundaries of the waveguide. This ensures no artificial

reflection introduced to the computational domain by the numerical method. Second,

we can use finer mesh size to achieve better accuracy. However, our method becomes

inefficient as the mesh size getting smaller. For a finer grid with half the size of

the previous discretization, the required storage increases by a factor of 16, and the

method would take 64 times longer to solve the system by Gaussian elimination. In

comparison, the FDTD method would only require 4 times the storage as before, and

the computational time would increase by factor of 8 assuming the FDTD simulation

reaches a harmonic steady state in a fixed period of time. Finally, we could increase

accuracy by using the higher order stencil. This puts our method in a better light

because there is virtually no increase in storage, and the system can still be splitted

into the sum of a real symmetric matrix and a low-rank matrix as before.

We learn from the numerical results that the optimal length does not depend on

the electrical conductivity a as we expect. The optimal length for a lossless sample

would be sufficient to optimize the energy deposition for a lossy sample. In addition,

we find that the absorption power and the optimal length are highly dependent on

the location of the sample. Theoretically, we should able to find the optimal location

for a given sample using the system (3.15).



APPENDIX A

ASYMPTOTIC ANALYSIS IN A WAVEGUIDE

A.K Asymptotic Analysis about a Symmetric Iris

This section reproduces the asymptotic analysis for a symmetric iris by Lewin [16] as

shown in Figure (A.l). For the single mode TE waveguide, the modal representation

x1

1-a

a

0

Figure A.K A infinite waveguide with
the presence of a symmetric iris.

of the solution inside an infinite waveguide with the presence of the iris located at

B = 0,
00

(eik lz(ei + Re- jk lz) sin (71-x) + E Rm ekmz sin (7rx) , B < 0,
m=2

Eye =	 00

Teiklz sin (ax) + E Tme_kmz sin (7rx) , 	 B > 0,
m=2

where k 1 = k2 — 72 is the dimensionless wavenumber of the propagating mode,

and km = on272 k 2 are the dimensionless wavenumbers of evanescent modes. At

B = 0, Eye = E (m7rx) in the aperture, and is zero elsewhere. Then, by the application

of orthogonality and continuity of electric field in the aperture,
1—a

1 + R = T =if E (7x) sin (71-x) dx,	 (A.l)
a
1—a

Rm = Tm = if E (m7rx) sin (m7rx) dx.	 (A.2)
a
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Evaluation of the integral equation (A.3) is relied on the fact that (5, tends to zero

as m increases. Hence, we can obtain the asymptotic approximation of B which

in turn R and T by including appropriate Am  terms. The method also replies on

the orthogonality of cosine; therefore, we first bring the equation to proper form by



making the following change of variables.
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The first order of approximation is obtained by ignoring all 5m  terms, then equating

the coefficients of sin(mu),

We note that the 627, terms vanish because of the symmetry of the problem. They

correspond to the odd modes about the centerline x = K
2 
. Expressing other terms in

equation (A.6) in term of u and v.

Substituting equations (A.9)—(A.11) into integrand equation (A.6), most of the terms

in the series vanishes due to orthogonality. The contribution comes from two terms
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sin u and sin(3u), and their coefficients satisfy the following linear system,

We can easily solve equation (A.12) to obtain R. The reflection coefficient R has the

same form as before except b contains higher order term.

A.2 Asymptotic Analysis about a Lossy Target

This section derives the conservation of power inside an infinite waveguide in the

presence of a lossy target. Recall that the electric field inside the waveguide and the
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Similarly, let v be the solution in which an incident wave of unit strength scattering

the target from the right,

Since u and v satisfy the Helmholtz equation (A.13), their conjugates satisfy a similar

equation, i.e.

Multiplying equation (A.13) by u* with u replacing Eye as unknown quantity and

equation (A.16) by u, then subtracting one equation from another, we have

Integrating equation (A.17) over the interior of the waveguide from B = —/ to B = l

as shown in Figure (A.2),

Rewriting the first integrand as a divergent, and applying Gauss's divergence theorem

which reduces the first volume integral to a surface integral.

Since the electric field vanishes at the waveguide, the only contribution of the first

integral comes from the ends (B = +1) of the waveguide. Furthermore, the electrical

conductivity is zero outside the target, the second integral reduces to integral over

the volume of the target. Thus, the equation (A.18) becomes,
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where A is the area of the waveguide and S is the volume of the target. For a suffi-

ciently large 1, we can evaluate the surface integral using the asymptotic solution (A.14),

and obtain the conservation of power.

Similarly, we can obtain the same conservation of power in term of Ar and Tr using

the asymptotic solution (A.15). We can derive another relation between At, At, Ar

and Tr by replacing u* with v* in equation (A.17).

Following the same procedure as before, we obtain the same integral equation as (A.19)

with v* replacing t Lek .

Evaluating the surface integral at B = ±1 using the asymptotic solutions (A.14)

and (A.15), we arrive at another relation of A's and T's.

We also note the reflection and transmission coefficients of the iris in §A.l,

automatically satisfy the relations (A.20) for any b not equal to i.



APPENDIX B

ENERGY FLOW IN A WAVEGUIDE

In order to initiate the numerical process, we need to know the amplitude Eo of the

electric field which is usually given in term of input power P. And, power relates to

electromagnetic fields through the Poynting vector [11.

for a TE mode. Then, the total power flow is given by the integral of the axial

component of S over the cross-sectional area of the waveguide.
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