493 research outputs found

    Matching model of flow table for networked big data

    Full text link
    Networking for big data has to be intelligent because it will adjust data transmission requirements adaptively during data splitting and merging. Software-defined networking (SDN) provides a workable and practical paradigm for designing more efficient and flexible networks. Matching strategy in the flow table of SDN switches is most crucial. In this paper, we use a classification approach to analyze the structure of packets based on the tuple-space lookup mechanism, and propose a matching model of the flow table in SDN switches by classifying packets based on a set of fields, which is called an F-OpenFlow. The experiment results show that the proposed F-OpenFlow effectively improves the utilization rate and matching efficiency of the flow table in SDN switches for networked big data.Comment: 14 pages, 6 figures, 2 table

    Ecosystemic Evolution Feeded by Smart Systems

    Get PDF
    Information Society is advancing along a route of ecosystemic evolution. ICT and Internet advancements, together with the progression of the systemic approach for enhancement and application of Smart Systems, are grounding such an evolution. The needed approach is therefore expected to evolve by increasingly fitting into the basic requirements of a significant general enhancement of human and social well-being, within all spheres of life (public, private, professional). This implies enhancing and exploiting the net-living virtual space, to make it a virtuous beneficial integration of the real-life space. Meanwhile, contextual evolution of smart cities is aiming at strongly empowering that ecosystemic approach by enhancing and diffusing net-living benefits over our own lived territory, while also incisively targeting a new stable socio-economic local development, according to social, ecological, and economic sustainability requirements. This territorial focus matches with a new glocal vision, which enables a more effective diffusion of benefits in terms of well-being, thus moderating the current global vision primarily fed by a global-scale market development view. Basic technological advancements have thus to be pursued at the system-level. They include system architecting for virtualization of functions, data integration and sharing, flexible basic service composition, and end-service personalization viability, for the operation and interoperation of smart systems, supporting effective net-living advancements in all application fields. Increasing and basically mandatory importance must also be increasingly reserved for human–technical and social–technical factors, as well as to the associated need of empowering the cross-disciplinary approach for related research and innovation. The prospected eco-systemic impact also implies a social pro-active participation, as well as coping with possible negative effects of net-living in terms of social exclusion and isolation, which require incisive actions for a conformal socio-cultural development. In this concern, speed, continuity, and expected long-term duration of innovation processes, pushed by basic technological advancements, make ecosystemic requirements stricter. This evolution requires also a new approach, targeting development of the needed basic and vocational education for net-living, which is to be considered as an engine for the development of the related ‘new living know-how’, as well as of the conformal ‘new making know-how’

    Internet of Things (IoT) for Automated and Smart Applications

    Get PDF
    Internet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader understand the principle of using IoT in such applications

    Performance modelling and analysis of software defined networking

    Get PDF
    Software Defined Networking (SDN) is an emerging architecture for the next-generation Internet, providing unprecedented network programmability to handle the explosive growth of Big Data driven by the popularisation of smart mobile devices and the pervasiveness of content-rich multimedia applications. In order to quantitatively investigate the performance characteristics of SDN networks, several research efforts from both simulation experiments and analytical modelling have been reported in the current literature. Among those studies, analytical modelling has demonstrated its superiority in terms of cost-effectiveness in the evaluation of large-scale networks. However, for analytical tractability and simplification, existing analytical models are derived based on the unrealistic assumptions that the network traffic follows the Poisson process which is suitable to model non-bursty text data and the data plane of SDN is modelled by one simplified Single Server Single Queue (SSSQ) system. Recent measurement studies have shown that, due to the features of heavy volume and high velocity, the multimedia big data generated by real-world multimedia applications reveals the bursty and correlated nature in the network transmission. With the aim of the capturing such features of realistic traffic patterns and obtaining a comprehensive and deeper understanding of the performance behaviour of SDN networks, this paper presents a new analytical model to investigate the performance of SDN in the presence of the bursty and correlated arrivals modelled by Markov Modulated Poisson Process (MMPP). The Quality-of-Service performance metrics in terms of the average latency and average network throughput of the SDN networks are derived based on the developed analytical model. To consider realistic multi-queue system of forwarding elements, a Priority-Queue (PQ) system is adopted to model SDN data plane. To address the challenging problem of obtaining the key performance metrics, e.g., queue length distribution of PQ system with a given service capacity, a versatile methodology extending the Empty Buffer Approximation (EBA) method is proposed to facilitate the decomposition of such a PQ system to two SSSQ systems. The validity of the proposed model is demonstrated through extensive simulation experiments. To illustrate its application, the developed model is then utilised to study the strategy of the network configuration and resource allocation in SDN networksThis work is supported by the EU FP7 “QUICK” Project (Grant NO. PIRSES-GA-2013-612652) and the National Natural Science Foundation of China (Grant NO. 61303241)

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services

    A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics

    Get PDF
    This is an accepted manuscript of an article published by IEEE in IEEE Transactions on Intelligent Transportation Systems on 04/01/2022. Available online: https://doi.org/10.1109/TITS.2021.3138255 The accepted version of the publication may differ from the final published version.The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition’s outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0.The authors would like to thank University Malaysia Pahang for providing the laboratory facilities and financial support under the University FLAGSHIP Research Grants (Project number RDU192203), International Matching Grant (No. RDU192704), and Postgraduate Research Scheme Grant (No. PGRS200325)

    Big Data Platform Architecture Under The Background of Financial Technology

    Full text link
    With the rise of the concept of financial technology, financial and technology gradually in-depth integration, scientific and technological means to become financial product innovation, improve financial efficiency and reduce financial transaction costs an important driving force. In this context, the new technology platform is from the business philosophy, business model, technical means, sales, internal management, and other dimensions to re-shape the financial industry. In this paper, the existing big data platform architecture technology innovation, adding space-time data elements, combined with the insurance industry for practical analysis, put forward a meaningful product circle and customer circle.Comment: 4 pages, 3 figures, 2018 International Conference on Big Data Engineering and Technolog

    The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt from the Development of a 5G Testbed Environment

    Get PDF
    The capacity and coverage requirements for 5 th generation (5G) and beyond wireless connectivity will be significantly different from the predecessor networks. To meet these requirements, the anticipated deployment cost in the United Kingdom (UK) is predicted to be between £30bn and £50bn, whereas the current annual capital expenditure (CapEX) of the mobile network operators (MNOs) is £2.5bn. This prospect has vastly impacted and has become one of the major delaying factors for building the 5G physical infrastructure, whereas other areas of 5G are progressing at their speed. Due to the expensive and complicated nature of the network infrastructure and spectrum, the second-tier operators, widely known as mobile virtual network operators (MVNO), are entirely dependent on the MNOs. In this paper, an extensive study is conducted to explore the possibilities of reducing the 5G deployment cost and developing viable business models. In this regard, the potential of infrastructure, data, and spectrum sharing is thoroughly investigated. It is established that the use of existing public infrastructure (e.g., streetlights, telephone poles, etc.) has a potential to reduce the anticipated cost by about 40% to 60%. This paper also reviews the recent Ofcom initiatives to release location-based licenses of the 5G-compatible radio spectrum. Our study suggests that simplification of infrastructure and spectrum will encourage the exponential growth of scenario-specific cellular networks (e.g., private networks, community networks, micro-operators) and will potentially disrupt the current business models of telecommunication business stakeholders - specifically MNOs and TowerCos. Furthermore, the anticipated dense device connectivity in 5G will increase the resolution of traditional and non-traditional data availability significantly. This will encourage extensive data harvesting as a business opportunity and function within small and medium-sized enterprises (SMEs) as well as large social networks. Consequently, the rise of new infrastructures and spectrum stakeholders is anticipated. This will fuel the development of a 5G data exchange ecosystem where data transactions are deemed to be high-value business commodities. The privacy and security of such data, as well as definitions of the associated revenue models and ownership, are challenging areas - and these have yet to emerge and mature fully. In this direction, this paper proposes the development of a unified data hub with layered structured privacy and security along with blockchain and encrypted off-chain based ownership/royalty tracking. Also, a data economy-oriented business model is proposed. The study found that with the potential commodification of data and data transactions along with the low-cost physical infrastructure and spectrum, the 5G network will introduce significant disruption in the Telco business ecosystem
    corecore