12,094 research outputs found

    An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks

    Full text link
    Network Functions Virtualization (NFV) in Software Defined Networks (SDN) emerged as a new technology for creating virtual instances for smooth execution of multiple applications. Their amalgamation provides flexible and programmable platforms to utilize the network resources for providing Quality of Service (QoS) to various applications. In SDN-enabled NFV setups, the underlying network services can be viewed as a series of virtual network functions (VNFs) and their optimal deployment on physical/virtual nodes is considered a challenging task to perform. However, SDNs have evolved from single-domain to multi-domain setups in the recent era. Thus, the complexity of the underlying VNF deployment problem in multi-domain setups has increased manifold. Moreover, the energy utilization aspect is relatively unexplored with respect to an optimal mapping of VNFs across multiple SDN domains. Hence, in this work, the VNF deployment problem in multi-domain SDN setup has been addressed with a primary emphasis on reducing the overall energy consumption for deploying the maximum number of VNFs with guaranteed QoS. The problem in hand is initially formulated as a "Multi-objective Optimization Problem" based on Integer Linear Programming (ILP) to obtain an optimal solution. However, the formulated ILP becomes complex to solve with an increasing number of decision variables and constraints with an increase in the size of the network. Thus, we leverage the benefits of the popular evolutionary optimization algorithms to solve the problem under consideration. In order to deduce the most appropriate evolutionary optimization algorithm to solve the considered problem, it is subjected to different variants of evolutionary algorithms on the widely used MOEA framework (an open source java framework based on multi-objective evolutionary algorithms).Comment: Accepted for publication in IEEE INFOCOM 2019 Workshop on Intelligent Cloud Computing and Networking (ICCN 2019

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    A diversity-based approach to requirements tracing in new product development.

    Get PDF
    Production models emerged in recent times have stressed the need to face complex production contexts, characterized in particular by the rise in internal and environmental variability. In this work, a stylization of some elements concerning analysis and design of new products is given, and in particular those that involve definition and transfer phases in the development of innovative goods, where change and variability in requirements along development process are often high. This analysis has a twofold goal: first, to supply a conceptual frame for the close examination of some dynamics of requirement's integration into an artifact's design, in order to give account of their variability along development cycle; on the other side, to propose an approach based on simple similarity metrics, to be applied to linguistic descriptions of artifacts in the early phases of development process, in order to identify components in an artifact that undergo larger variability and therefore are to be paid more attention in the subsequent phases of life cycle.

    Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary).

    Get PDF
    In May 2017, a two-day workshop was held in Los Angeles (California, U.S.A.) to gather practitioners who work with low-cost sensors used to make air quality measurements. The community of practice included individuals from academia, industry, non-profit groups, community-based organizations, and regulatory agencies. The group gathered to share knowledge developed from a variety of pilot projects in hopes of advancing the collective knowledge about how best to use low-cost air quality sensors. Panel discussion topics included: (1) best practices for deployment and calibration of low-cost sensor systems, (2) data standardization efforts and database design, (3) advances in sensor calibration, data management, and data analysis and visualization, and (4) lessons learned from research/community partnerships to encourage purposeful use of sensors and create change/action. Panel discussions summarized knowledge advances and project successes while also highlighting the questions, unresolved issues, and technological limitations that still remain within the low-cost air quality sensor arena

    Modeling and Selection of Software Service Variants

    Get PDF
    Providers and consumers have to deal with variants, meaning alternative instances of a service?s design, implementation, deployment, or operation, when developing or delivering software services. This work presents service feature modeling to deal with associated challenges, comprising a language to represent software service variants and a set of methods for modeling and subsequent variant selection. This work?s evaluation includes a POC implementation and two real-life use cases

    Software Product Line

    Get PDF
    The Software Product Line (SPL) is an emerging methodology for developing software products. Currently, there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques have been developed to assist engineers in dealing with the complications of variability management. The principal goal of modelling variability techniques is to configure a successful software product by managing variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new techniques for modelling and new methods for SPL analysis

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks

    Full text link
    Without any doubt, Machine Learning (ML) will be an important driver of future communications due to its foreseen performance when applied to complex problems. However, the application of ML to networking systems raises concerns among network operators and other stakeholders, especially regarding trustworthiness and reliability. In this paper, we devise the role of network simulators for bridging the gap between ML and communications systems. In particular, we present an architectural integration of simulators in ML-aware networks for training, testing, and validating ML models before being applied to the operative network. Moreover, we provide insights on the main challenges resulting from this integration, and then give hints discussing how they can be overcome. Finally, we illustrate the integration of network simulators into ML-assisted communications through a proof-of-concept testbed implementation of a residential Wi-Fi network
    • …
    corecore