View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by Research Papers in Economics

A diversity-based approach to requirements tracing

in new product development

Loris Gaio

Dipartimento di Informatica e Studi Aziendali
Universita degli Studi di Trento
Via Inama, 1 — 38100 — Trento (I)
loris.gaio@economia.unitn.it

Trento, 7th June 2005

RODUCTION models emerged in recent times

have stressed the need to face complex pro-
duction contexts, characterized in particular by the
rise in internal and environmental variability.

In this work, a stylization of some elements
concerning analysis and design of new products
is given, and in particular those that involve def-
inition and transfer phases in the development of
innovative goods, where change and variability in
requirements along development process are often
high.

a conceptual frame for the close examination of
some dynamics of requirement’s integration into
an artifact’s design, in order to give account of
their variability along development cycle; on the
other side, to propose an approach based on sim-
ple similarity metrics, to be applied to linguistic
descriptions of artifacts in the early phases of de-
velopment process, in order to identify components
in an artifact that undergo larger variability and
therefore are to be paid more attention in the
subsequent phases of life cycle.

This analysis has a twofold goal: first, to supply

1 Introduction

The context considered in this work concerns certain modalities through which the initial phases of
development of an innovative product are articulated, those marking the beginning of realization process
of a new good, characterized in a systematic way by particular aspects of complexity.

A dimension taking on a particular importance in the life cycle of an innovative product is the set
of activities focused on managing the requirements asked for the specific field of utilization of the final
good, and the transformation of such requirements into characteristics and features of the product.

The ability to fix the required specifications in a correct way from the beginning of the development
process, to integrate them together and transform them into final goods’s features, is essential to assure
efficiency right from the initial phases of the life cycle, primarily because any rework or adjusting activity
turn out to be costly and often difficult to realize’.

Literature concerning requirements management in industrial firms has focused on some well defined
research streams: (1) modalities and conditions through which is possible to identify the notion of
requirement (Akao 1990, King 1989, Pugh 1990, Urban and von Hippel 1988, von Hippel 1986, 1988), (2)
the issue of integration between marketing and operations, in particular those concerning research and
development activities, (Gupta and Wilemon 1986, 1990, Souder 1988), (3) the interactions occurring
between the universe related to design and that concerning the customer (Clark 1985, Clark and
Fujimoto 1991, Leonard-Barton 1995).

1For the rate of failure in innovation products development projects and their causes, see among others Burgelman et al.
(1996), Ottum and Moore (1997).

https://core.ac.uk/display/6381914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The analysis of literature permits to derive three prominent conclusion: first, an essential factor
is the presence of organizational structures or units capable of realizing requirements integration into
characters of the final product, especially in contexts characterized by strong uncertainty and variability
(Clark et al. 1987, Clark and Fujimoto 1991). In second instance, the domain of design seems to be
orthogonal to problem-solving? one: activities devoted to design, according to literature, are mere
receivers of information derived in former phases of requirements definition and articulation. In third
place, it has not been defined yet a clear and persuasive enough framework able to stylize and explain the
modalities through which information identified and organized in requirements by definition practices
is later transformed into design details and in final product’s features. The information turning on in
design phase is often inconsistent to which generated by requirements gathering, despite the latter one
served as starting base for design details.

In particular, this work is focused on the theme of requirements variability determined by internal
and external change in the early development process, often derived from change in the organizational
structure, workgroup’s composition, environmental and external variables or in the problem domain,
affecting the development life cycle. Such variability can be measured by diversity metrics, having in
mind the goal of appraising the variation in the requirements’s set along the development process, and
to assess this incidence on the features of different components of the final good.

Finally, measures of diversity in time of different part of the product being developed may help
as government tool for the definition of new product’s features, on the basis of the persistence of the
requirements along the life cycle, thus supplying an instrument to set out the level of desiderable variety
in the dynamics of requirements evolution (Weitzman 1992, 1993).

Next section attempts to define the scope of the analysis and to fix some elements, independent from
a particular application domain, which will be used to build an interpretation in terms of diversity for
requirements management, with the final aim to develop a conceptual framework useful to give account
of requirements’s definition and later incorporation in product design. The following sections will be
devoted to the analysis of some of these issues for the field of software production; some empirical

evidence of this approach, applied to the analysis of a case study will be shown in the last section.

2 Artificial, Artifacts and Requirements

Design and production of the artificial, that is, a totally new object, has been properly framed and
stylized in the work by Simon (1996): he identifies two key factors in design and realization process
for artificial ojects created by man: in first instance, the goal or aim in artifact’s nature; secondly, its
working conditions, defined by the environment. In the set of relations needed to build and use a new
product, it is necessary to divide the internal environment from the external one, so as to allow steady
working conditions for the artifact, and isolate it from variations coming from the external environment.
In alternative, it is possible to use a preventive adaptation approach, or in third instance through
mechanisms using both solutions. In any case, the external environment contributes in defining the
conditions for reaching the artifact’s goals.

If the artifact owns the correct operating features, it will be able to adapt itself to the external
environment; in any case, its behavior is mainly influenced from the latter. The artifact’s performance
depends both from the environment’s variability range and from internal traits useful to identify its

properties, say the features fixed in the development process and incorporated in the product.

2This domain is often referred as analysis in many industrial contexts.

The elements of the problem-solving process devoted to the definition of an artifact’s features can
be identified using the interpretation frame supplied by stakeholder theory (Freeman 1984). In such
perspective, stakeholders represent the agents involved in different activities, roles and phases of an
artifact’s production®. Among those are the buyers, who purchase the final product and take on the
economic cost of realization; the final users, who eventually use the product and are mainly interested to
features such as its usability and reliability; people bearing the responsibility of product’s maintenance
and management, in the case of capital goods or services, who often are also responsible for the artifact’s
future evolution, and are more directly interested in the product’s architecture and its innovation
potential; finally, the agents involved in its definition, that is designers, who have to identify and realize
the artifact’s features.

A further component of this approach is stakeholders’ ability to enact relational patterns to be
used to raise requirements’ sets in an efficient and effective way, which will be later incorporated in
the artifact during its design and production. The traditional methods of planning are often inefficient
in the management of the process aimed to an artifact’s requirements definition: indeed, it is rather
difficult to identify coordination and control variables in such process, and it is equally problematic to
assess and manage its activities with a deliberate strategy.

A possible approach is suggested by the concept of generative relationship and has been introduced
by Lane and Maxfield (1994). In detail, Lane and Maxfield identify the importance assumed by
particular set of relations stated as generative, that are particular conditions where the process of
requirements definition, organization and incorporation can be governed and managed; such conditions
are strictly connected to the solution domain, to different complexity levels of the problem faced, to
the chronological horizons typical of the requirements’ definition process. Those factors influence the
emergence of generative relationships, permit the definition of viable strategies for appropriate changes
in the space of solutions/artifacts and eventually allow to pursue, identify and use those relations among
stakeholders that are able to generate value.

A further aspect in this process of problem-solving is the ability of define the resources, capabilities
and activities to be used for an artifact’s definition inside the extended organizational structure in which
this process has to take place (Baldwin and Clark 2000). An artifact’s realization needs coordination
structures, both inside and among organizational units, in order to assure that activities of see and seek
in the problem and solution domains be not vain, but allow the company to create value. This means
that resources involved in artifact’s definition must be able to create and use internal and external
coordination mechanisms. Such mechanisms represent driving systems which allow to concentrate efforts
of human and physical resources in particular directions, with the goal of reaching appropriate design
solutions.

The approach proposed by Baldwin and Clark (2000), defines two technological dimensions for
instruments which have to supply support coordination in design activities: the former corresponds to
technical knowledge, that allows to understand how an artifact works and what variables are used by
stakeholders to evaluate it; the latter one is defined as managerial knowledge and permits to stimulate
and manage agents engaged in design activities. Thus, the first should be used to “see” the design space,
depicting it in a full and deep way; the second is to be used to address stakeholders’ efforts and vision

and permit a more efficient “seek” in the space of alternatives.

31t is to be noted how they are not necessarily completely identified during an artifact’s development process; in many
cases only the potential recipient of a final good is identified: it is the case of future customers of a large number of
commodities which features are not yet completely and explicitly expressed: for a formal interpretation of this issue, see
the seminal work by Lancaster (1966), subsequently investigated and stilized in depth (Lancaster 1979).

2.1 The role of language and information

A first relevant condition affects the definition of an artifact’s requirements: the traits of communication
channels among agents involved in definition process (Holtzblatt and Beyer 1995). The use of linguistic
tools are an essential coordination modality in artifact’s production activity, particularly in contexts
where the artifact is a good or service with huge information content.

This does not mean that the organizational context has to choose an unique communication language,
or that the adoption of a singular language be an optimal solution for such context: in many empirical
situations many languages of different nature and origin can be observed: different languages must
coexist because of their efficiency when used where the context is characterized by differentiated and
specialized functions, capabilities, interaction structures and identities. Moreover, some research streams
assert that variety and nature of languages used in an organization depend on its bond configuration,
both in functional and structural terms.

In principle, language pursues two main functions:

a communication: the importance of communication in new products development is stressed,
among the others, by Brooks (1975), with reference to the ability that linguistic tools must show
in addressing and manage communication dynamics, in particular changes, which characterize
such process*. Thus, language is an essential tool in this context, to allow an efficient and effective
communication among agents. In this perspective, language spreads information exchange among
subjects and enables the resolution of conflicts and asymmetries among units involved in the

process;

b production: the information content of products and processes in present production paradigms is
continuously increasing: languages used in production cycles play a prominent role in conveying,
extracting and managing an amount of information and knowledge growing in size and complexity.
Therefore, language becomes a primary production factor in processes characterized by strong
information content, as it should have efficient and effective primitives in managing contextual
information. This role has caused the emergence of a plethora of specialized languages used for the

treatment of large amounts of situated information®.

One modality through which design operates, is the definition of an internal environment that
permits to replicate working conditions of the artifact, with the goals of defining and assessing its
structure, operating modes and eventually its value (Simon 1996). If this modality involves a relevant
number of agents, it is necessary to apply communication tools able to identify, among all viable
alternatives, the parameters to be used for building functional characters and structure of the artifact
and to assess its valueS.

Each stakeholder represents a separate observer, which interpretation of the events is not necessarily
agreed by other agents. When different stakeholder — the final user, the analyst or different organizational

units — have conflicting interpretations about goals, functions or other elements of the relation, a

4In this respect, it is shown how such changes can involve — and normally do — stakeholders in autonomous and indepen-
dent mode, particularly in contexts where analysis and design activities are organized in work groups: “As work proceeds,
the several teams slowly change the functions, sizes and speeds of their own programs, and they explicitly or implicitly
change their assumptions about the inputs available and the uses to be made of the outputs.” (Brooks 1975, p.75).

5This is the case of languages delivered to define technical features of industrial artifacts along a manufacturing chain,
through the whole life cycle of a good, and the consequent definition of linguistic standards in CAD/CAE/CAM applications,
that are used to manage information flows along the whole production process.

SFor instance, experiments, prototypes, simulations and other testing tools can be realized to gather informations and
judgments around the artifact and its working effects.

coordination break and the consequent failure in the relation are inevitable. The chance of explicating
ideas and absorbing and sharing new informations about an artifact’s design, are thus strictly tied to

the chance of sharing a common representation among the stakeholders. The essential dimension for

coordination is represented in first instance by the traits of the language, but also by the possibility to
build a structure of conversation which permits an effective convergence and sharing of meaning and

representations (Brooks 1975).

How the information is used in artifact’s definition is also crucial. Gathering and other activities
devoted to features definitions traditionally use a large amount of information in the early steps of a
new product development. This approach, that traditionally stems from engineering disciplines, entails
two conditions: first, it implies that the problem space be well defined ez-ante, and it be reducible and
decomposable in subproblems. Secondly, it is assumed that the nature and scope of the problem will
not change during an artifact’s development, at least from the moment where its structure and features
is identified. Stage-gate models, for example, postulate that entire information necessary to define the
artifact’s features be available from the initial phase of development process, and their nature and
content will not change along development cycle.

Information complexity is thus managed by a process of decomposition and recomposition, through
reduction of a complex problem in subproblems, which can be defined and managed in an easy way.
Approaches normally used in this context are hierarchy Simon (1996) or the use of frames Polya (1957).
The most relevant limit in complexity reduction stems from the context: the structure of problems and
subproblems is built with regards to the particular viewpoint where it occurs. Furthermore, in many
cases the amount of information is too wide to be reduced ad articulated in a convenient way.

A viable strategy to face the issue of information complexity in such context can be built ez-post,
through an adaptive approach, where final working conditions of the artifact are defined and created,
and non reducible knowledge and information is spread and transformed in features through the use
of tools and methods which allows a feedback among the involved stakeholders, particularly final users
and designers. In this respect, the management of information complexity is performed by using non
linguistic communication, the use of prototypes and mockups and the adaptation of the artifact to
stakeholder’s requests. This approach allows for anticipation of working conditions of the artifact, and
permits the transfer of tacit information or information not codified in previous phases of development
process. This is a form of adaption guidance, where specifications are not kept in a definitive manner, but
rather they can be changed in some extent, and the process allows, in a gradual way, for incorporation
and integration of new features in the artifact”.

Another dimension in information management in a new product development is its size. The
traditional engineering models imply the aggregative character of this activity: the initial phases of
the process have to identify any available information source, elicitating and organizing information
to be used in artifact’s definition. The treatment ez-ante of large information amounts has been the
normal and widely followed practice in new products’ development® (Burgelman et al. 1996). Other
approaches follow an alternative strategy: the idea is to abandon the treatment of large datasets to
extract information from, and to use information sources smaller in size and complexity, simpler to

manage, where problems of interpretation and integration are much simpler: this approach seems to be

"Interactive design employs such an approach: tool such dedicated software and shared monitors permit to interdis-
ciplinary teams (marketing, operations, R&D) to continuously interact with customers, catching their responses through
audio and video channels. Customers take part to the development of new or customized products, such as tissues, fur-
niture, entertainment services, automotive or airplane parts, insurance policies, law or accountancy services. This form of
coordination is a critical factor both in reducing the process and product risks, and in raising the value of the final artifact.

8This orientation seems to inform many approaches in requirements management, such as Quality Function Deployment,
scenario analysis, case-based (use case and use story) analysis and methods known as User-centered design.

inspired by some recent development methods from software industry.

Thus, granularity of information and modalities of its aggregation along the process of an artifact’s
definition represent two relevant issues in new product development. In many recent methods it is
suggested to replace the traditional approach of decomposition/recomposition, ez-ante planning and
massive information treatment, with an alternative method based information chunks (following the
definition given by Simon (1974)) smaller in size and with reduced complexity, and their incorporation
to form a robust core of specifications, gradually built as analysis process evolves in time. This approach
seems to follow an adaptive and lean philosophy, where features emerge gradually and information is
treated in smaller units, and artifact’s traits emerge as result of a gradual an constant aggregation

process.

3 Requirements and production of software

Traditional paradigms in software development process® imply a succession of initial activities addressed
to definition of design specifications, starting from requirements analysis documents, produced through
a process of gathering, elicitation and organization, often using a plethora of tools (interviews on the
field, analysis of descriptive documents, simulations, use cases, etc.) which use large amount of codified
information and tacit knowledge.

Much recent empirical evidence confirms how one of the most critical and problematic issues in
software development is the correct identification and organization of requirements. Particularly, the
development of correct specifications and the management of processes which involve customers in
requirements definition represent the most important issues for European companies involved in software
development (Lee et al. 1999).

The specific structure of software development cycle and the interdependence of its phases have
moreover evidenced the motivation for shared linguistic instruments along the development process,
with the perspective to minimize or to get rid of risk of information losses through the process, and the

emergence of ambiguity issues'C.

3.1 Requirements management, measurement and traceability

Requirements engineering represents the result of efforts of software engineering to define the optimal
conditions in which realize the activities and use the tools required to requirements management in
software and information systems development (Byrd et al. 1992).

In such context, a strategy of requirements elicitation is made up of a set of guidelines to set out
the information sources, extract requirements and resolve conflicts and coordination problems which
possibly emerge. Elicitation phase is characterized by the presence of many communication issues and

high iteration intensity among stakeholders. Consequently, techniques used in this phase do not come

9Software development is described and analyzed using a set of paradigms which allows to emphasize the main traits of
this activity. Life cycle as tool to depict and manage the process of software development has evolved through the use of
even more elaborate and articulate models: early waterfall model has been substituted by iterative, incremental, spiral and
evolutionary approaches and RAD, CMM and a plethora of other development methods. However, the evolution of such
process exceeds the scope of this work.

101n this view, one of the major efforts realized in late years is the unification of different object oriented methods towards
a unique development standard (UML, Unified Modeling Language)(Booch et al. 1998). The idea underlying this standard
is to use a singular linguistic approach for the analysis, design and implementation of software applications, in order to
define and spread requirements along the process of software development, thus minimizing risks of information losses and
ambiguities arising from the use of different linguistic approaches in different phases of the process.

directly from computer science mainstream, but rather from organization theory, from research on
groups interaction and from cognitive science (Potts 1991).

Some of the most recent contributions to requirements management stress the contextual aspect,
that is, the environment where the artifact will work. Along this lines, which seem to retrieve Simon’s
suggestions previously depicted about the interaction between the artifact and its environment, places
the concept of conceptual modeling (Borgida et al. 1985) and some other more recent contributions
(Jackson 1995, Goguen 1996). In first instance, it is recognized that requirements have to be identified
respect to the environment where the artifact must be placed: on the other side, software features
have to be identified in function of the characters of the problem and not in function of the solution:
requirements concern the goal intended to be attained, and goals of an artifacts — in this respect software
applications — are to be defined outside the artifact, in the problem domain and not in the solution one.

Requirements are information: any information is situated, and the context defines the meaning
of requirements. Considering context means to pay attention to technical and social factors. An
effective strategy for requirements management must consider and accommodate both technical aspects,
influenced by context in a lesser extent, and social ones, characterized by context in marked ways. The
emergence of requirements is strictly tied to the nature of interaction among stakeholders: information
should be collected in the context where the final users act and where the application will operate.

Finally, in the management of software requirements a principle of incompleteness is widely accepted:
there is no definition such those of complete requirement, but rather it is to be decided the acceptable
level of incompleteness (Brooks 1975, Jackson 1995). Some approaches tried to cut down this gap
through the application of techniques and tools able to enhance an artifact’s description anticipating its
behavior: along this lines places prototyping and the development of use cases'!.

The salient mainstreams of requirements’ management develop in three directions: to address
stakeholders’ contributions towards a shared system of constraints and goals; to reach an understanding
clear enough of conditions required for an artifact’s realization, such as functional and structural
properties and direct and side effects; finally, to record in detail such understanding in order to allow
stakeholders to comprehend them and make artifact’s development easier.

The importance of such goals is widely recognized: analysis of empirical data evidence how 60% of
total errors introduced in software applications stem from early phases of requirements definition. Those
analysis also show that as late an error following from poorly or not specified requirements is spot,
greater will be the cost to fix damage caused by such error (Boehm 1981). More recent contributions
permit to identify a set of elements and behaviors, stemming from operational and organizational

practices and from empirical studies, that confirm this phenomenon:
1. many specification mistakes are identified long time after they have been made;

2. delay in identification increases fix costs and makes requirements redefinition more problematic, as

the effect spreads through different components of the artifact;

3. the taxonomy of such mistakes includes wrong assumptions, omissions, inconsistencies, ambiguities

which could have been identified in the early stages of artifact’s development (Davis et al. 1993).

Furthermore, empirical data (Kelly et al. 1992) allow to validate the symmetrical hypothesis, that is,

quick and accurate identification of mistakes in requirements allows to reduce the emergence of defects

11 A company’s ability to ideate and design high quality prototypes represents a key competitive factor in many industrial
sectors, and not only in information technology industry. The arrangement of working prototypes in the early stages of
an artifact’s life cycle allows from one part to fix specification and design errors immediately, and to speed up and make
more efficient the whole process of new products development. (Clark et al. 1987, Clark and Fujimoto 1991, Clark and
Wheelwright 1993).

in the following stages of a new product development cycle, and dramatically lowers redesign and rework
costs.

The ability to describe, identify and exhibit the evolution of a requirement along the artifact’s
development cycle, that is to identify and control a “path” in requirements in development process,
is stated as requirements traceability. This approach is mainstream for process control in software
applications development: organizations which develop applications are integrating their development
process with a set of traceability methods and techniques that allow to define and control origins
and nature of requirements in an artifact, in any moment of the development process: for example,
relations and interdependencies among different requirements, links between different requirements and
the stakeholders who generate them, the evolution of a requirement respect to a particular stage of the
artifact, the level of complexity and ambiguity in a particular set of requirements.

At the same time, traceability adapts to and uses information flows which establish development
process, and thus expand towards two directions, forward and backward. Moreover, requirements can

represent the initial point of a management activity or otherwise its recipient.

Table 1: Directions and dimensions of traceability

] | Forward | Backward

From || responsibility definitions for components | reconstruction stakeholders’ importance
implementation; assessment of change in | to requirements definition

requirements
To changes in stakeholder’s requirements and | testing of artifact’s responsiveness to re-
in technological constraints; redefinition of | quirements; avoid gold plating
requirements’ structure

The development of different coordination and control activities which traceability is divided into,
permits to organize a requirements traceability matrix (RTM) depicted in Table 1. Activities which
lie on the main diagonal (forward-from and backward-to) are classified as post-traceability: they allow
to link requirements to artifact’s design and implementation activities, supplying with documentary
evidence responsibility assignments, permitting to verify conformity of requirements to the artifact’s
characteristics and allowing the evaluation and analysis the impact of requirement on the features of
the final product. Other two classes of traceability are classified as pre-traceability and are oriented
towards documenting and managing fundamentals and elements of the technological context and the
organizational and social circumstances connected to requirements definition and change.

Introduction and operational use of those coordination and control tools implies an ez-ante planned
design: it is intuitive how this approach is not always convenient, as it implies the definition of an
ez-ante control and coordination system in both directions between the domain of requirements and
the state of the artifact and its environment, along the whole development cycle: moreover, the costs

implied by this control system may not be justified by the low benefits that this system would attain.

3.2 Traceability measurement and simple similarity metrics

The approaches to traceability, view as tools to define regular and structured links in the system of
relations stakeholders-artifact, and the models underlying such relations, expect and use quantitative
metrics to measure and give account of evolution of an artifact in time. Such metrics are used in a
relevant number of operating contexts, in order to describe the size growth of the artifact, the relational

structure which generated it, its internal complexity. Simpler metrics are used to evaluate size and

permit to identify dimension and complexity reached by the set of requirements which describes the

artifact:
e number of processes or their components, such as flows and actors;
e overall number of final requirements;
e number of mistakes found in different phases of the development cycle;
e number of to-be-determined (TBD) requirements;
e number of requests of change in requirements (volatility).

These metrics can explain only growth dynamics in the system, but non the effects caused by shifts
in design or operating variables, which can influence requirements state: for example, change in the
number and composition of information sources or stakeholders, the change in the number of interfaces
among them, the effects deriving by changes in languages and domains. To identify the effect of such
factors it is necessary to use metrics able to catch the internal variability of the artifact’s representation,
and to explain its causes.

A perspective for the analysis and identification of variability factors experienced in time along
variations in information sets, stems from the study of evolution of similarity: when information is
in textual form, those techniques are provided by computational linguistic. Similarity is a property,
measurable in quantitative way, which allows to define the degree of relation between two or more
objects with an information content. There is a plethora of similarity measures defined to quantify this
character'?; simpler metrics are used for the evaluation of binary information, where attributes for the
objects can in alternative assume values [0|1]. In this case, for any pair of objects a,b each attribute can
assume alternative states 00, 10,01, 11.

The simplest comparison of characters defined on a binary domain can be computed starting from

cardinalities of such states, as depicted in Table 2.

Table 2: Cardinality of states on a binary domain

My1 = number of attributes where a =0 and b =1
My = number of attributes where a =1 and b =0
Moy = number of attributes where a = 0 and b =0
My; = number of attributes where a =1 and b =1

Starting from these simple information, more synthetic index can be computed, used to compare
different stages which a particular system is situated. A first elementary and widely used index is simple

matching coefficient, defined as

§SMC _ (Mll + Moo)/(MOI + Myg + My + MOO) (1)

which permits to compare characteristics both present and absent in objects, and all possible states.
A more complex measure used to evaluate the degree of overlapping for the features of two objects is
Jaccard’s index, which is the ratio between the values in common for two objects (intersection) by the

sum of those in common (intersection) and those exclusive to one of them (union), that is

Jaccard = number of 11 / number of values different from 00

12A wide number of metrics is provided by specialized literature in this respect: for a deep and detailed exposition, see
(Lee 1999).

or, more formally

S = (M1)/(Mor + Mo + M) (2)

This ratio represents a coefficient for binary variables where void unions are excluded both from the
denominator and from numerator, and intersections an unions have equal weight.

An extension of this index is extended Jaccard’s coefficient, the version of binary index for cardinal or
continuous characteristics: here, two vectors of features di, ds are used to compute their inner product,
and it is divided by the sum of cardinalities of two vectors and raised to square, and then added to the
norm:

dy - do

S7(dy,ds) = . 3
() = T P GIP =i - 3)

Extended Jaccard’s index was originally developed in biology to evaluate similarities in distributions
of floral species in different geographical areas (Jaccard 1912).

Another measure widely used in similarity is Cosine index, used for cardinal or continuous variables.
If dy e do are vectors of ordinal values (linguistic terms thus), this index corresponds to the cosine of the
angle projected between two vectors just mentioned: if these are perfectly superposed, then the angle
is equal to 0 and cosine is 1; in the opposite case, if two vectors are orthogonal, the cosine of the angle
is 1. In case of text documents, the coefficient is obtained computing the cardinality of each term in
the vectors, then calculating the ratio between the inner product of two vectors and the product of the

norms of both vectors, that is

dy - da

C _
A AT TPATK)

This index is widely used for computing the similarity in texts, as it allows to normalize the
characteristics through a covariance matrix. It also is scale invariant and does not depend from data
length, that is S¢(ady,dy) = S€(dy,dz) for a > 0; this property allows the treatment of documents
with discordance in composition or size of texts.

There is a salient difference between cosine index and Jaccard coefficient: both permit to compare
two texts, but the latter takes into account non overlapped information in the denominator. For this
reason, cosine index is much more sensible towards size evolution of two documents.

Both measures are widely used for computing comparison coefficients on broad masses of textual

documentation, and applied in a diffuse manner in information retrieval applications and tools (Salton
and McGill 1983, Dhillon and Modha 2001).

4 An empirical evidence: The development of SS

In next section is exposed an empirical analysis carried out on the development process of a software
application implemented between the second half of nineties and the end of 2003: the application’s scope
is the management of whole range of services supplied to the students by an university.

The goal of the analysis is to describe the modalities of the application development, completed with
a detailed investigation about some aspects of volatility and change in the production process, and how
these elements can be connected with some measures of similarity computed on description documents

produced along the development process.

10

The analyzed project is a component in a larger programme composed of a series of initiatives carried

on from late 1996 in the University of Trento (UniTN) and afterwards involving other organizations.

The programme was characterized by two principal goals:

e the temporary substitution of the current application, by that time at the end of the life cycle,

characterized by an obsolete hardware and maintained by retiring staff;

e the definition of requirements for a new application to be used for management of all activities

addressed to university students, and the subsequent implementation of a software application.

Clearly, the main need of second goal was to build ex-novo a corpus of consistent structured

information, as complete as possible, to identify functionalities and features for an university’s secretarial

services, to be used in a following phase for building a software application. One particular driver of

such an initiative was the reform of the university regulation, at that time only in the initial phases,

which constituted both a source of opportunity and a relevant risk for the system being developed.

In chronological perspective, the whole programme was split into four specific initiatives, articulated

in the layout depicted in Table 3.

Table 3: The Programme “Segreteria Studenti”

ACRONYM GOALS CONTENTS

SS0 short duration project for maintenance of ex- partial and limited reengineering of data struc-
isting application in order to migrate data and tures and procedures, minimizing information
applications to a new software and hardware losses in the passage to new system
architecture

SS1 rewriting of a new application starting from design and implementation strictly integrated,
existing requirements, reviewed by results of very small team of three persons (two key user
project SSO and one developer)

SS2 ez-novo definition of functional, structural and challenging goals, as the project aimed to an-
technological requirements for secretarial ser- ticipate many traits of university reform then
vices to an university’s students, and to be introduced 2 years later (Legge 509/99); def-
used in a following project; redefinition of typ- inition of an initial team with small size (3/6
ical and partially known processes and identi- persons)
fication of elements (flows, actors, data)

Esse3 use of specifications of previous project and re- transfer of specifications produced in SS2 to an

alization of a software application to be used
in an university organization; possible integra-
tion of specifications with other sources

external software house for implementation of
the application

The projects where our analysis focalizes are SSO and Esse3, evidenced in gray. Such initiatives

showed the characteristics of a new product development project. Moreover, it was characterized by a
high environmental uncertainty: the reform law (L. 509/1999) being defined not completed and approved
yet, would have introduced in a short time an operating and structural didactic model completely
different from the existing one, which at time only some marginal elements could be identified. Thus, the
issue of requirements identification and organization of the new system was characterized by uncertainty
generated by at least two factors: first, the need to define ex-novo a set of requirement from scratch,
without a previous experience in the field; in second instance, a continuously changing environment,
as the reference model for didactics was uncertain and constantly moving: only some elements of the
future regulation (Legge 509/99) were known: a bad shift in the first phase of requirements management
process would have meant big efforts and high costs in redefinition and rework activities.

The operations of SS2 begin with the raising of a small team at the University of Trento, which size

11

always remained small during the project, with a maximum dimension of six people!®, composed by
internal and external persons. Staff turnover will increase in time but will however remain very low
along this project. Initial activities of gathering and elicitation take up the time for twelve months, and
has been carried on almost exclusively through textual data gathering, through use of proper templates,
checklists and description of actions and activities; these were distributed to final and key users; no
other advanced tool of analysis and design was used at this stage.

Aside requirements gathering, elicitation and organization of requirements were carried on: the
team arranged and integrated specifications by (1) preliminary control of properties of requirements
(consistency, robustness, redundancy) by using control lists, simulations, model checking tools; (2)
extended usage of use cases and simulations for requirements validation.

In September 1998 this phase was closed. Requirements were organized by typical processes, in
a hierarchical structure composed by processes, subprocesses and extents. The meta-structure of the
application will remain roughly identifiable along the whole development cycle. Any requirement was
described in a deep and extended manner, but without recourse to formalized and structured methods,
rather using natural language to describe characters and distinctive features.

The second phase of SS2 began in fall 1998, and was aimed to formally organize and transfer
requirements to CINECA'# for the following phases of application development. An important decision
was to adopt UML (Booch et al. 1998) to formalize and document requirements, then represented in an
informal way. The transfer of SS2 requirements from initial context to an external organization takes
place gradually and lasts almost two years. The development process in CINECA is at first managed by
a larger group of variable size up to ten people; it will grow in time, as it has to translate requirements
to internal development methodologies used in that organization. Particularly, development methods
used in CINECA make use of proprietary tools of advanced modeling and implementation, distinct for
data and procedures.

The growth in size and complexity of the project lead to a spillover of CINECA and the foundation
of an external software house, named Kion for the subsequent development of the application. The
new corporation began operations in Fall 2000 with some people coming from CINECA and hiring of
new resources, and the mission to design and implement a commercial application named Esse3 . Kion
inherited the whole information developed at the time, and integrated it with new requirements defined
from other information sources, namely other Italians Universities. The main phases and details of the
SS2/Esse 3 projects are summarized in Table 4.

A further key element marks this phase: the entry of other stakeholder respect to the initial ones,
that is some Italian Universities, and the consequent need to manage (gather, extract, formalize,
integrate) other requirements and incorporate them in the initial set, which originated from UniTN. In
this phase there is the intersection of three specific groups of activities: (1) formalization of requirements
between UniTN and CINECA, (2) systematization of requirements towards internal methodologies
used in CINECA and subsequent transfer to Kion, (3) integration an arrangement with third part
requirements.

No formal approach to requirements tracing has been realized during the whole development process:

it is thus not possible to reconstruct structure and dynamics of requirements process along the initial

13The team was composed by a project manager, a technical analyst, a “formal” analyst and up to three key-users, who
would shift in time.

141t is a consortium among some Italian Universities and other public organizations for the purpose of realizing and
managing some common information and computation services. CINECA is located near Bologna.

15The collaboration with other stakeholders could be continuous and frequent in time and devoted to deepen particular
issues: it is the case of the collaboration with the University of Verona for defining structure and characters of student’s fee
module.

12

Table 4: From SS2 to Esse3

START CONTENTS DETAILS

Fall 1998 Transfer of Project SS2 Combined analysis CINECA/UniTN. Requirements
transfer and periodical meetings. Conceptual Analy-
sis of requirements (ER, DFD, support documentation).
Choice of technology domain and application architec-
ture.

June 2000 First Prototype Release of first prototype (SS2); testing by CINECA
and some Italian Universities to assess implementation
of newly released reform (L. 509/99) in the application.

September 2000 Spillover of Kion First core of Kion; initial design and first product devel-
opment. Software architecture and design of first mod-
ules.

January 2001 First beta Release of version 0.0.1 of ESSE3 (incomplete, with some
initial modules).

Spring 2001 Conjoint Team Formation of conjoint team among Universities of Trento,

Trieste, Modena and Salerno to validate design decisions
and address following development.

Whole 2001 Implementation Application development; release of subsequent modules
to various area (administrative, student’s career).
June 2002 Operating Version First release at the University of Urbino.

phases of the development. Nevertheless, it is possible to perform some kind of post-traceability,

analyzing post-mortem documentation available for the development process, by using some tools of
computational linguistic seen before in paragraph 3.2. The goal of this analysis is to depict the most
critical components in the artifact’s structure and investigate some hypothesis of their variability, in
order to evidence and assess the incidence of environmental factors and linguistic variables in system

description and in requirements formation.

4.1 Empirical evidence in requirements’ evolution

The analysis has been performed on three document set of application requirements, related to
three typical chronological stages of the development cycle, as depicted in Figure 1. The content of
such documents describe the system in terms of requirements in three instants of the development,

respectively:

September 1998 when internal team in UniTN concluded their work and presented requirements set
collected and organized, but yet not formalized; di UniTN, con la presentazione del set di requisiti

raccolto ed organizzato, ma non ancora formalizzato e trasferito a CINECA;

April 2002 in partial version, with requirements’ transfer completed and partially integrated by

requirements fom third parties;

December 2003 in a version partially operating of the system introduced in the University of Trento.

Tree document sets, referred respectively with @), R e S, are mainly composed by word processor files
containing formatted text, tables, pictures and diagrams. Frequency and similarity analysis has been
performed on whole text present in documents, without regard to context where text was collocated.

A first comparison among document sets allowed to identify the main structure of the application,
and subsequently some typical processes which span the whole development process. The main areas of

the application are classified as:

13

Figure 1: Data set used in requirements analysis

template
and
documents

Forma_lizzation
Transfer UniTN

collaborations
with other
stakeholders

Prototyping

I
Implementation

CINECA /Kion

1. structure and articulation of didactical supply from an University’s point of view;
2. interaction of student with didactical domain (curricula, exams, graduation);

3. administrative (orientation, enrollment, acceptance, matriculation).

The comparison allowed to clearly identify nine typical processes which compose the application,
homogeneous and consistent enough by structure and composition, on which focalize the following detail
analysis. Some other processes have been discarded because their structure (subprocesses, components)
could not be recognized in different document sets: other process have been completely redefined or
abandoned during the development cycle.

The processes identified, marked with the acronym used in the set), have been classified by their

nature and collocated in one of the areas just defined:

University-centered: where the University is the main actor in term of supplier of formative and
didactical services (P6, P7, P8, P9);

Student-centered: processes where the student is the key actor, and represent the main focus (P10,
P11, P12);

Administrative: related to clerical, bureaucratic or repetitive activities (P1, P2);

Table 5 shows a first evidence of the quantitative analysis performed of document sets. Ad can be
noted, size dynamics is growing in time for all processes, even though in differentiated way in time and
by process considered.

A relevant variability in the quantitative evolution of requirements documents concerning different

processes can be seen: documents of class “University-centered” grow up to five times respect to the

14

Table 5: Size evolution of requirements documents

Q set R set S set
1D Sentences Words Characters | Sentences Words Character | Sentences Words Characters
P1 960 10925 69492 2016 24635 177366 4608 50045 350808
P2 1200 13915 76584 1308 14710 97140 1676 17640 134556
P6 1620 14930 82284 6972 73890 421782 7680 82150 517140
P7 1324 9915 59760 4384 45525 298746 16952 141295 777720
P8 1392 12525 75294 5800 38710 192192 11976 98895 516288
P9 1812 24780 157398 5632 74160 480078 12292 184145 1195938
P10 860 9110 58614 1704 13350 81420 4160 39510 239460
P11 1928 19990 127074 2576 22840 146364 5024 56495 373110
P12 1356 19270 115092 1440 22510 150384 1824 29510 205392

previous phase, while size of other processes remains substantially stable, with a maximum growth

rate of 2.5 times respect to the previous stage (P1, P10). Some indications of dimensional growth

differentiated by application components already emerge here.

The analysis of similarity between groups of processes has been performed by using metrics computed

by cosine index and Extended Jaccard coefficient. Such elaboration was carried out on texts previously

filtered using stop-word lists, in order to exclude common linguistic terms such as propositions,

conjunctions, articles. The text has been then processed with a stemming algorithm, in order to collect

common terms and give account for root elements in text, eliminating dispersions caused by gender

variables or by conjugation of verbs.

The first metric is cosine index, computed for each process and pairs of document sets related to

different phases of development cycle and shown in Table 6.

Table 6: Similarity — Cosine Index

D Q—R Q—S R—S
P1 0.63479 0.60158 0.79560
P2 0.59376 0.57626 0.62135
P6 0.23571 0.20900 0.22451
P7 0.28202 0.12365 0.28998
P8 0.27453 0.20738 0.25443
P9 0.24708 0.18254 0.23316
P10 0.47822 0.41907 0.54363
P11 0.48970 0.35725 0.51437
P12 0.63220 0.43483 0.66720

As can be noted, some processes evidence strong similarities along the whole application development

(P1,P2,P12), other components are placed in an intermediate range (P10,P11) while some other show

very low and varying similarities along the whole development cycle.

The values of extended Jaccard coefficient, shown in Table 7, allow to confirm this situation. In this

case, similarity levels are generally lower than cosine index, as Jaccard’s coefficient considers disjoint

elements in two sets: in this case, elements present in only one of two sets — thus a growing set of

requirements — affects negatively the coefficient, lowering its value.

The analysis of similarities allows to identify two classes of processes with different characters:

e a first set with processes P1, P2, P7, P10, P11 e P12, with §(Q, S) < S(Q, R) < S(R, S) (where

S(+) is an overall similarity metric (cosine, Jaccard));

e a second set contains processes P6, P8 e P9 with last relation reversed, S(Q, R) > S(R, S).

15

Table 7: Similarity — Extended Jaccard coefficient

D @Q—R @—S5 R—S
P1 0.39551 0.34641 0.40910
P2 0.36330 0.30256 0.36516
P6 0.11128 0.09960 0.10807
P7 0.12287 0.10832 0.12523
P8 0.11072 0.09801 0.10551
P9 0.14069 0.12954 0.13453
P10 0.21490 0.18331 0.23083
P11 0.22319 0.18323 0.23812
P12 0.31428 0.27258 0.32973

Pair comparisons of similarities should allow to test and control some hypothesis in the dynamics of

requirements management, and particularly:

consistency: evolution of similarity metrics should reflect time proximity between to requirements’

sets: closer sets should be in principle more similar than farther ones; that is, {Q, R|R, S} < @, S;

this hypotesis is verified for all components of the application;

reinforcement: management of requirements should show similarities growing in time, through the

definition of information sets more and more homogeneous and compact and less volatile in time

formally we should have S(Q, R) < S(R, S); this not be the case, we would face a phenomenon

with a certain degree of volatility with variations in requirements’ composition or in the use of

linguistic tools. This seems the case of processes P6, P8 and P9, where both similarity metrics get

smaller in time.

Furthermore, cluster analysis with hierarchical and partition methods has beel performed on

similarities to group processes with behavior: evidence of this analysis is shown in Figure 2.

Figure 2: Clusters of Processes

Partitions of Processes — Cosine

Pd2

R”7

P{1

Component 2

-04 -02 00 02 0.4

L
R

Component 1

-3 -2 -1 0 1 2

Partitions of Processes — Jaccard

<
3
o
~ 3
o 1
g ko
g 5
g 39 28’ PazRe
20
8 o
g
<
2

Component 1

-3 -2 -1 0 1 2

These two components explain 99.48 % of the point variability

These two components explain 99.96 % of the point variability

Dendrogram for Cosine similarities

00 01 02 03 04 05

wwwwwwwww

16

As can be noted, the formation of clusters in both hierarchical and partition analysis confirms the
intuition of three groups of processes, differentiated for persistence of features in time.

Besides these conclusions on incidence of diversities in time, there is some evidence about some
internal and environmental factors which could explain differences in similarity metrics. Processes which
show higher constant similarities concern simpler and less complex application extents, characterized by
reduced uncertainty and low variability. They concern bureaucratic and administrative processes (P1,
P2) and the regulation of activities with certain content and defined behavior (P12). Those processes
seem to keep information in a more persistent manner and are less interested by integration of new
information in time.

Conversely, the development of processes with lower similarity values in time, depends strongly by
contextual factors with uncertain nature, in particular from reform law (509/99), which represents the
greatest factor of uncertainty. The incidence of uncertainty ascribed to reform law seems to be greater
for processes where the key actor is the university, rather than for processes in which this role is played
by the student.

Finally, there are internal factors concerning the development process, which contribute do explain

difference in similarity data: these are summarize in Table 8.

Table 8: Comparison elements for some phases of development process

Activity Period Origin Actors Style Language
Gathering and first formalization | 1997-1998 UniTN ~ 5 narrative natural
Formalization on model 1999-2000 | UniTN, CINECA 5—10 formal UML
External requirements’ gathering | 2001-2002 | Kion, Universities ~ 25 formal /narrative | proprietary/natural
Prototype development 2001-2002 Kion 30 — 50 formal proprietary

As can be noted, size in human resources and staff for development process continuously increase in
time, up to a maximum during the prototype realization and implementation of application. The variety
in actor composition, not shown in the table, increases in time: from one homogeneous team of people
operating in the same organization, teams become increasingly different by origin and competence: their
organizational context is different (Universities, CINECA, Kion) and their expertise and competence
scope is in many cases very different. A further variability is induced by linguistic formalisms and tools
used along development process: in general, they change from non-formal modes of description and
the use of natural language toward the use of standard or proprietary languages and formal styles of
information representation. These elements seem to explain only partially the evidences of similarity
measures computed during the analysis of texts: indeed, the differences among different processes tend
to remain more persistent through the development process, while differences between single stages in
a particular process are never particularly relevant. Furthermore, in six cases out of a total of nine
similarities for requirements’ sets managed inside a single organization (CINECA /Kion) are be greater
than similarities between UniTN and CINECA. Anyway, the environmental variable affected by strong
uncertainty and frequent variability in problem domain (reform law) seems to have a greater influence on
requirements stability, and to constitute the most important explanation factor in process’ requirements

volatility.

5 Concluding remarks

In this work a framework using the paradigm of diversity is proposed, to give account how an artifact’s

development process can be analyzed and explained using the linguistic representation of its structure

17

and expected behavior in different stages of its development cycle. The analysis of requirements
description and evolution using simple similarity metrics can explain the different influence of internal
and external factors over components of the artifact. In this lines, we tried to investigate how the
processing of data that concern the description of a new product becomes a tool for coordinating
ez-post product variability and requirements management, thus becoming a feasible instrument of
post-traceability and allowing to reconstruct requirements formation dynamics in a systematic way.

This approach allows to define which components in a product being developed are the most
critical ones, using similarity metrics to assess stability in time of linguistic information sets based on
requirements and used to describe different stages of development of an innovative product. Empirical
evidence resulted from the analysis on some post-mortem datasets regarding a software application is
shown.

While the model presented in this paper may appear to be overly simplistic, it can be easily extended
in several directions. For example, testing the approach using rework data to verify hypothesis of major
efforts over more problematic components of the application is a possible way to assess and complete the

framework proposed here.

18

References

Akao, Y. (1990), Quality Function Deployment QFD: Integrating Customer Requirements into Product
Design, Productivity Press, Cambridge MA.

Baldwin, C. and Clark, K. (2000), Design Rules. Volume I: The Power of Modularity, MIT Press,
Cambridge Mass.

Boehm, B. (1981), Software Engineering Economics, Prentice-Hall, Englewood Cliffs , NJ ;, USA.

Booch, G., Rumbaugh, J. and Jacobson, I. (1998), The Unified Modeling Language User Guide,
Addison-Wesley.

Borgida, A., Greenspan, S. and Mylopoulos, J. (1985), ‘Knowledge representation as a basis for
requirements specification’, IEEE Computer 18(5), 82-101.

Brooks, F. J. (1975), The Mythical Man Month: Essays on Software Engineering, Addison-Wesley
Publishing Company.

Burgelman, R., Maidique, M. and Wheelwright, S. (1996), Strategic Management of Technology and

Innovation, 2nd edn, Irwin, Chicago.

Byrd, T., Cossick, K. and Zmud, R. (1992), ‘A synthesis of research on requirements analysis and
knowledge acquisition techniques’, MIS Quarterly 16(1), 117-138.

Clark, K. (1985), ‘The interaction of design hierarchies and market concepts in technological evolution’,
Research Policy 14, 235-251.

Clark, K., Chew, B. and Fujimoto, T. (1987), ‘Product development in the world auto industry’,
Brookings Papers on Economic Activity 3, 729-771.

Clark, K. and Fujimoto, T. (1991), Product Development Performance: Strategy, Organizational and

Management in the World Auto Industry, Harvard Business School Press, Boston.

Clark, K. and Wheelwright, S. (1993), Managing New Product and Process Development, Free Press,
New York.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Ledeboer, G.,
Reynolds, P., Sitaram, P., Ta, A. and Theofanos, M. (1993), Identifying and measuring quality on
software requirements specification, in ‘Proc. Software Metrics Symp.’, IEEE CS Press, pp. 141-152.

Dhillon, I. and Modha, D. (2001), ‘Concept decompositions for large sparse text data using clustering’,
Machine Learning 42(1), 143-175.

Freeman, R. (1984), Management: A Stakeholder Approach, Pitman, Boston.

Goguen, J. (1996), Formality and informality in requirement engineering, in ‘Proceedings: 2nd

International Conference on Requirements Engineering’, IEEE Computer Society Press, pp. 102-108.

Gupta, A. and Wilemon, D. (1986), ‘A model for studying R&D-marketing interface in the product

innovation process’, Journal of Marketing 50, 7-17.

Gupta, A. and Wilemon, D. (1990), ‘Improving R&D /marketing relations: R&D’s perspective’;, R€D
Management 20(4), 277-290.

19

Holtzblatt, K. and Beyer, H. (1995), ‘Requirements gathering: The human factor: Introduction’,
Communications of the ACM 38(5), 30-32.

Jaccard, P. (1912), ‘The distribution of flora in the alpine zone’, The New Phytologist 11(2), 37-50.

Jackson, M. (1995), Software Requirements and Specification: A lexicon of practice, principles and
prejudices, Addison-Wesley, Wokingham, England.

Kelly, J., Sherif, J. and Hops, J. (1992), ‘An analysis fo defect densities found during software
inspections’, The Journal of Systems and Software 17(3), 111-117.

King, B. (1989), Better Designs in Half the Time: Implementing Quality Function Deployment in
America, GOAL/QPC, Methuen MA.

Lancaster, K. (1966), ‘A new approach to consumer theory’, Journal of Political Economy 74(1), 132-57.
Lancaster, K. (1979), Variety, Equity, and Efficiency, Columbia University Press, New York.

Lane, D. and Maxfield, R. (1994), ‘Strategy under complexity: fostering generative relationship’, Long
Range Planning 29(2), 215-231.

Lee, L. (1999), Measures of distributional similarity, in ‘Proceedings of the 37th conference on

Association for Computational Linguistics’, Association for Computational Linguistics, pp. 25-32.

Lee, M., Dutta, S. and Van Wassenhove, L. (1999), An empirical analysis of software production
problems in european software units, Technical Report 99/28/TM/RISE, INSEAD, Fontainbleau,

France.

Leonard-Barton, D. (1995), The Wellsprings of Knowledge, Harvard Business School Press, Cambridge,
MA.

Ottum, B. and Moore, W. (1997), ‘The role of market information in new product success/failure’,
Journal of Product Innovation Management 14(4), 258-258.

Polya, G. (1957), How to Solve It: A New Aspect of Mathematical Method, 2nd edn, Princeton University

Press, Princeton, NJ.

Potts, C. (1991), Seven (plus or minus two) challenges for requirements research, in J. Finance,
ed., ‘Proceedings of the 6th International Workshop on Software Specification and Design’, IEEE
Computer Society Press, Como, Italy, pp. 256-259.

Pugh, S. (1990), Total Design: Integrated methods for successful product engineers, Addison Wesley,
Reading MA.

Salton, G. and McGill, M. (1983), Introduction to Modern Information Retrieval, McGraw-Hill, New
York.

Simon, H. (1974), ‘How big is a chunk?’, Science 183, 482-488.
Simon, H. (1996), The Sciences of the Artificial, 3rd edn, MIT Press, Cambridge, Mass.

Souder, W. (1988), ‘Managing relations between R&D and marketing in new product development

projects’, Journal of Product Innovation Management 5(1), 6-19.

20

Urban, G. and von Hippel, E. (1988), ‘Lead user analyses for the development of new industrial
products’, Management Science 34(5), 569-582.

von Hippel, E. (1986), ‘A source of novel product concepts’, Management Science 32(7), 791-805.
von Hippel, E. (1988), The Sources of Innovation, Oxford University Press, New York.
Weitzman, M. (1992), ‘On diversity’, The Quarterly Journal of Economics 107(2), 363-405.

Weitzman, M. (1993), ‘What to preserve? an application of diversity theory to crane conservation?’,

The Quarterly Journal of Economics 108(1), 157-83.

21

