3,018 research outputs found

    SPH-EXA: Enhancing the Scalability of SPH codes Via an Exascale-Ready SPH Mini-App

    Full text link
    Numerical simulations of fluids in astrophysics and computational fluid dynamics (CFD) are among the most computationally-demanding calculations, in terms of sustained floating-point operations per second, or FLOP/s. It is expected that these numerical simulations will significantly benefit from the future Exascale computing infrastructures, that will perform 10^18 FLOP/s. The performance of the SPH codes is, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. In this work an extensive study of three SPH implementations SPHYNX, ChaNGa, and XXX is performed, to gain insights and to expose any limitations and characteristics of the codes. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. We implemented a rotating square patch as a joint test simulation for the three SPH codes and analyzed their performance on a modern HPC system, Piz Daint. The performance profiling and scalability analysis conducted on the three parent codes allowed to expose their performance issues, such as load imbalance, both in MPI and OpenMP. Two-level load balancing has been successfully applied to SPHYNX to overcome its load imbalance. The performance analysis shapes and drives the design of the SPH-EXA mini-app towards the use of efficient parallelization methods, fault-tolerance mechanisms, and load balancing approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1809.0801

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Performance evaluation of an open distributed platform for realistic traffic generation

    Get PDF
    Network researchers have dedicated a notable part of their efforts to the area of modeling traffic and to the implementation of efficient traffic generators. We feel that there is a strong demand for traffic generators capable to reproduce realistic traffic patterns according to theoretical models and at the same time with high performance. This work presents an open distributed platform for traffic generation that we called distributed internet traffic generator (D-ITG), capable of producing traffic (network, transport and application layer) at packet level and of accurately replicating appropriate stochastic processes for both inter departure time (IDT) and packet size (PS) random variables. We implemented two different versions of our distributed generator. In the first one, a log server is in charge of recording the information transmitted by senders and receivers and these communications are based either on TCP or UDP. In the other one, senders and receivers make use of the MPI library. In this work a complete performance comparison among the centralized version and the two distributed versions of D-ITG is presented

    The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements

    CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

    Get PDF
    In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks
    • …
    corecore