30,942 research outputs found

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    Kernel-based high-dimensional histogram estimation for visual tracking

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 15th IEEE International Conference on Image Processing, October 12–15, 2008, San Diego, California, U.S.A.DOI: 10.1109/ICIP.2008.4711862We propose an approach for non-rigid tracking that represents objects by their set of distribution parameters. Compared to joint histogram representations, a set of parameters such as mixed moments provides a significantly reduced size representation. The discriminating power is comparable to that of the corresponding full high dimensional histogram yet at far less spatial and computational complexity. The proposed method is robust in the presence of noise and illumination changes, and provides a natural extension to the use of mixture models. Experiments demonstrate that the proposed method outperforms both full color mean-shift and global covariance searches

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page

    On the Design of LQR Kernels for Efficient Controller Learning

    Full text link
    Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.Comment: 8 pages, 5 figures, to appear in 56th IEEE Conference on Decision and Control (CDC 2017

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing

    SolarStat: Modeling Photovoltaic Sources through Stochastic Markov Processes

    Full text link
    In this paper, we present a methodology and a tool to derive simple but yet accurate stochastic Markov processes for the description of the energy scavenged by outdoor solar sources. In particular, we target photovoltaic panels with small form factors, as those exploited by embedded communication devices such as wireless sensor nodes or, concerning modern cellular system technology, by small-cells. Our models are especially useful for the theoretical investigation and the simulation of energetically self-sufficient communication systems including these devices. The Markov models that we derive in this paper are obtained from extensive solar radiation databases, that are widely available online. Basically, from hourly radiance patterns, we derive the corresponding amount of energy (current and voltage) that is accumulated over time, and we finally use it to represent the scavenged energy in terms of its relevant statistics. Toward this end, two clustering approaches for the raw radiance data are described and the resulting Markov models are compared against the empirical distributions. Our results indicate that Markov models with just two states provide a rough characterization of the real data traces. While these could be sufficiently accurate for certain applications, slightly increasing the number of states to, e.g., eight, allows the representation of the real energy inflow process with an excellent level of accuracy in terms of first and second order statistics. Our tool has been developed using Matlab(TM) and is available under the GPL license at[1].Comment: Submitted to IEEE EnergyCon 201
    • …
    corecore