Finding optimal feedback controllers for nonlinear dynamic systems from data
is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful
framework for direct controller tuning from experimental trials. For selecting
the next query point and finding the global optimum, BO relies on a
probabilistic description of the latent objective function, typically a
Gaussian process (GP). As is shown herein, GPs with a common kernel choice can,
however, lead to poor learning outcomes on standard quadratic control problems.
For a first-order system, we construct two kernels that specifically leverage
the structure of the well-known Linear Quadratic Regulator (LQR), yet retain
the flexibility of Bayesian nonparametric learning. Simulations of uncertain
linear and nonlinear systems demonstrate that the LQR kernels yield superior
learning performance.Comment: 8 pages, 5 figures, to appear in 56th IEEE Conference on Decision and
Control (CDC 2017