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ABSTRACT

We propose an approach for non-rigid tracking that represents ob-
jects by their set of distribution parameters. Compared to joint his-
togram representations, a set of parameters such as mixed moments
provides a significantly reduced size representation. The discrim-
inating power is comparable to that of the corresponding full high-
dimensional histogram yet at far less spatial and computational com-
plexity. The proposed method is robust in the presence of noise
and illumination changes, and provides a natural extension to the
use of mixture models. Experiments demonstrate that the proposed
method outperforms both full color mean-shift and global covariance
searches.

Index Terms— Object tracking, mean-shift, region covariance,
kernel density estimation

1. INTRODUCTION

The goal of visual tracking is to follow the movement of a target
through a video sequence. As objects encounter clutter, occlusion,
changes in illumination, or changes in view, this becomes a difficult
problem.

One popular technique called kernel tracking represents each ob-
ject as a joint probability density function (pdf). In each frame, a
local mean-shift computation is performed to minimize a statistical
similarity metric between the target and reference densities [1].

An alternate algorithm is that of covariance tracking [2]. In
this approach, a target is described by the covariance of its features.
Faster than constructing a full histogram, this method allows effi-
cient models of more complex feature spaces than simply color, for
example image derivatives or spatial characteristics.

We propose to represent objects as a set of their distribution pa-
rameters that approximate the underlying joint density function. In
this work, we used the covariance and mean feature vector as the
parameter set. After defining a distance function with respect to this
parameter set, we employ a variational approach to find the target.
This method is fast, uses a compact representation, does not require
an expensive exhaustive search, and takes into account a potentially
large number of feature dimensions without becoming computation-
ally intractable. In contrast, the computational cost of mean-shift
grows exponentially with the number of histogram dimensions, mak-
ing it impractical for much more than color intensity. Further, the
proposed method outperforms the approach using covariance alone
by incorporating knowledge of the distribution mean and naturally
extending to mixture models.

Fig. 1. One frame of the SUBWAY sequence showing target location
using color mean-shift, global covariance search, and the proposed
method (left to right).

2. RELATED WORK

This note draws upon two areas of research, namely kernel tracking
and covariance tracking.

Kernel tracking, popularized by Comaniciu et al. [1], is a sim-
ple and robust technique with many extensions. Two extensions de-
serve particular note for their approaches to object representation and
comparison. First, to incorporate the spatial arrangement of an ob-
ject’s color, Birchfield and Rangarajan [3] introduced “spatiograms”,
joint histograms of both color and position. Second, Yang et al. [4]
demonstrated direct evaluation of the similarity metric on the den-
sity estimates. In addition, they employed the Improved Fast Gauss
Transform to deal efficiently with the higher dimensional feature
spaces. While powerful, both techniques still suffer from exponen-
tial time and space complexity as the density estimates grow. Thus,
in practice mean-shift typically uses color without spatial informa-
tion.

Region covariance was introduced as an alternative compact rep-
resentation of joint feature spaces [2]. For each region, only the
covariance of the feature vectors at each pixel describe the object,
and tracking is performed in a global search to match rectangular re-
gions. Since covariance matrices lie in a Riemannian space, Porikli
et al. [2] are careful to use an appropriate distance metric when com-
paring regions, a costly computation since tracking is performed via
global search. Further, since this uses global detection, covariance
tracking can recover after prolonged occlusion or large movements.
In the context of high-dimensional density estimation, characterizing
regions by their covariance implies each region fits a Gaussian dis-
tribution with identical mean. The proposed method improves upon
this approach by incorporating knowledge of the means and extend-
ing to arbitrary parameters. Extension to Gaussian mixtures further
increases the representational power of the technique incurring only
a linear complexity increase.
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3. PROPOSED METHOD

We propose to represent objects by estimating a parameterized dis-
tribution to approximate the underlying joint density containing
features such as color, spatial coordinates, and image derivatives.
Kernel-weighted averages are computed for a region of interest. To
represent the target object, we construct a vector q = {q1 . . . qn}
consisting of these parameter elements. If we take {qi} to be the set
of all mixed central moments for the feature vector z, we arrive at
the covariance descriptor. We extend this to include both the covari-
ance and the mean of the feature vector. Thus, for an n-dimensional
choice of the feature vector, we define q as a vector containing the
n2+n

2
unique elements in the covariance matrix, in addition to the n

means.

Given an image I over spatial domain Ω, a parameter set for the
reference target is constructed by computing q for a kernel-weighted
subset X ⊆ Ω centered at x. For a Gaussian distribution, we esti-
mate the kernel-weighted covariance and mean:

μ(x) =
1

C

∑

xk∈X

K(xk − x)zk (1)

Σ(x) =
1

C

∑

xk∈X

K(xk − x)(zk − μ(x))(zk − μ(x))T
(2)

where C =
∑

xk∈X K(xk − x) is a normalization constant and

K(·) is a kernel function.

Given a reference target characterized by q, we seek a region
centered at position x whose candidate parameter vector p(x) mini-
mizes a distance to q. We must now choose an appropriate measure
of distance in the parameter space. While this space is often Rie-
mannian, if we employ a variational solution, we may assume the
manifold to be locally Euclidean and so use a standard L2 distance.
Our optimization problem is now:

argmin
x

d(q,p(x)) = argmin
x

‖q − p(x)‖2
W (3)

where W is a matrix used in a weighted L2 distance that affects
the influence of the different distribution parameters on the distance
computation.

Expanding (3) as (q − p(x))T W (q − p(x)) and taking the
derivative with respect to x, we arrive at

∂d(q,p(x))

∂x
= (q − p(x))T W

∂p(x)

∂x
(4)

Computation of
∂p(x)

∂x
is element-wise for each pi ∈ p. For ex-

ample, for the Gaussian parameter set, the spatial derivatives of p
are:

∂p1

∂x
=

∂μ(x)

∂x
=

1

C

∑

xk∈X

K′(xk − x)zk (5)

∂p2

∂x
=

∂Σ(x)

∂x
=

1

C

∑

xk∈X

K′(xk − x)(zk − μ)(zk − μ)T
(6)

where we simplify the computation in (6) by approximating μ as
constant, since its derivative is small relative to the rest of the ex-
pression.

In mean-shift, the kernel is often taken to be Epanechnikov,
so we can solve directly for x [1]; however, in general K(·) may
not have closed form. The use of arbitrary kernels (see Section 4)

Fig. 2. Reference image from SUBWAY sequence and kernels cor-
responding to mixture model components. Each region has its own
mean, covariance, and kernel.

requires nonlinear optimization. The solution to the minimization
problem (3) is found by using gradient descent:

xt+1 = xt − h
∂d(q,p(x))

∂x
(7)

where is h is an appropriate time step.

4. KERNEL SELECTION FOR GAUSSIAN ESTIMATE

A simple design choice is for K(·) to be isotropic and decreasing
with distance from the center so as to weight pixels as the edge of the
window less, as they are more likely to be subjected to occlusion and
background clutter. In this section we describe how more powerful
kernels improve tracking by better approximating the often multi-
modal pdf.

If we take the choice of target distribution to be an n-dimensional
Gaussian, we will have the number of parameters B equal to
(n2 + 3n)/2, to include the mean and unique elements of the
covariance matrix. Using these distribution parameters, the esti-
mate of the target’s joint pdf is characteristically a unimodal normal
random variable:

N (z|μK ,ΣK). (8)

While the density estimate in (8) gives an improvement over
characterization using the means or covariance alone, it still de-
scribes the object as a single Gaussian distribution. If the object
has light and dark areas that are both used to compute the means,
the resulting Gaussian estimate would not look like the underlying
bimodal distribution. The proposed framework naturally allows the
characterization of a target’s joint density as a superposition of M
Gaussian functions, each created with a different spatial kernel:

M∑

m=1

N (z|μKm
,ΣKm) (9)

thus using MB parameters to estimate the density function. The ad-
ditional parameters are concatenated into a larger parameter vector;
the form of the optimization solution (7) is unchanged.

The task of kernel creation can be automated as a segmentation
or clustering task to separate areas with different means, hence al-
lowing the description to capture the multi-modal distribution. For
the SUBWAY sequence, we illustrate a simple example of this in Fig-
ure 2 using a thresholding procedure. Several strategies for capturing
important features with multiple kernels are described in [5]. So-
phisticated kernel creation methods employ expectation maximiza-
tion [6], and work has been done to collaborate the movement of
multiple kernels [7]. Optimal kernels for tracking are described in
[8].
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Fig. 3. Track point distance from ground truth for 60 frames of SUB-
WAY sequence using global covariance search (dotted) and proposed
method (solid). Notice that the covariance search loses track when it
drifts due to clutter three times.

Fig. 4. Sampling the distribution of a synthetic image (left). Im-
ages created by sampling the color histogram (center) and the joint
density approximated by the proposed method’s parameter vector q
(right).

5. RESULTS

Tracking was performed on four video sequences with representa-
tive examples chosen to exhibit clutter, changes in illumination, and
changes in view. The system was prototyped in Matlab running on
a 2.0 GHz laptop, and for 640x480 resolution video and multiple
kernels it runs at roughly 2 Hz (500ms per frame). All sequences
assumed Gaussian distributions using means and covariances to de-
scribe objects. The CROWD sequence assumed unimodal distribu-
tion (one kernel) while the DOG, SUBWAY, and CHASE sequences
used a mixture model each employing three kernels.

The first experiment demonstrates the expressibility of the pro-
posed method. From a synthetic image we calculated both the color
histogram and density estimate described by q, and from these we
generated sample images. Figure 4 illustrates the loss of spatial in-
formation in the joint color histogram; the resulting sample does not
resemble the original. In contrast, we are able to retain the global in-
tensity gradient of the synthetic image when generating values from
the Gaussian parameterized by q conditioned on the pixel locations.

The CROWD sequence shows tracking among many objects of
indistinct color and little texture. While the covariance method ob-
tains very high detection rates, Figure 5 shows selected frames where
the global covariance method wandered. Here, the proposed method
gave robust results with only one kernel.

The SUBWAY sequence involves a woman walking among other
pedestrians that share similar covariance. Figure 1 shows that both
color mean-shift and global covariance search are distracted by this
clutter. To illustrate how the covariance method can frequently drift
in the presence of clutter, Figure 3 plots the distance between ground
truth and the track points reported in both the covariance and pro-
posed methods. While the proposed method smoothly maintains
track, notice that in this span of 60 frames, the covariance method
pulls away three times. Its global nature enables it to eventually re-
cover. For this sequence of frames, Figure 6 shows the covariance

method pulling away.
In the DOG sequence, the dog changes statistics significantly.

The covariance method with its update scheme is able to maintain
track for roughly 92% of the frames; however, the proposed tech-
nique maintains track for the entire sequence.

As a final sequence, the CHASE demonstrates significant
changes involving color, illumination, and view as the car weaves
through the countryside. Even without updating the reference
parameters, the proposed method is able to keep a steady track
throughout the entire sequence (see Figure 8).

6. DISCUSSION

We have described a variational tracking technique that minimizes
the distance between distribution parameters of the target and candi-
date objects. In addition to being more discriminative, the proposed
method is more efficient than mean-shift and more robust than co-
variance tracking. The extension to mixture models and multiple
kernels proved to increase performance.

Future work on this method might focus on incorporating opti-
mal or collaborative kernel techniques [8, 7].
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Fig. 5. CROWD sequence (70 frames) using global covariance search (dashed) and proposed method with one kernel (solid). Notice the
covariance method picking up incorrect objects with similar covariance.

Fig. 6. SUBWAY sequence (60 frames) using global covariance search (dashed) and proposed method with three kernels (solid).

Fig. 7. DOG sequence (100 frames) using proposed method with three kernels. The target undergoes signficant changes in shape, scale, and
intensity.

Fig. 8. CHASE sequence (411 frames) using proposed method with three kernels. The target undergoes significant scale and illumination
changes.
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