1,567 research outputs found

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    A new approach on locally checkable problems

    Full text link
    By providing a new framework, we extend previous results on locally checkable problems in bounded treewidth graphs. As a consequence, we show how to solve, in polynomial time for bounded treewidth graphs, double Roman domination and Grundy domination, among other problems for which no such algorithm was previously known. Moreover, by proving that fixed powers of bounded degree and bounded treewidth graphs are also bounded degree and bounded treewidth graphs, we can enlarge the family of problems that can be solved in polynomial time for these graph classes, including distance coloring problems and distance domination problems (for bounded distances)

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Triangulations Admit Dominating Sets of Size 2n/72n/7

    Full text link
    We show that every planar triangulation on n>10n>10 vertices has a dominating set of size n/7=n/3.5n/7=n/3.5. This approaches the n/4n/4 bound conjectured by Matheson and Tarjan [MT'96], and improves significantly on the previous best bound of 17n/53n/3.11717n/53\approx n/3.117 by \v{S}pacapan [\v{S}'20]. From our proof it follows that every 3-connected nn-vertex near-triangulation (except for 3 sporadic examples) has a dominating set of size n/3.5n/3.5. On the other hand, for 3-connected near-triangulations, we show a lower bound of 3(n1)/11n/3.6663(n-1)/11\approx n/3.666, demonstrating that the conjecture by Matheson and Tarjan [MT'96] cannot be strengthened to 3-connected near-triangulations. Our proof uses a penalty function that, aside from the number of vertices, penalises vertices of degree 2 and specific constellations of neighbours of degree 3 along the boundary of the outer face. To facilitate induction, we not only consider near-triangulations, but a wider class of graphs (skeletal triangulations), allowing us to delete vertices more freely. Our main technical contribution is a set of attachments, that are small graphs we inductively attach to our graph, in order both to remember whether existing vertices are already dominated, and that serve as a tool in a divide and conquer approach. Along with a well-chosen potential function, we thus both remove and add vertices during the induction proof. We complement our proof with a constructive algorithm that returns a dominating set of size 2n/7\le 2n/7. Our algorithm has a quadratic running time
    corecore