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a b s t r a c t

We prove an asymptotic result on the maximum number of k-vertex subtrees in binary
trees of given order. This problem turns out to be equivalent to determine the maximum
number of k + 2-cycles in n-vertex outerplanar graphs, thus we settle the generalised
outerplanar Turán number for all cycles.

We also determine the exponential growth of the generalised outerplanar Turán
number of paths Pk as a function of k which implies the order of magnitude of the
generalised outerplanar Turán number of arbitrary trees. The bounds are strongly related
to the sequence of Catalan numbers.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In a generalised Turán problem, we are given graphs H and F and seek to maximise the number of copies of H in
F-free graphs of order n. The restriction on the forbidden subgraph may also concern a whole family of graphs F ∈ F . We
consider generalised Turán problems where the host graph is outerplanar. Generalised Turán problems were investigated
systematically by Alon and Shikhelman [2], while Győri, Paulos, Salia, Tompkins and Zamora studied the version where
the host graph is planar [9]. They introduced the notation exP (n,H) for the maximum number of subgraphs H in simple
planar graphs on n vertices. Analogously, we introduce the following notation.

Definition 1.1. exOP (n,H) denotes the maximum number of subgraphs H in simple outerplanar graphs on n vertices.

Chartrand and Harary [5] proved an analogue of Kuratowski’s theorem for outerplanar graphs. They characterised
outerplanar graphs as those graphs which do not contain a subdivision of K4 or K2,3 as a subgraph. Thus Definition 1.1 is
meaningful only for graphs F which does not contain a subdivision of K4 or a K2,3, moreover this characterisation implies
that exOP (n,H) also refers to a generalised Turán problem.

Problems of this favour, namely to consider a some general family as the host graph and maximise the number of
subgraphs of given type has a long history, and it attained significant interest recently.

Hakimi and Schmeichel [11] determined the order of magnitude of the planar Turán numbers for cycles. Recently,
Győri et al. obtained exact results on planar Turán numbers for short cycles [8,10] via the combination of several refined
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Table 1
Exact asymptotics for exOP (n, Ck) = c(k)n + o(n) when k is small.
k 3 4 5 6 7 8 9 10 11 12
Value of c(k) 1 1 1.5 2.5 5 10.5 23.75 56.75 141 361.75

methods. Later, Cox and Martin [6] proved asymptotic results for further instances of short cycles and paths. However,
general asymptotic results for long cycles or paths seem unknown. In fact, the following problem of Győri et al. [9] (based
on Eppstein’s questions [7]) was also unsolved concerning the exponent of the planar or outerplanar Turán number in
general, until recently.

Problem 1.2. Is it true that for all H , the order of magnitude of the maximum number of copies of H possible in a
minor-closed family of n-vertex graphs is an integer power of n?

This has been answered affirmatively very recently for several minor closed classes and graphs H due to Huynh, Joret
and Wood [12,13]. Note that Eppstein [7] proved exOP (n,H) = O(n) if and only if H is 2-connected, moreover for any
2-connected H there is a linear-time algorithm which enumerates the occurrences of F in any outerplanar graph. (A related
result for planar graphs was proved independently by Wormald [22].)

Studying outerplanar graphs may be of independent interest as well, since these graphs play an important role in
several central problems, like the art gallery problems [20]. Besides, it can serve as a base of comparison for the planar
case, or show relations to Hamiltonicity as a Hamiltonian planar triangulation can be obtained from gluing together two
maximal outerplanar graphs along the edges of the outer face [16]. Furthermore it may lead to an extension of the Turán-
problems in various ways. Either one considers host graphs of bounded Colin de Verdière number µ (note that µ(G) ≤ 3
characterises planar and µ(G) ≤ 2 characterises outerplanar graphs [21]), or further minor-closed families.

The first aim of the present paper is to give sharp or asymptotically sharp bounds for certain families of graphs H and
describe the extremal graphs as well. In this direction, we prove our first main result concerning the cycle case H = Ck. In
contrast with the planar setting, we can determine the asymptotic result on the maximum number of cycles Ck for every
value of k.

Theorem 1.3.

exOP (n, Ck) = c(k)n + O(1),

where the constant c(k) is determined by the sum

c(k) :=

k∑
r=1

t(k, r)
r

.

Here the function t(k, r) is obtained from the recursion

t(k, r) =

k∑
s=1

t(k − r, s)
(
2s − 1
r − 1

)
with t(0, r) = 0 ∀r, t(1, 1) = 1, t(1, r) = 0 if r ̸= 1, and t(k, r) = 0 if r > k.

In fact, we prove a more general result by describing a family of extremal graphs via applying the results of
Andriantiana, Wagner and Wang [4] (see also [3]), since the problem turns out to be equivalent to maximise the number
of k-vertex subtrees in bounded degree trees. However we also point out that there is no unique extremal structure in
general.

The link between the Turán-type problem and the subgraph enumeration leads to the following equivalent statement,
which completes the description of Andriantiana, Wagner and Wang.

Theorem 1.4. The maximum number of subtrees of size k − 2 > 0 in a binary tree on n vertices is c(k)n + O(1), where c(k)
is defined as in Theorem 1.3 and the term O(1) depends only on k.

Our next result determines the growth of the constant c(k). As Table 1 suggests, the function is exponentially growing.

Theorem 1.5.

lim
k→∞

k
√
c(k) = 4.

Next we discuss the results of generalised outerplanar number of trees.

Definition 1.6. Let ℓ(T ) denote the number of leaves of a tree T , and in general let ℓ(H) denote the number of vertices
v ∈ V (H) of degree one.
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Theorem 1.7 (Huynh, Joret, Wood, [12]). Let T be a tree on k > 2 vertices. Then exOP (n, T ) = Θ(nℓ(T )).

Note that exP (n, Pk) = Θ(nα(Pk)) for the path on k vertices according to [9], thus in contrast with planar graphs, the
order of magnitude does not depend on the length of the path.

Our main result concerning the case of trees is to determine the growth of exOP (n, Pk) in terms of k. This result provides
an alternative proof for Theorem 1.7.

Theorem 1.8. h(k)
(n
2

)
< exOP (n, Pk+1) ≤ 4k

(n
2

)
, where limk→∞

k√h(k) = 4.

The paper is organised as follows. In Section 2 we describe the equivalence between determining exOP (n, Ck) and
a k-vertex subtree enumeration problem. Then we verify the recursion of Theorem 1.3 and give an estimate on the
multiplicative constant factor obtained from the recursion. We prove Theorem 1.8 on the number of paths in Section 3
and derive Theorem 1.7. We also prove some partial results on the extremal graphs, and compare them to the very recent
complete solution of the Cvetković–Rowlinson conjecture [15], which claims that the join graph K1 ∨ Pn−1 attains the
maximum spectral radius among all n-vertex outerplanar graphs, except for n = 6.

2. Maximal number of cycles in outerplanar graphs and k-vertex subtrees of bounded degree trees

We start this subsection by deducing the correspondence between exOP (n, Ck) and the problem of maximising the
number of subtrees of size k − 2 in trees having degrees at most 3.

Definition 2.1 (Weak Dual). The weak dual of an embedded outerplanar graph is defined as follows. Take a vertex for every
bounded face of the embedding and connect every pair of vertices corresponding to adjacent faces of the outerplanar
graph.

Note that the weak dual graph does not contain cycles as a cycle would imply the existence of a vertex of the
outerplanar graph which is not lying on the outer face. Also, suppose that G is a maximal outerplanar graph on n vertices.
Then G has 2n − 3 edges and the weak dual is a tree on n − 2 vertices, having degrees at most 3. It is easy to see that
every tree having these properties can be obtained by the weak dual of a corresponding maximal outerplanar graph.
Trees where each vertex has degree at most 3 are called binary trees. Alternatively, in these trees each node has at most
2 children, except for the root vertex which may have three.

Definition 2.2 (BFS d-tree or Greedy Tree on n Vertices). Consider a breadth-first search on a d-regular infinite tree from
an arbitrary root. We call BFS d-tree or greedy tree the subtree of the d-regular infinite tree induced by the first n found
vertices during the search.

Note that in such trees every vertex has degree d or 1, except for at most one vertex and such trees are also known
as Volkmann trees, see e.g. [3].

Definition 2.3. Let gk(F ) denote the number of k-vertex subtrees (or k-subtrees for short) of F .

Theorem 2.4. For the maximum number of k-cycles Ck, we have exOP (n, Ck) = gk−2(Tn−2) where Tn−2 is a BFS 3-tree on
n−2 vertices. For every k there are infinitely many values of n for which the extremal graph is not unique, i.e. there are several
different extremal graphs.

Proof. To obtain the maximum number of cycles Ck in an n vertex outerplanar graph, we may clearly suppose that the
outerplanar graph is maximal (w.r.t. the number of edges), hence triangulated. Each cycle subgraph Ck is triangulated to
k − 2 triangular faces, thus it corresponds to a subtree on k − 2 vertices of the weak dual. Moreover, observe that this
provides a one-to-one correspondence. Hence our aim is to give a bound on the number of (k − 2)-subtrees of the weak
dual and describe the extremal graphs for which the number of (k − 2)-subtrees is maximal in terms of n. Thus we can
apply the result of Andriantiana, Wagner and Wang, who proved that among trees having degrees less than or equal to d,
greedy trees maximise not only the total number of subtrees but the number of k-subtrees as well for every k [4]. This in
turn implies that to prove a result on exOP (n, Ck) it is sufficient to calculate the number of (k−2)-subtrees of the greedy
BFS 3-tree.

Concerning the unicity of extremal graphs suppose that n is given in such a way that the greedy tree has 2ℓ
+1 leaves

on the last level for some ℓ for which log2 n − 2 > ℓ ≥ ⌈k/2⌉ holds. Consider the leaf w last reached during the BFS
search. There is no k-subtree containing both w and a further leaf from the last level due to the structure of the tree, as
they have common ancestor only more than ℓ levels above. This implies that if we erase w, then no matter where we
insert a further leave w′ instead of w, the number of trees will increase by the same number. However, the last common
ancestor of the new leaf w′ and the other leaves on the last level may appear on any level apart from the lowest ℓ + 1
levels. □
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Note that Székely and Wang initiated the investigation of counting the subtrees of trees in [17–19] and some general
properties were described. They proved that those binary trees which maximise the total number of subtrees are exactly
the binary trees which minimise the Wiener index, defined as the sum of all pairwise distances between vertices, and
greedy trees have these properties. This graph parameter is widely used in biochemistry. In their paper [17], the authors
calculated the total number of subtrees of these extremal binary trees. We mention that it had also a number theoretic
aspect as well, as these formulas used a new representation of integers as a sum of powers of 2. The results were extended
to trees having a maximum degree constraint [14] and the extremal structures once again coincide with the ones found
by Székely and Wang. Later Yan and Yeh [23] presented an algorithm for counting the number of subtrees of a tree.

As we mentioned in the Introduction, by Theorem 2.4 the extremal structure concerning exOP (n, Ck) can be derived
from the problem of maximising the number subtrees in binary trees [4]. However the extremal value was not determined
before. Thus we continue by presenting exact results for short cycles and then we determine the corresponding
asymptotics for each cycle length k by proving Theorem 1.3 and providing a bound on the constant c = c(k).

Notation 2.5. Let T ≤d
n denote the family of trees on n vertices having degrees at most d. The case d = 3 is usually known as

the family of n-vertex binary trees.

Proposition 2.6.

exOP (n + 2, C3) = max{g1(G) | G ∈ T ≤3
n } = n and exOP (n + 2, C4) = max{g2(G) | G ∈ T ≤3

n } = n − 1, (1)

and equality holds for every tree ∈ T ≤3
n

exOP (n + 2, C5) = max{g3(G) | G ∈ T ≤3
n } =

⌊
3n − 6

2

⌋
, (2)

and equality holds for every tree having
⌊ n−2

2

⌋
vertices of degree 3,

exOP (n + 2, C6) = max{g4(G) | G ∈ T ≤3
n } =

⌊
5n − 18

2

⌋
, (3)

and equality holds for every tree having no vertices of degree 2 or for trees with a single vertex of degree 2, adjacent to a leaf.

Proof. Equality in the cases of (1) in turn follows from the fact that the maximal value of exOP (n + 2, Ck) (k ∈ {3, 4}) is
attained on maximal outerplanar graphs, and such outerplanar graphs have exactly 2n+ 1 edges which have n triangular
faces. Hence according to Theorem 2.4 it is enough to calculate the number of nodes, (resp. edges) in the weak dual, of a
tree on n vertices.

Similarly to the previous case, (2) follows from counting P3 subgraphs in binary trees. Suppose that a binary tree has ti
vertices of degree i. Then the number of P3 subgraphs is clearly 3t3 + t2, while t1 + t2 + t3 = n. Consequently, the number
clearly increases if one can cut a branch from a degree 2 vertex and glue it to another vertex of degree 2. This means that
we must have t3 = ⌊n/2⌋ − 1, t1 = ⌊n/2⌋ + 1 and the claim follows.

Case (3) can be proved similarly by taking a tree transformation, i.e. shifting branches among the tree like in the
previous case, and showing first that there cannot be more than 1 vertices of degree 2, then showing that the number of
subtrees can be increased also if the degree 2 vertex is not adjacent to a leaf. We leave the rest to the interested reader. □

Next we show that exOP (n, Ck) = c(k)n+O(1) where the constant c(k) and the error term O(1) depend only on k. We
introduce a simple lemma to get this.

Lemma 2.7. Take an infinite 3-regular tree. The number of k-vertex subtrees containing a fixed vertex v equals 3
2k+1

(2k+1
k−1

)
=

Ck+1 − Ck where Ck denotes the kth Catalan number.

Remark 2.8. This integer sequence appears in several other enumeration problems, see [1].

Proof of Lemma 2.7. Let us count first those k-vertex trees through a fixed vertex v which does not contain a fixed
neighbour w of v. We claim that their number is Ck and prove this by induction. If we define the number of trees on
zero vertices by 1, then the statement clearly holds for k = 0 and k = 1, and in general it follows from the recursive
formula of the Catalan numbers Ck =

∑k−1
j=0 CjCk−1−j. Indeed, distinguishing between the cases describing the distribution

(j, k − 1 − j : j = 0, . . . , k − 1) of the number of vertices sitting on the first, resp. second branch joint to v, we get the
desired formula by induction.

Using the previous subcase we are ready to prove the lemma. Suppose that a k-vertex tree containing v has exactly
j vertices on the branch starting with w. Then the number of subtrees after deleting this branch is Ck−j according to our
previous observation. On the other hand, the number of branches having exactly j vertices on the branch starting with
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w is also a Catalan number, namely Cj by the same argument. Thus in total we have
k−1∑
j=0

CjCk−j =

k∑
j=0

CjCk−j − Ck

subtrees, completing the proof. □

Proof of Theorem 1.3. First we show the statement for complete binary trees, that is, in those 3-regular trees where the
leaves of the tree are on the same level and every other vertex is of degree 3. So suppose that T is a 3-regular greedy tree
of h + 1 levels on 1 +

∑h
i=0 3 · 2i vertices.

We introduce the notion t(k, r) for the number of those k-vertex trees containing a fixed vertex v from the lowest
level of T (level h), which have exactly r vertices on the lowest level.

t(k, 0) = 0 ∀k as v is on level h.
It is also clear that t(0, r) = 0 ∀r , t(1, 1) = 1, t(1, r) = 0 if r ̸= 1, and t(k, r) = 0 if r > k.
Then we can determine t(k, r) for all other values using the following recursion.

t(k, r) =

k∑
s=1

t(k − r, s)
(
2s − 1
r − 1

)
. (4)

To obtain (4), take the parent vertex u of v in the tree T and erase each vertex of the k-vertex tree which is on level
h. This way we get k − r-vertex tree containing u.

Every (k − r)-vertex tree containing u which has s vertices on its lowest level h − 1 can be expanded by r vertices
on level h exactly

(2s−1
r−1

)
different ways if we require that one of these r vertices is v. This enables us to determine the

number of k-vertex trees having exactly r vertices on level h as

3 · 2h
·
t(k, r)

r
since v can take 3 · 2h positions on level h but each of these subtrees is counted r times.

Let us define

c(k) :=

k∑
r=1

t(k, r)
r

.

By the above reasoning, exactly 3 · 2g
· c(k) trees reach level g but do not have vertices on levels larger than g; if g is

large enough (where g > k clearly suffice). Since the number of vertices on levels of index less than k is constant, c(k) is
indeed the value we needed to determine.

Finally, observe that the above argument works precisely the same way for binary greedy trees on n-vertices if there
are no k-vertex subtrees containing two leaves of the greedy tree from different levels. Suppose that the number of leaves
on the highest level h is divisible by 2[k/2] in the greedy tree. Then each ascendant of the leaves of the highest level, sitting
on level ℓ ≥ h−[k/2], has descendant leaves only on the highest level. Therefore no k-vertex subtree contains two leaves
of the greedy tree from different levels. Since the number of subtrees is an increasing function in terms of the number of
vertices of the binary greedy tree, the proof is completed. □

The recursion does not directly imply the order of magnitude of c(k) in terms of k. We determine the growth of this
function.

Proof of Theorem 1.5. First observe that every vertex of an infinite 3-regular tree appears in at most 4k subtrees of order
k in view of Lemma 2.7 and every subtree is counted k times, thus k√c(k) < 4 for all k. On the other hand we will present
a family of k-vertex subtrees such that the kth root of the cardinality is tending to 4.

Let us fix a positive integer q (to be determined later on) and take a root vertex v on level hv := h − q − ⌈
k
2q ⌉ in a

3-regular greedy tree of h levels. Let us build a tree from v by taking all the 2q+1
− 2 descendants on the next q levels.

Finally, let us root an arbitrary tree of size ⌊
k
2q ⌋ − 2 independently from each descendant of v on level hv + q. Note that

every rooted tree is a subtree of the complete binary tree T of h levels since ⌊
k
2q ⌋ − 2 is less than the distance between

the root and the lowest level h. Denoting ⌊
k
2q ⌋ − 2 by β , we have C2q

β trees from v and in total we have

C2q
β · 3 · 2hv

such trees with highest vertex being on level hv and they are of order 2q+1
− 1 + 2q

· (⌊ k
2q ⌋ − 2) < k. Obviously these

trees can be completed to different k-subtrees of the underlying greedy tree by choosing added vertices outside the set
of descendants of the root vertex v.

Suppose that q := ⌈
1
2 log2 k⌉, i.e. 2q

≈
√
k. Then it is not hard to determine the order of magnitude of the constant

c(k) by estimating the ratio of the number of the above trees and the number of vertices in the greedy tree.
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Here we use the standard estimates Cn ∼
4n

n3/2
√

π
of the Catalan numbers to compute the ratio as

number of subtrees in consideration
n

≥
C2q

β · 3 · 2hv

3 · 2h+1 >
4k

(2 ·
√

π )
√
k · k0.75(

√
k+1) · 43

√
k
,

and from this our theorem follows. □

3. Maximal number of trees

In this section we present a proof for Theorem 1.8 on the maximum number of paths Pk+1 with k edges (k-paths) in
outerplanar graphs and then derive Theorem 1.7. We use the standard notation N (G,H) for the number of subgraphs
isomorphic to H in G, and G1 ∨G2 for the join operation for graphs G1 and G2, where G1 ∨G2 is obtained from the disjoint
union of G1 and G2 by connecting every pair of vertices {u, v} ∈ V (G1) × V (G2).

3.1. Number of paths, upper bound

Notation 3.1. Let f (k) denote the maximum number of k-paths with fixed endnodes in outerplanar graphs. We define f (0) := 1.
Analogously, let g(k) denote the maximum number of k-paths with fixed endnodes in outerplanar graphs, where the endnodes

are consecutive on the outer face.

Proposition 3.2.

f (k) ≤

k∑
r=1

2 · g(r)f (k − r)

Proof. We may suppose that the outerplanar graph is maximal. Let u and v be a fixed pair of vertices in an outerplanar
graph G. We count the number of paths whose first vertex is u and the k + 1th vertex is v.

Case 1. u and v are adjacent.
The edge uv divides the graph G into two outerplanar graphs G1 and G2 with a single common edge. Every path from

u to v must be contained in one of G1 and G2 due to the outerplanar property of G. Hence f (k) ≤ 2g(k) in this case.
Case 2. u and v are not adjacent.
Let x and y be the neighbours of u which are the closest to v on the outer face clockwise and counter-clockwise,

respectively. The edge ux divides G into two outerplanar graphs. Let G1 be the outerplanar graph obtained this way which
does not contain v. Similarly, the edge uy divides G to two outerplanar graphs. Let G2 be the outerplanar graph obtained
this way which does not contain v. Then each k-path takes a few 1 ≤ r ≤ k − 1 steps either in G1, eventually reaching
x and continuing to v, or in G2, eventually reaching y and continuing to v. This yields the stated summation as an upper
bound. □

Lemma 3.3. g(r) ≤ Cr−1.

Proof. For r = 1 and r = 2 the statement clearly holds with equality. For r > 2 consider two consecutive vertices u and
v on the outer face in a maximal outerplanar graph G. Since G is triangulated, there is a unique vertex w in the common
neighbourhood N(u)∩N(v). Let G1 be the outerplanar graph which does not contain v that we obtain from G by cutting it
into two halves via the edge uw. Similarly, let G2 be the outerplanar graph which is not containing u that we obtain from
G by cutting it into two halves via the edge vw. Each path from u to v of length r > 1 passes through w and consists of
an s-path in G1 and an (r − s)-path in G2 for some 1 ≤ s ≤ r − 1. Since the edges uw and wv are formed by consecutive
vertices on the outer face of G1 and G2, we obtain an upper bound g(r) ≤

∑r−1
s=1 g(s)g(r − s). This recursion coincides with

the recursion of the Catalan numbers, hence the proof. □

As a corollary, we have

f (k) ≤

k∑
r=1

2 · Cr−1f (k − r).

——–

Proof of Theorem 1.8, upper bound. To prove the statement we show by induction on k that f (k) ≤ 4k holds. First
observe that this clearly holds for k = 0, 1 and 2 as outerplanar graphs are K2,3-free graphs. Then using the inductional
hypothesis we get

f (k) ≤

k∑
r=1

2 · Cr−14k−r .
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Fig. 1. The graph G(4, 2).

In other words, if we take the generating function of the Catalan numbers F (z) =
∑

∞

t=0 Ctz
t , we obtain an upper bound

as

f (k) < 4k−1
· 2 · F (

1
4
).

On the other hand, we know that F (z) =
1−

√
1−4z
2z , hence we get f (k) < 4k−1

· 2 · 2, which is the desired bound. □

Proof of Theorem 1.7, alternate proof on the number of trees. We start by showing that equality exOP (n, T ) = O(nℓ(T ))
holds. Let us take an arbitrary set of ℓ(T ) vertices from the vertex set V (G) of any outerplanar graph G on n vertices. There
are at most ℓ(T )! ways to identify these with the labelled leaves of T . Pick one of these identifications. We prove that
the number of ways the identification can be completed to an embedding of T in G is bounded from above by a constant
depending on ℓ(T ). Take one of the identified vertices w. In the proof of Theorem 1.8 we showed that there are constant
number of ways to embed a path of given length between two fixed vertices, thus there is also a constant number of
ways to provide such a combined embedding between w and the other identified vertices. Every embedding of T with
leaves fixed in V (G) will be among these, hence the claim.

exOP (n, T ) = Ω(nℓ(T )) follows as a corollary from the following observation.

Proposition 3.4. exOP (n,H) = Ω(nℓ(H)), provided that H is outerplanar.

Proof. Take a positive constant c < 1
ℓ(H) and replace each pendant edge of H by a star on ⌊cn⌋ vertices. The obtained

outerplanar can be completed to an n-vertex outerplanar graph and it contains at least ⌊cn⌋ℓ(H) copies of H as a
subgraph. □ □

3.2. Number of paths, lower bound: numeral system graphs

The lower bound relies on an outerplanar graph which we call numeral system graph.

Definition 3.5 (Numeral System Graph). For integers N > 1 and t > 0, we construct the graph G(N, t) as follows.
Let the vertices of G(N, t) be integers from 0 to N t

−1 written in base N . Each number R is connected to (r −1)N s and
(r + 1)N s if R can be expressed as R = rN s for some integers 0 ≤ s ≤ t − 1 and r ∈ Z. In this context, 0 should be treated
as the equivalent of N t .

Furthermore, connect every number to the one we obtain by changing its last nonzero digit to zero. See Fig. 1.

It is easy to see by induction on t that G(N, t) is a triangulated outerplanar graph, moreover G(N, 1) is the same as
K1 ∨ PN−1.
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We will prove that

lim
k→∞

lim
N→∞

k

√
N (G(N, t), Pk+1)(

|V (G(N,t))|
2

) ≥ 4 (5)

for t = ⌊
√
k⌋.

Indeed, this implies the lower bound in Theorem 1.8 since for each n we can determine the largest tth power N t which
does not exceed n, and take a maximal outerplanar graph which contains G(N, t) as a subgraph. The distribution of the
tth powers implies that the lower bound 4 on the limit still stands for arbitrary n.

The proof will be derived from a bijection between a subfamily of k-paths in G(N, t) and a set of so-called permitted
sequences.

Definition 3.6. A sequence [γ1, . . . , γk−2t ] ∈ Nk−2t is permitted (with parameters k−2t and t) if (i) γ1 = 0, (ii) γi+1 ≤ γi+1
∀i, and (iii) γi ≤ t − 2 ∀i hold.

Lemma 3.1. Suppose that m0 + m1... + mt−2 = k − 2t holds for a set of non-negative integers mi and assume that we are
given a sequence for all 0 ≤ i ≤ t − 3 consisting of mi i-s and mi+1 i + 1-s which starts with i. Then there exists a unique
permitted sequence of parameter k − 2t and t which contains all the given sequences as a subsequence.

Proof. Note first that a subsequence of the numbers smaller than j > 0 in a permitted sequence also forms a permitted
sequence (with parameters

∑j−1
i=0 mi, j − 1) since the numbers never increase by more than 1 in one step. We prove the

Lemma by induction on t . It clearly holds for t = 2 for all k ≥ 2t . Next, by the inductional hypothesis, we know that
there is a unique permitted sequence of the numbers smaller than j > 0 which contains all the given sequences as a
subsequence for 0 ≤ i ≤ j − 2, and the subsequence of the numbers equal to j − 1 or j is given, which starts with j − 1.
The position of j-s are thus determined via the given subsequence of mj−1 j−1-s and mj j-s in order to obtain a permitted
sequence as each j must be inserted immediately after a j − 1 or a j following the order of the subsequence.

The sequence obtained this way will remain permitted. □

Corollary 3.2. The number of permitted sequences of parameters k − 2t and t in which the number i appears mi > 0 times
for all 0 ≤ i ≤ t − 2 is

∏t−3
i=0

(mi+mi+1−1
mi−1

)
.

Proof. By Lemma 3.1, the number of such sequences equals the product of the number of possible subsequences which
consist of i-s of multiplicity mi and i+ 1-s of multiplicity mi+1, and which start with i, for all i. This yields

(mi+mi+1−1
mi−1

)
for

each i < t − 2. □

Proposition 3.7. Suppose that t = ⌊
√
k⌋ ≥ 4 and denote by Γ (k − 2t, t) the number of permitted sequences of parameters

k − 2t and t. Then we have

lim inf
k→∞

k
√

Γ (k − 2t, t) ≥ 4.

Proof. Let mi = ⌊
k−2t
t−2 ⌋ for all 0 ≤ i < t − 2 and mt−2 = k − 2t − (t − 2)⌊ k−2t

t−2 ⌋. Then by Corollary 3.2 we have a lower
bound on Γ (k − 2t, t) as Γ (k − 2t, t) >

∏t−3
i=0

(mi+mi+1−1
mi−1

)
. This in turn provides the bound

Γ (k − 2t, t) >

(
2m1 − 1
m1 − 1

)t−2

>
2(2m1−1)(t−2)

(2m1)t−2 >
22k−5t

(2
√
k)

√
k
,

from which the statement follows. □

Proof of the lower bound on exOP (n, Pk) via inequality (5).
Let us choose an arbitrary pair of vertices A = (α1, . . . , αt )N , B = (β1, . . . βt )N ∈ V (G(N, t)) for which αi, βi ≥ k ∀i and

α1 ̸= β1. We define an injective function between the set of permitted sequences of parameters k − 2t, t and the set of
paths starting from A and ending in B.

Consider a permitted sequence [γ1, . . . , γk−2t ], and let us denote the vertices of the path A0 := A, A1, A2, . . . , Ak := B
defined iteratively according to [γ1, . . . , γk−2t ] as follows.

If Aj is already defined for some 0 ≤ j < k − 2t and Aj ends in exactly q zeros in base N then

• obtain Aj+1 from Aj by turning its last nonzero digit to zero if γj+1 = q + 1,
• Aj+1 := Aj − N s if γj+1 = s ≤ q.

Every digit of A is at least k, and in every step we turn a digit to zero, or we decrease a digit by one and turn all the
following digits from 0 to N −1. Since the second parameter of the sequence is t , the process will not affect the first digit
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in the first k − 2t steps. Observe that Aj+1 will end in exactly γj+1 zeros. Indeed, the last digit of A0 is not zero, and the
property of having ending zeros as many as the corresponding element of the sequence is maintained during the process.
This implies that A0, . . . , Ak−2t indeed determines a path, and different sequences obviously determine different paths of
length k − 2t .

The final step to confirm the injection is to show that each such (k− 2t)-path corresponding to a permitted sequence
can be completed to a k-path ending in B.

From Ak−2t we can reach the vertex (0, 0, . . . , 0, 0)N in t ′ ≤ t steps by turning each nonzero digit to zero from
right to left. The next t − 1 steps correspond to fill in the digits of B except for the last one, i.e. (0, 0, . . . , 0, 0)N −

(β1, 0, . . . , 0, 0)N − (β1, β2, . . . , 0, 0)N − · · · − (β1, β2, . . . , βt−1, 0)N . Finally we use t ′ + 1 steps to reach B by stepping to
(β1, β2, . . . , βt−1, βt − t ′)N and increasing the last digit in t ′ steps by one.

From each ordered pair of vertices A = (α1, . . . , αt )N , B = (β1, . . . βt )N ∈ V (G(N, t)) for which αi, βi ≥ k ∀i and α1 ̸= β1,
we obtained at least Γ (k−2t, t) k-paths. Moreover the position of (0, 0, . . . , 0)N in the paths implies these are different for

each ordered pair. Since the number of such ordered pairs is (N−k)2t−1(N−k−1) and limk→∞ limN→∞
k

√
(N−k)2t−1(N−k−1)

(N
t
2 )

=

1, the proof follows from Proposition 3.7. □

3.3. Number of paths: the case of small length

In this subsection we present some partial results concerning the value of exOP (n, Pk) rather than its behaviour when
both n and k are large, as described in Theorem 1.8.

Theorem 3.8. Suppose that n ≥ 3. Then

exOP (n, P3) =
n2

+ 3n − 12
2

,

and the unique extremal graph is G(n, 1) = K1 ∨ Pn−1.

Proof. First we calculate the number of 2-paths in K1 ∨ Pn−1.
For any graph G this number is determined by the degree distribution as

∑
v∈V (G)

(degG(v)
2

)
. Since the degree distribution

is n − 1, 2, 2, 3, . . . , 3 in K1 ∨ Pn−1, we have N (K1 ∨ Pn−1, P2) =
(n−1

2

)
+ (n − 3)

(3
2

)
+ 2

(2
2

)
=

n2+3n−12
2 .

We prove the statement by induction on the number of vertices. Without loss of generality we may suppose that the
extremal graph G is a maximal outerplanar graph (MOP for brief), since every outerplanar graph can be completed to
a MOP and there is at least one 2-path on every edge in a MOP. For n = 3, the triangle is the only MOP, so here the
statement holds.

To perform the inductional step, assume that the claim holds for outerplanar graphs on n − 1 vertices and consider a
MOP G on n vertices. The weak dual of G is a tree, which has at least one leaf, so there is a triangular face ABC in which
both AC and BC lie on the outer face.

Remove the vertex C and denote the remaining graph G′. It is still a MOP and the edge AB is on its outer face. A 2-path
in G is either in G′ or it is composed of either AC or BC attached to an edge incident to this vertex in G′, or it is the path
ACB itself.

Thus N (G, P3) = N (G′, P3) + degG′ (A) + degG′ (B) + 1.
Since G′ is a triangulated outerplanar graph of n − 1 vertices, and AB is an edge on the outer face, the vertices A and

B share exactly one common neighbour, that is, degG′(A) + degG′(B) ≤ n.
By the induction hypothesis, we have N (G′, P3) ≤

(n−1)2+3(n−1)−12
2 =

n2+n−14
2 , hence we obtain N (G, P3) ≤

n2+n−14
2 +

n + 1 =
n2+3n−12

2 .
Equality holds only if G′ is the unique extremal graph K1 ∨ Pn−2 and every vertex is connected to either A or B in

G′
= K1 ∨Pn−1. This is only possible if one of them has degree n−2 in G′, which means that G = K1 ∨Pn−1, as claimed. □

For P4, it is not true anymore that K1 ∨ Pn−1 is the extremal graph for each n. Consider the case n = 6. The maximal
outerplanar graph in which the 2nd, 4th and 6th vertices are connected to each outer has 33 different 3-paths, while
K1 ∨ P5 has only 32.

This may seem a sporadic counterexample which coincides with the only counterexample for the Cvetković–Rowlinson
conjecture [15]. However we show that this is not the case. In the following propositions we point out that G(n, 1) is not
extremal apart from cases when n and k are small.

Proposition 3.9. Suppose that n > k ≥ 3. Then

N (G(n, 1), Pk+1) = 4(k − 2)
(
n + 1 − k

2

)
+ 3(n − k) − 1.
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Proof. Suppose first that the vertex v0 with degree n − 1 is not contained in the path. Then Pk+1 must be a subpath of
Pn−1, hence we gain n−k−1 copies. Next suppose that v0 is an endvertex of the path Pk+1. Then the indices of the rest of
the vertices form an interval of [1, n−1] and appear in increasing or decreasing order, thus we get 2(n−k) copies. Finally
if v0 is a vertex of Pk+1 but not an endvertex, then Pk+1 consists of an interval I of t ≥ 1 integers, v0 and an interval J of
k − t ≥ 1 integers, such that I ∩ J = ∅ and the elements of I precede the ones of J . In both intervals, the elements can
appear in increasing and decreasing order, independently. For each 1 < t < k − 1, this provides 4

(n+1−k
2

)
different path

while for t ∈ {1, k − 1} we get only 2
(n+1−k

2

)
as increasing and decreasing order does not differ for sequences of length

one. This in turn completes the proof. □

Proposition 3.10. For n/7 > k > 5, exOP (n, Pk) exceeds the number of k-paths in G(n, 1) = K1 ∨ Pn−1.

Proof. Take the graph G(n/3 + 1, 1) and consider two further copies of this graph G′(n/3 + 1, 1) and G′′(n/3 + 1, 1).
Identify the vertex pairs {v0, v

′′

n/3}, {v
′

0, vn/3}, {v′′

0 , v
′

n/3} to obtain a triangulated outerplanar graph G having v0v
′

0v
′′

0 as one
of its triangular faces. We estimate the value of N (G, Pk) as follows.

Suppose that A and B are vertices from different copies. We want to estimate the number of paths of length k − 1
between A and B. Without loss of generality we may assume that A ∈ G(n/3 + 1, 1) and B ∈ G′(n/3 + 1, 1).

Consider those paths starting from A and ending on B which contain v0 and v′

0 in the order A − v0 − v′

0 − B with
A ∈ {vi : k − 4 < i < n/3 − k + 4}, B ∈ {v′

i : k − 4 < i < n/3− k + 4} (admissible endvertex pairs). Then there is exactly 2
ways to insert either 1 or more vertices between A − v0 or v′

0 − B while there is exactly 2 (resp. 3) ways to insert either
1 (resp. more) vertices between v0 − v′

0. This adds up to 2 + 3 + 2 ways to obtain a path on k vertices from A to B if the
inserted vertices are between one consecutive pair of A − v0 − v′

0 − B. There are at least
(3
2

)
· 2 · 2 ·

(k−5
1

)
ways to insert

k − 4 vertices between exactly two consecutive pair of the three consecutive pairs in A − v0 − v′

0 − B. Finally, there are
at least

(3
3

)
· 2 · 2 · 2 ·

(k−5
2

)
ways to insert k − 4 vertices between exactly three consecutive pair of the three consecutive

pairs in A − v0 − v′

0 − B.
Hence in total, we get at least 4(k − 4)2 + 3 paths of length k > 4 between A ∈ {vi : k − 4 < i < n/3 − k + 4} and

B ∈ {v′

i : k − 4 < i < n/3 − k + 4}. The number of admissible choices for the pair A ∈ G(n/3 + 1, 1), B ∈ G′(n/3 + 1, 1) is
at least (n/3 − 2k + 8)2, hence taking into consideration the other two options we finally get at least

(4(k − 4)2 + 3) · 3 · (n/3 − 2k + 8)2

path subgraphs Pk in G. If n > 7k, it is easy to check that the latter expression exceeds to corresponding number of Pk
from Proposition 3.9. □

It remains an open question to describe the extremal structures for paths.
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