239 research outputs found

    A review of the application of the simulated annealing algorithm in structural health monitoring (1995-2021)

    Get PDF
    In recent years, many innovative optimization algorithms have been developed. These algorithms have been employed to solve structural damage detection problems as an inverse solution. However, traditional optimization methods such as particle swarm optimization, simulated annealing (SA), and genetic algorithm are constantly employed to detect damages in the structures. This paper reviews the application of SA in different disciplines of structural health monitoring, such as damage detection, finite element model updating, optimal sensor placement, and system identification. The methodologies, objectives, and results of publications conducted between 1995 and 2021 are analyzed. This paper also provides an in-depth discussion of different open questions and research directions in this area

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Structural optimization of self-supported dome roof frames under gust wind loads

    Get PDF
    PhD ThesisDome roofs are large structures often subject to variable wind, snow and other loading conditions, in addition to their own weight. A wide variety of structural designs are used in practice, and finding the optimal arrangement of trusses or girders, along with suitable section properties, is a common subject for structural optimization studies. This thesis focuses on self-supported dome roofs for fuel storage tanks, and a variety of optimization techniques are adapted, developed and compared. Various load conditions have been compared using detailed fluid and stress analysis in ANSYS. From results for full and empty storage tanks, with wind and/or snow external loads, the worst cases are for wind loading alone, i.e., snow loading counters the lift force from the wind. Consequently, the case of an empty fuel storage tank subject to wind loading is used as the basis for the structural optimization. To speed up the optimization, a simplified frame analysis was developed in Matlab and integrated with the optimization code. In addition, the wind loads were modelled in ANSYS for a range of dome radii and imported into the Matlab, and a number of different dome designs were used as case studies: these were ribbed, Schwedler, Lamella and geodesic. The principal method used to optimize the frame is Morphing Evolutionary Structural Optimization (MESO), in which an initial overdesigned frame is iteratively analysed and reduced in overall weight by reducing the sections of key frame members. The frame is progressively weakened, but without compromising the structural integrity, until it is no longer possible to reduce the weight. However, there are additional parameters that MESO is not suited to, such as dome radius and those affecting the overall structure of the dome frame (numbers and placements of rings, etc.), and a variety of metaheuristic optimization techniques have been studied: Artificial Bee Colony (ABC), Bees Algorithm (BA), Differential Evolution (DE), Particle Swarm Optimization (PSO) and Simulated Annealing (SA). These can be used instead of MESO, or in a hybrid form where MESO optimizes the frame member sections. Although the focus in this thesis is on minimizing the total structural weight, the importance of other characteristics of the design, especially structural stiffness, is considered and also integrated with the MESO process. The hybrid methods MESO-ABC and MESO-DE performed best overall.Higher Committee for Education Development (HCED), IRA

    Literature review of bridge structure's optimization and it's development over time

    Get PDF
    The structural development in bridge engineering along with efficiency have got much attention in few decades. Leading to the development, Optimization of structure established on mathematical analysis emerged mostly employed strategies for productive and sustainable design in the bridge engineering. Despite the widespread knowledge, there has yet to be a rigorous examination of recent structural optimization exploration development. Thus, the primary objectives of this paper are to critically review previous structural optimization research, provide a detailed examination of optimization goals and outline recent research field limitations and provide guidelines for future research proposal in the field of bridge engineering structural optimization. This article begins by outlining the relevance of efficiency and sustainability in the bridge construction, as well as the work done required for this review. Suitable papers are gathered and followed by a statistical analysis of the selected publications. Following that, the selected papers are evaluated in terms of the optimization targets as well as their spatial patterns. Structure's optimization four key steps, including modeling, optimization techniques, formulation of optimization concerns and computational tools, are also researched and examined in depth. Finally, research gaps in contemporary works are identified, as well as suggested guidance for future works

    A Framework for Hyper-Heuristic Optimisation of Conceptual Aircraft Structural Designs

    Get PDF
    Conceptual aircraft structural design concerns the generation of an airframe that will provide sufficient strength under the loads encountered during the operation of the aircraft. In providing such strength, the airframe greatly contributes to the mass of the vehicle, where an excessively heavy design can penalise the performance and cost of the aircraft. Structural mass optimisation aims to minimise the airframe weight whilst maintaining adequate resistance to load. The traditional approach to such optimisation applies a single optimisation technique within a static process, which prevents adaptation of the optimisation process to react to changes in the problem. Hyper-heuristic optimisation is an evolving field of research wherein the optimisation process is evaluated and modified in an attempt to improve its performance, and thus the quality of solutions generated. Due to its relative infancy, hyper-heuristics have not been applied to the problem of aircraft structural design optimisation. It is the thesis of this research that hyper-heuristics can be employed within a framework to improve the quality of airframe designs generated without incurring additional computational cost. A framework has been developed to perform hyper-heuristic structural optimisation of a conceptual aircraft design. Four aspects of hyper-heuristics are included within the framework to promote improved process performance and subsequent solution quality. These aspects select multiple optimisation techniques to apply to the problem, analyse the solution space neighbouring good designs and adapt the process based on its performance. The framework has been evaluated through its implementation as a purpose-built computational tool called AStrO. The results of this evaluation have shown that significantly lighter airframe designs can be generated using hyper-heuristics than are obtainable by traditional optimisation approaches. Moreover, this is possible without penalising airframe strength or necessarily increasing computational costs. Furthermore, improvements are possible over the existing aircraft designs currently in production and operation

    Integrating the finite element method and genetic algorithms to solve structural damage detection and design optimisation problems

    Get PDF
    This thesis documents fundamental new research in to a specific application of structural box-section beams, for which weight reduction is highly desirable. It is proposed and demonstrated that the weight of these beams can be significantly reduced by using advanced, laminated fibre-reinforced composites in place of steel. Of the many issues raised during this investigation two, of particular importance, are considered in detail; (a) the detection and quantification of damage in composite structures and (b) the optimisation of laminate design to maximise the performance of loaded composite structuress ubject to given constraints. It is demonstrated that both these issues can be formulated and solved as optimisation problems using the finite element method, in which an appropriate objective function is minimised (or maximised). In case (a) the difference in static response obtained from a loaded structure containing damage and an equivalent mathematical model of the structure is minimised by iteratively updating the model. This reveals the damage within the model and subsequently allows the residual properties of the damaged structure to be quantified. Within the scope of this work is the ability to resolve damage, that consists of either penny-shaped sub-surface flaws or tearing damage of box-section beams from surface experimental data. In case (b) an objective function is formulated in terms of a given structural response, or combination of responses that is optimised in order to return an optimal structure, rather than just a satisfactory structure. For the solution of these optimisation problems a novel software tool, based on the integration of genetic algorithms and a commercially available finite element (FE) package, has been developed. A particular advantage of the described method is its applicability to a wide range of engineering problems. The tool is described and its effectiveness demonstrated with reference to two inverse damage detection and quantification problems and one laminate design optimisation problem. The tool allows the full suite of functions within the FE software to be used to solve non-convex optimisation problems, formulated in terms of both discrete and continuous variables, without explicitly stating the form of the stiffness matrix. Furthermore, a priori knowledge about the problem may be readily incorporated in to the method

    The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    Get PDF
    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Active thermography for the investigation of corrosion in steel surfaces

    Get PDF
    The present work aims at developing an experimental methodology for the analysis of corrosion phenomena of steel surfaces by means of Active Thermography (AT), in reflexion configuration (RC). The peculiarity of this AT approach consists in exciting by means of a laser source the sound surface of the specimens and acquiring the thermal signal on the same surface, instead of the corroded one: the thermal signal is then composed by the reflection of the thermal wave reflected by the corroded surface. This procedure aims at investigating internal corroded surfaces like in vessels, piping, carters etc. Thermal tests were performed in Step Heating and Lock-In conditions, by varying excitation parameters (power, time, number of pulse, ….) to improve the experimental set up. Surface thermal profiles were acquired by an IR thermocamera and means of salt spray testing; at set time intervals the specimens were investigated by means of AT. Each duration corresponded to a surface damage entity and to a variation in the thermal response. Thermal responses of corroded specimens were related to the corresponding corrosion level, referring to a reference specimen without corrosion. The entity of corrosion was also verified by a metallographic optical microscope to measure the thickness variation of the specimens
    • …
    corecore