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Abstract. The structural development in bridge engineering along with efficiency have got much attention in
few decades. Leading to the development, Optimization of structure established on mathematical analysis
emerged mostly employed strategies for productive and sustainable design in the bridge engineering. Despite the
widespread knowledge, there has yet to be a rigorous examination of recent structural optimization exploration
development. Thus, the primary objectives of this paper are to critically review previous structural optimization
research, provide a detailed examination of optimization goals and outline recent research field limitations and
provideguidelines for future researchproposal in thefieldofbridge engineering structural optimization.This article
begins byoutlining the relevance of efficiency and sustainability in the bridge construction, aswell as theworkdone
required for this review. Suitable papers are gathered and followed by a statistical analysis of the selected
publications. Following that, the selected papers are evaluated in terms of the optimization targets as well as their
spatialpatterns. Structure’s optimization fourkey steps, includingmodeling, optimization techniques, formulation
ofoptimizationconcernsandcomputational tools, arealsoresearchedandexamined indepth.Finally, researchgaps
in contemporary works are identified, as well as suggested guidance for future works.
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1 Introduction

Bridge engineering field is basically a vocation that deals
with study of design, function, maintenance, construction,
and development related to road infrastructures having
various kinds of works in bridges, for instance piling, and
culverts [1]. However, the low efficiency, high labor
intensity and increasing environmental effects [2–4] are
often understood trade by the architecture, engineering
and construction industry while a huge fraction of saving is
part of it as well. According to Karen Manley, Tim Rose’s
report et al. [5], the nearly 9% of theWorldGDP ismade up
by the accepted construction business. In 2017 another
survey from [6] is carried out according to that, construc-
tion industry is the 2nd largest china’s energy consuming
sector. Estimating 20% of entire energy utilization, almost
23% of total electric power usage and approximately 30%
carbon emission (CO2) which is throwing remarkable
effects on the climate. Therefore, it is core interest of all in
boosting economic, social, and environmental ability of
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bridge engineering activities. With the start of 20th
century, birth and growth of computational methodology
for structural design and analysis, in a past few decades it
has been observing that optimization techniques build on
the mathematical programming methods have been
formulated and also approved in bridge engineering and
it pertains to pile up the best effect under particular
circumstances [7,8].

In bridge engineering the optimization may enforce in
every stage of project from its design to its construction or
supervision. The structural optimization is one the most
utilized divisions of optimization. In this survey, to attain
the different goals under given circumstances, “structural
optimization” means to explore the decent arrangement of
structural elements and also dismissing the properties
of approved materials [9]. The crucial and essential part of
bridge engineering structure is ‘material’ which has the
greater part in their achievement. In bridge engineering
infrastructures [10], concrete-based composite materials
are widely used in which ordinary concrete, enhanced
concrete, pre-stressed concrete etc are involved [11].
Although bridge engineering structures have different
kinds of materials, but sole type of material is generally
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understood in structural optimization because of the
computational complications when material distribution
are contemplated.

Structural optimization is further categorized into four
types [12]:

–
 Size optimization: leads to the cross-sectional volume of
structures or structural components as design variable
[13];
–
 Shape optimization: Shape optimization: it has another
name “configuration optimization” that leads to the
structure’s nodal coordinate changes and act as design
variables [14];
–
 Topology optimization: intends to eliminate unwanted
structural components to attain the optimum solution in
design as well as concentrates on how joints are attached
and supported [15];
–
 Multi-objective optimization: for better optimization
results [16], this optimization understood multiple of the
mentioned optimization goals; an optimization implicat-
ed shape, size as well as topology in parallels time frame
also known as layout optimization [17].

In the initial step, area of bridge engineering studies on
optimization only consists of mathematical proofs and
programming methods, they rely on simple structure as
model. Structural optimization has been pertained to more
complicated bridge engineering structures, especially
topology optimization [9] due to the improvement of
computational and construction method. Further illustra-
tion of optimization application of structure, concerned to
large-scale bridge engineering project is, Dalian suspension
bridge china.

The optimized exoskeleton member layout increased
the material performance through the help of topology
optimization boosted design while the widespread stiffness
the structure was ensured [18]. Structural optimization has
one of the main purposes to minimize the gross expense of
structure [19]. In infrastructure works, the regulations
of structural achievement wished on the assumption of
convincing is always a lower expenditure. By decreasing
the full weight of structure in order to curtail the whole
cost, for this purpose various kinds of researches have been
documented. Recently, with the uplift probe on the
environmental problem and considerable improvement,
another substantial purpose of structural optimization has
been evolved by lessening environmental consequences just
due to significant quantity of CO2 emissions in area of
construction engineering [20]. In improvement, enhancing
certain structural achievements, Le [21] emphasized by
some study manuscripts on structural optimization such as
dynamic seismic performance, aerodynamic performance
andmechanical behavior [22] to make structure friendly for
various regions and their ecosystem.

Several optimization techniques have been composed
and formulated in order to get the aims those are described
above. Recently, in bridge engineering structural optimi-
zation exploration, the metaheuristic techniques have the
significant optimization techniques because they are
adequate for combinatorial optimization difficulties. How-
ever, there are some disadvantages of metaheuristic
techniques i.e. the high complexity [23], and deficiency
for high-dimensional dilemmas [24], etc. Therefore, big
numbers of researchers documented to concentrate on
increasing the achievement of improvement (optimization)
techniques either to recommend unique optimization
techniques or to improve the prevailing metaheuristic
techniques. For instance, to increase the execution
of interactive search algorithm (ISA) for sizing of structure
size and topology improvement, Mor Razavi [25] recom-
mended an auxiliary fuzzy judgment mechanism. Less
computational cost and bigger outcome precision are
attained by the Fuzzy Adapted Interactive Search
Algorithm (FTISA). From several trials that are based
on the empirical findings, the new algorithm is verified to
have a higher convergence momentum, lower computa-
tional expense and better optimization results as compared
to the conventional harmony search algorithm. Topology
optimization [26] exemplified that can achieve the opti-
mum result more smartly related to many more state-of-
the-art mathematical algorithms described topology opti-
mization technique such as the transformable triangular
mesh (TTM) technique. In the domain of structural
optimization these above described research explained the
ability and achievements of structural optimization to
increase the working and quality of structural engineering
especially in bridges [27]. Nevertheless, although in field of
bridge optimization considerable amount of surveys and
research summaries were printed, none of them fulfilled the
thorough view of the exploration improvement in struc-
tural optimization. Thus, in the field of bridge engineering
this article endeavors to thoroughly survey the state-of-
the-art publications in area of structural optimization.
It includes analysis of the optimization aims, and its
worldly and spatial changes, examination of optimization
processes with four important points, arguments of
exploration, drawbacks and proposals of coming works.

The remaining of the manuscript is comprised of
interpretation. Section 2 leads to the procedure that is for
literature retrieval. As far as Section 3 concerns, it explicit
a statistical data of the chosen manuscripts. In Section 4,
the optimization objectives of the specified papers are
classified and analyzed with respect to the temporal and
spatial trends. Section 5 provides a complete analysis,
survey and basic of the structural optimization techniques
according to four possibilities, comprising modeling,
problems of optimization formulation, structural analysis
optimization methodologies, design platforms, and compu-
tational tools. In Section 6 implicit the constraints of the
existing study and is founded on which magnifies the
probable future works. In Section 7, finally decisions are
taken out to conclude and outline this work.

2 Methodology

This research takes a comprehensive strategy to critically
examine current state-of-the-art research work and illus-
trate comprehensive overview of structural optimization in
area of bridge engineering. The investigation was limited to
English-language materials published between the 1970s
and February 2021. Figure 1 depicts the entire procedure of
the survey, which includes selection of specific literature



Fig. 1. Demonstration of research methodology.
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Fig. 2. Selected articles publication period.

Fig. 3. Selected articles from each journal.
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from internet database, statistical evaluation of the chosen
literature, a deep study about optimization objectives with
regional and periodic trends, study of the optimization
procedure, drawbacks, and research gap and its proposal,
as well as a conclusion. Section 2.1 delves into the
technicalities of literature selection, while Section 2.2 gives
a quick rundown of the keywords employed in the process.
To avoid duplication, all references from the selected
publications were double-checked for relevant research
that may have been missed during the electronic and
manual searches.

2.1 Literature retrieval

Publications about bridge optimization, whichmake up the
majority of the academic literature published, were found
using the electronic databases Scopus, Google Scholar and
Web of Science. Passing structural optimization, layout,
size, shape, topology, optimum design, civil and bridge
engineering structures, and metaheuristic approaches are
utilized as search phrases to make literature retrieval
convenient and easier. From the search results, the most
relevant information was hand-picked.

A total of 156 papers were chosen using the aforemen-
tioned literature retrieval approach, including 125 research
publications, 10 conference papers, 4 chapter from different
books, 9 review papers, and 8 thesis. Despite its long history,
structural optimization was first used in the aircraft
industry, and it was only much later that it was applied
to civil engineering [28]. Furthermore, as information
technology has advanced, the optimization tactics used in
current studies have drastically changed from those used in
previous studies.

2.2 Keywords for literature selection

The research was conducted using a Boolean search
strategy involving the phrases AND, OR, and (“Bridge
Optimization”) AND (“optimization” OR “optimal” OR
“optimum” OR “minimal cost” OR “least cost”). To
distinguish the type of structure explored in this study,
the term “bridge optimization” was coined. The phrases
“optimal”, “minimum cost”, “optimization”, “optimum”,
and “least-cost” were used to discover works that
employed optimization algorithms, whereas research
papers that did not use optimization methods were
deleted because these terms are commonly used in this
field’s literature search.

3 Statistical data analysis of literature

The chosen literature ratio of publications is shown in
Figure 2 over time. The study started in 1970 and lasted for
five decades. Structure optimization is becoming more
popular and attracting increasing academic interest,
according to the literature review. Eighty three percent
of these research were published after the year 2000, from
the percentage of total data fifty seven percent were



Fig. 4. Selected articles from different continents.

Table 1. Summary of Optimization objectives with references.

Objective Brief Description Related Study

Cost minimization Optimization to reduce cost of bridge, that
usually attained by reducing structure’s volume.

[110–117]

Structural performance development Optimization for the improvement of some
structural properties in order to order to adapt
functional requirements

[13,30,54,57,97,118–122]

Environmental impact minimization Optimization to reduce the impact of bridge
construction on environment. i.e. emission of
gases, bridge in water, material impact of species
living in water

[123–126]

Multi-objective Optimization considering more than one of the
above objectives

[54,62,65,66,127–134]

Fig. 5. Proportion of papers for their objectives.
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published from 2011 to 2021. Our case is aided by the fact
that data is readily available (that garnering attention
from researchers takes time).

These papers were evaluated using the sources that
publish the most papers on the topic of Bridge engineering
structures optimization. In well-known and famous ten
journals, a total of 103 papers have been published. Journal
of Bridge Engineering takes the lead with 25 articles,
followed by Engineering Structures and Computer Struc-
tures, each with more than 15 papers.

Furthermore, as shown in Figure 4, the retrieved
publications are separated into regions based on the chief
author’s research school/geographical institute affiliation.
With 73, 41, and 25 articles published, Asia, North
America, and Europe are the top three continents,
accounting for 93 percent of the total number of
publications.
4 Objectives of structural optimization

4.1 Categories of optimization objectives

The four classes below can be used to classify the
optimization goals of the structural optimization studies
that have been chosen:
–
 Cost minimization: The purpose of structural optimiza-
tion design is to reduce total cost, which is usually
accomplished by reducing the weight or volume of the
structure.
–
 Structural performance development: The purpose of
structural optimization design is to improve certain
structural features such as mechanical behavior, aerody-
namic achievement, and dynamic seismic performance in
order to meet requirements under varied scenarios [29].
–
 Minimization of environmental impact: The purpose of
structural optimization design is to reduce greenhouse
gas emissions or energy consumption in order to improve
the environmental performance of the structure.
–
 Multi-objective optimization: a single optimization that
incorporates more than one of the three objectives [30].

Table 1 presents a detail of the four classes of
optimization objectives with References.

The percentage of articles picked for each optimization
goal is shown in Figure 5. The majority of the investigators,
who account for 48 percent of the papers picked, are project
stakeholders who are focused on cost reduction. Another
30% of the papers assessed use structural optimization to
increase structural achievement, while another 21% use
structural optimization to achieve multiple goals. Only 1%
of the papers selected are solely focused on curtailing the



Fig. 6. Number of papers and publication time with objectives.

Fig. 7. How structural optimization changes over time.
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bad environmental impact on and due to bridge structures.
The explanation for this could be that lowering the total
cost of structures by controlling greenhouse gas emissions
and also embodied energy use at the same time [31]. As a
result, multi-objective optimization is a prominent tech-
nique in this industry, as it targets both cost and
environmental effect mitigation at the same time.

4.2 Temporal changes of optimization objectives

The entire trend in bridge engineering structural optimi-
zation research has risen over time, while the proportion of
papers devoted to each goal has shifted. Figures 6 and 7
show the quantity and ratio of articles respective of their
optimization goal in each of the five intervals to assess
differences in study progress in domain where structures
are optimized over decades. Prior to year 2000, the article’s
primary focus was on cost reduction. This topic is
mentioned in nine articles, accounting for 65% of all
studies published before 2000. Because the weight or
volume of a structure accounts for such large amount of its
cost [9], all of the early studies concentrated to make
structure lighter in volume. Quite less studies focus on
structural working enhancement and multi-objective
optimization that contain 16 percent and 15 percent of
the publications respectively. In addition to cost reduction.
All of the research published during this time period that
tries to improve structural performance uses topology
optimization [31], which comprises eliminating subsystems
that make small contributions to structural performance
while adhering to established standards [32]. Because
these studies did not use a single structural
performance parameter, various performance metrics such
as obedience [33], ultimate displacement [34] and moment
(“Analysis of Load Optimization in Cable Stayed Bridge
Using CSI Bridge Software Load Optimization in Cable
Stayed Bridge” 2018) were used to optimize the results.

The initial study cited in this paper performed separate
mean compliance and weight minimizations before inte-
grating the two types of optimizations to perform multi-
objective structural optimization (Algorithm, n.d.). Multi-
objective optimization is more typical when two objectives
are considered at the same time. Shifting multi-objective
problems with single-objective problems, some scholars
offered a multiplier [35] while others employed a Pareto
solution to simultaneously achieve several optimization
goals [36].

After 2000, the amount of publications in domain of
structural optimization skyrockets, particularly in the
fourth phase, from 21 papers in 2006 to 36 manuscripts in
2011, with the percentage of articles meeting each target
continuously increasing. As shown in Figures 6 and 7, cost
reduction has always been a hot research topic, and the
number of papers on the subject has increased fourfold
since 2000. However, the ratio of this theme is lower in
the last four time intervals (before 2000) than in the first
(54 percent, 59 percent, 67 percent, and 58 percent,
respectively). Structure’s performance enhancement is the
2nd most popular area, accounting for 24% of all stated
papers. Since 2000, the number of papers with this purpose
has risen in each of the four different time periods. This
structural optimization is vital when the security and
service is on priority than cost (weight) reduction [37].
Furthermore, few academics use structural optimization to
achieve multiple aims at the same time. These objectives
are frequently incompatible and competitive [38]. Due to
constraints such as computational complexity and out-
come uncertainty, number of surveys associated to this
subject are very limited, accounting for 16 percent of the
total papers selected [39], Figure 6 shows how the number
of multi-objective research has fluctuated since 2000. Since
2000, the number of multi-objective studies has fluctuated
as shown in Figure 7. Furthermore, three of the five pieces
were produced between 2016 and 2021, indicating that this
topic may become more popular in the future as concerns
about bridge engineering’s long-term viability develop [40].

4.3 Spatial changes of optimization objective

Financing from the public institutions or private authori-
ties heads towards an increase in the number of research
publications produced in specific topics on average. In a
previous review paper [41], the phrase “geographical scope”
was used to characterize the division of geographical areas.



Fig. 8. Distribution of gathered manuscripts in each continent.

Fig. 9. Distribution of gathered manuscripts in countries.
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Figure 5 depicts the proportion of articles collected by
continent, with Asia, Europe, and North America being the
most major landmasses with the most publications. For
each optimization target, Figure 8 displays the distribution
of gathered manuscripts in each continent. Across all
continents, cost minimization appears to be the most
popular topic. However, in entire Europe continent and
North American, the volume of conversation on this issue is
only somewhat minor than in entire Asia. One more
discrepancy is that environmental effect mitigation
research is found in Europe and North America but not
in Asia. Each of the other three continents received only
two, five, and eight pieces, respectively (Africa, South
America, and Oceania, respectively). This means that
structural optimization-related investigation is quite basic
in these areas.

The geographical scope was subsequently broadened to
cover the specific territory in order to assess geographical
research directions in the area of bridge structural
optimization. Total 156 papers are collected for this review
came from 50 different states. Figure 8 shows the top 12
countries in terms of the number of manuscripts collected
and articles submitted. The leading four countries having
the most publications and selected in this review are China,
the United States of America, Iran, and Spain. A total of
115 articles have been brought up online by researchers
mostly from these four states, containing 73% total number
of papers collected. Various studies objectives are evenly
scattered in states with good economy (China, the United
States, Australia, South Korea, Canada, Italy, Turkey,
Spain and Germany), whereas in states with somewhat
poor economy (Iran, Brazil, South Africa, India, and
Pakistan), the study mainly concentrates on cost minimi-
zation. In countries with seismically active zones, such as
United States, China, South Korea, and Japan, more
research on structural performance development has been
discovered. This suggests that geographic and environ-
mental factors can have an impact on exploratory routes
[27]. Researchers in these countries are more motivated to
improve structural performance in the face of earthquakes
and seismic loads [42].

5 Process of structural optimization

In bridge structures, there are various structural optimi-
zation items such as the pier, girder, steel sections, cables,
and so on, but modular structures; frames and trusses are
the most often used. When using structural optimization
techniques, four fundamental factors should be kept in
mind:

–
 A structural analysis and design modeling technique that
distinguishes between discrete and continuous structural
optimization;
–
 Definition of optimization problem, in addition with
objective function(s), variable descriptions, and con-
straint descriptions.
–
 Optimization strategy, which deals with the mathemati-
cal programming approaches that are used to get
optimum structure;
–
 Design platform and Computational tool, which deals
with software strategies that are employed to drive the
optimization programs and codes to carry out optimal
design.

5.1 Modelling techniques for design and analysis
of structure

Optimization of structure is iterative process in its nature.
Structural analysis must be run numerous times during the
optimization process to examine the evolution of every
design till the achievement of convergence that is
significant computational cost. As a result, selecting a
computationally sound structural analysis technique is
crucial, particularly for big, complex bridge engineering
projects. In structural analysis, the finite element method
(FEM) is extensively employed to reduce computational
costs, with basic finite element models being utilized more
frequently than complicated finite element models. The
next cost-cutting alternative is the simultaneous analysis
and design strategy, which integrates structural analysis
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with structural design [43,44]. Structural optimization can
be classified into two groups based on the modeling
approaches adopted in early stages of design procedure:
discrete optimization and continuous optimization. Struc-
ture network is molded with discrete structural compo-
nents in discrete optimization, however the structure
network systems taken as solid continuum when have
inconsistent topology in continuum optimization [45].

Because structures distributed into few components,
cross-sectional characteristics and nodal locations are useful
in the discrete optimization technique. As a result, when
givenastatedandconstrainedtopology.Thisphenomenon is
frequently utilized in optimizing shape and size and a sort of
optimization technique that focuses these components is
known as pre-defined or no topological optimization [46]. To
put it another way, topological optimization is the process of
selecting a structure’s form, whereas shape optimization is
the process of modifying a structure’s shape to enhance its
desired properties (usually mass volume or weight) [47]
illustrate pre-defined topological optimization. The connec-
tion of structural components is generally the subject of the
discrete optimization approach for topology optimization.
The best design elements from each part may be merged to
create a full perfect design.

This method is frequently associated with topology
optimization, which is used to solve material distribution
difficulties [48]. The ideal design are not always result in
truss or girder like structural components, continuum
optimization strategy outperforms the discrete optimiza-
tion technique to some extent. However, the applicability
of the continuum strategies with in domain of bridge
engineering are restricted since the problem to be
optimized is more complex and the method of program-
ming is more harder than dealing with discrete sections of
the structure [45].
5.2 Formulation of optimization problems

Problem or research gap formulation relates basic three
components in optimizing a problem: objective function(s),
constraints and design variables, within problem search
area [27]. Presuppositions are used to alter the attributes of
component when performing structural optimization. The
parameters that are utilized to indicate how these traits
change are known as design variables, denoted as a vector.
The two types of design variables that can be categorized
depending on their relevance are continuous and discrete
design variables. Discrete design variables have values that
are separated, whereas continuous design variables have
discrete values that change within range. A function (or
combination of functions) that can be used to calculate the
outcome of an optimization is known as an objective
function. Constraints are security and serviceability
constraints that must be met during the optimization
process. Equality and inequality restrictions are two
distinct types of limits that can be applied in various
ways. Possible they can be combined to declare few
optimization strategies. For instance, equality constraint
H(X)=0 renovated by couple of inequality constraints
H1(X) ≥ 0 and H2(X) � 0. Constraints, incorporated into
the objective function as penalty functions to shift it from a
limited to unconstrained state [27] limits of design variables
are known as design space or search space, and it can be
separated to two domains: infeasible and feasible. The
viable domain is made up of design junctures that meet all
of the criteria, whereas the infeasible realm is made up of
design degrees that break at least one constraint constant.
The following is the most typical understanding of an
optimization problem [13]:

f xð Þ¼ Objective Function minimization ormaximizationð Þ
ð1Þ

Bi Xð Þ � 0; where i ¼ 1; 2; 3 . . . ::m;

Cj Xð Þ ¼ 0; where j ¼ 1; 2; 3 . . . ::p;

X∈S

whereX is a vectorX= [X1,X2, X3….Xn] and exemplifies
the design set of variables, where n denotes number of
design variables; f (X) is the objective function; Bi (X) and
Cj (X) pertain both inequality and equality constraints; p
and m are numbers of constraints, and S is denoted for
design or search space.

As previously indicated, structural optimization
includes four sorts of aims. As a consequence, the objective
category will be used to evaluate the issue formulation. The
process of learning desired quantification of finding for an
optimization issue, while convincing few regulations is
known as interpreting the objective function. As a result,
the parameter depicting the objective function may differ
from the optimization target in some cases. The most
widely acknowledged aim in structural optimization, cost
reduction, is typically assessed to set up the volume of
structure for target purpose. Nonetheless, structural
designers sometimes criticize the use of weight to influence
cost since a structured design with the least weight does not
always imply the lowest cost [49]. As a result, certain
objective functions are developed to handle cost reduction,
but due to the worries and fuzziness experienced, small
number of bridge engineering articles with in optimization
domain, stress this area. The overall structure’s volume is
directly affected by to the cross-sectional characteristics of
structural component, structural system is frequently
scattered in several structural components, with cross-
sectional worth chosen for design variables. Objective
function can be interpreted since the ratio of various
materials is not taken into account in these studies as
Equation below [50]:

W ¼
Xn

i¼1

gaAiDi ð2Þ

whereW represents overall weight of member; g density; a
denotes gravitational acceleration; and X={A1, A2, A3,
A4... . . . . . . An} the cross-sectional areas of structural
components are denoted by Ai, while the length of each
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structural member is denoted by Di. To reduce weight, this
form of optimization of structure is usually coupled with
sizing (size optimization) [50–52]. That structural optimi-
zation is concerned much in determining the best link
between nodes, or if structural components should be
present between nodes. The ground structure, which is a
predetermined big structure with large number of
structural components, usually starting point for topology
optimization. Excess components are continually removed
during the optimization process until the best design with
the lowest weight is attained [53]. Vector always used to
represent collection of topological variables. They have two
degrees of significance for variables: 1 and 0. Suppose value
of a topological variable is 1, the component of structure
indicated by variable may be deleted; if the value is 0, the
portion cannot be eliminated. Structural topology optimi-
zation is commonly coupled with sizing for structure
volume minimization to structural components with
extremely minute cross-sectional occupancy are viewed
as superfluous and can be eliminated [54]. Rather than the
type of optimization, the specific design requirements are
depending on the geographical specifications utilized.
Stress and displacement limits are commonly achieved in
structural optimization with the goal of lowering costs. The
AASHTO, Euro-codes 2, and ACI Codes for Concrete, as
well as British Standards, are some of the most commonly
used regional standards [27].

Another common goal for structural optimization is
to improve structural performance. In any case, there are
no uniform standards for evaluating structural perfor-
mance. You can choose from a variety of performance
indices such as stiffness [18], compliance [55], strain
energy [17], and static displacement [69] Manipulation of
the gathered works establishes the objective function.
The majority of the articles in this article that attempt
to enhance structural performance employ topology
optimization. The reason for this might be that, in
principle, topology optimization leads to the ideal
structural size, which can then be further enhanced
using size and/or shape optimization approaches [56].
Compliance reduction is usually used as the goal function
in this form of structural optimization to optimize the
stiffness of structures. The goal might be stated as in
equation [57]:

Minimum : CP ¼ FT � Q xð Þ ð3Þ
where CP is the compliance of member (structure); F
indicates the load vector, and Q refers to the displacement
vector.Limitsof structure’soptimization for theperformance
development of structure are further distinct compare to
those for volume reduction due to the several design rules for
structural features. Natural regularity is constantly restrict-
ed when considering the dynamic response of structures, for
example, to avoid the damaging consequences of dynamic
loads [58]. This category of structural optimization accom-
plishes distinct mechanical constraints of structure such as
stiffness, buckling loads, stress, and displacement based on
design criteria. More, material volume limits are frequently
used to keep bridge structural costs in check [59].
Academics have paid little attention to the third goal of
structural optimization, which is to decrease environmental
impacts. There have only been four works discovered on this
subject. The environmental effect of bridge engineering
constructions is measured in CO2 emissions or in energy
usage in these studies, and the environmental impact is
decreased by reducing the amount of material utilized [60].
In the same manner that cost-cutting restrictions are
accepted, security and serviceability needs are accepted to
induce design provisions [61].

In the bridge engineering business, there is always an
uniform criteria for analyzing a project, which is to
reduce costs while increasing security and serviceability.
However, these goals may conflict with one another,
meaning that improving one may result in the deteriora-
tion of another. Thus, in the realm of structural
optimization, boosting studies have focused on balancing
conflicting goals (typically two objectives) [62]. Multi-
objective optimization is the name given to this form of
structural optimization, and it is the last category of
structural optimization goal discussed in this article.
The fact that multi-objective optimization considers
several objective functions distinguishes it from single-
objective optimization. For example, researchers may
look at reducing both weight and deflection at the same
time [63,64]. Multi-objective optimization problems are
more difficult to solve, necessitating the use of more
advanced computational techniques [65]. Another signif-
icant point of contention is that, contrary to multi-
objective optimization’s fundamental nature, there is no
unique solution that accomplishes the best of all
objectives at the same time [66]. Normally, a multi-
objective optimum difficulty can be developed as
Equation [67]:

Minimization function

F xð Þ ¼ ½F1 xð Þ;F 2 xð Þ;F 3 xð Þ:::::::::::Fk xð Þ�T ð4Þ
whereas

Bi Xð Þ≥ 0; i ¼ 1; 2; 3 . . . ::m;

Cj Xð Þ ¼ 0; j ¼ 1; 2; 3 . . . ::p;

X∈S

where F (x) denotes objective function’s set; Bi (X) and
Cj (X) showing both inequality and equality constraints;
X= [x1, x2, x3, … …, xn] design variables set; and S is the
design space of outcome. Previously stated, the formula-
tion yields no particularly good optimum treatment, and
the optimization result is a collection of trade-off findings
[68]. The Pareto optimum set [69], is made up of these
results, which are referred to as no-dominated results.
Pareto optimum set also known as Pareto front [69], that a
useful tool for displaying results of multi-objective
optimization when it schemes in coordinate system
according to design standards. Making trade-off judgments
on competing aims benefits designer. The constraint is a set
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of restrictions for each goal inmulti-objective optimization,
such as deflection constraints, volume constraints,
mechanical constraints, and so on.

The framing of the issue is crucial in optimization of
structure. It describes the variables, objectives, con-
straints, and solution scope. The optimization step next
involves acquiring computational tools and techniques in
order to identify the optimum solution(s) in the design
space (search space).

5.3 Optimization techniques and methods

During the twentieth century, structural optimization was
one of the most frequently researched subject areas in
engineering. The 1951 paper by Kuhn and Tucker [70], was
a seminal work in this field since it linked several key
mathematical programming method for optimization of
structure, such as the Lagrange multiplier approach, the
equivalence theorem, and so on. In the future, these
approaches will be used often. In modern time, numerical
research methods and mathematical programming have
become renowned methodologies to effectively seek for the
best conclusion in the field of structure optimization. The
best technique for finding a solution often begins with a
preliminary design and iterates the value of goal until
convergence [71]. In bridge engineering structural optimi-
zation, two types of optimization techniques are commonly
used: heuristic and gradient-based approaches.

Gradient-based approaches anticipate predetermined
investigation direction, which is called as gradient, prior to
look for best result [72]. This optimization strategy can be
more classified in four main groups: linear programming
techniques, nonlinear programming techniques, optimality
criteria techniques, and feasible direction techniques are all
examples of linear programming techniques.

Linear programming techniques are optimization
methods that use linear objective functions and restric-
tions. While one among them is non-linear, that techniques
of optimization are known as non-linear programming
techniques. Developing efficient techniques for the struc-
tural optimization with stiffness limitations placed on
statically determinate or indeterminate structures, as well
as structural dynamics principles, are all part of the
optimality standards approaches [55]. The Lagrange
multipliers are used to find local minima and maxima of
a function that is subject to stress and displacement
restrictions, equality constraints, and a separate optimality
standard. Optimal starts are sought in feasible direction
procedures from a place that meets all restrictions. Using
the iterative technique below, the point is then walked to a
better point:

Xiþ1 ¼ Xi þ ’Si ð5Þ
where Xi and Xi+1 are starting point and endpoint of ith
iteration; w the distance of movement, and Si is movement
direction; whose value predefined to make Xi+1 fall within
the reasonable area. Si determines the investigation
direction and is established on two basic principle: (1) a
modest change that does not violate restrictions, and (2) a
change that reduces the importance of the goal function. As
a result, after several cycles, the best result can be achieved.
To reduce computing expense, scientists may occasionally
include approximated techniques into these gradient-based
optimization procedures. These approaches begin by
establishing an approximation of the structural design
issue established on structural analysis, so we use
optimization techniques to solve the estimated problem.

The best solution to the estimated difficulty is utilized
as a starting point for more investigation and improvement
of design [73].

These gradient-based optimization approaches were
widely used in early structural optimization studies in
bridge engineering, and they are also known as conven-
tional procedures. For instance, Chan [72] a linear
programming method was used to optimize structures
that are vulnerable to more than one loading. These two
researcher Dobbs and Felton employed a steepest downfall
nonlinear programming approach for truss form optimum
design for reducing the structure’s volume. Lin et al. [13]
For minimal weight design of buildings under static and
dynamic constraints, a bi-factor a-b approach, which is a
beneficial iteration algorithm and relates to the feasible
direction techniques, was developed. According to previous
research, these gradient-based methods have a number of
drawbacks, despite their wide range of applications. In
general, these restrictions are further disperse into three
categories:

–
 Convergence to the global optimized structure is
challenging to obtain using these gradient-based techni-
ques in several bridge engineering structural optimiza-
tion experiments [72]. If the starting design and search
directions are not sufficiently separated, these gradient-
based approaches possibly converge close to any local
optimums among all, in a structural optimization
problem. To put it another way, mentioned algorithms
are mostly trapped in a local optimum rather than
attaining the global optimum.
–
 Computing gradient regulation is inefficient and difficult
to implement [74]. Gradient-based techniques, as a
result, are unable to solve the optimization issue of large
members with nonlinear, discontinuous and implicit
constraints;
–
 A number of gradient-based techniques include explicit
optimization constraints that limit their applicability.

Heuristic methods are a new type of mathematical
programming methodology that was developed to meet the
needs of structural optimization while avoiding the
limitations of gradient-based algorithms.

Heuristic approaches to problem solving are problem-
solving techniques that rely on trial and error to arrive at a
solution. This type of optimization technique employs a
variety of machine learning approaches, i.e. artificial neural
networks [75] and support vector network machine [76],
increase precision of outcomes via iterations. Heuristic
techniques are simple to build and have a lot of computing
power, but they are problem-specific and can become stuck
in a local optimum. As a result, academics have developed
remotely evolved heuristic methods, often known as
metaheuristic techniques, to improve optimization out-
comes. Metaheuristic techniques are not dependent on



Table 2. Algorithm and their references.

Year Algorithm References

1998 Genetic Algorithms [135]
2006 An ant colony optimization [136]
2007 Modified shuffled frog-leaping optimization algorithm [137]
2010 An improved particle swarm optimization algorithm [71]
2011 Effective global harmony search algorithm [138]
2011 Global Optimization Algorithm [139]
2013 Generalized Pattern Search Algorithm [140]
2014 Hybrid glowworm swarm algorithm [20,141]
2015 Anti-sway algorithm [142]
2017 Enhanced discrete particle swarm optimization [143]
2017 Hybrid evolutionary algorithm [141]
2018 Artificial fish swarm algorithm [144]
2019 Simulated annealing [145]
2020 ANFIS and LAPO Algorithm [21]
2021 Hybrid chaotic whale optimization algorithm [146]
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problem and use different trade-off randomization to go
from local to global search. That sort of optimization
technique has been more prominent in the study of
optimization of structure during the last several years [22].

Realistic or man-made events are frequently used to
drive metaheuristic methods i.e. ant colony [77], water
flow, and an ensemble of musicians [78]. Some illustrations
of the metaheuristic techniques in addition to genetic
algorithm (GA) [79,80], harmony search (HS) [81], firefly
algorithm (FA) [82], Tabu search (TS) [83], artificial bee
colony (ABC) [84], teaching–learning-based optimization
(TLBO) [85], particle swarm optimization (PSO) [86], bat
algorithm (BA) [87], cuckoo search (CS) [79], and many
others. To characterize metaheuristic algorithms, taxon-
omies founded on specific features of algorithms are created
[88], Nature-inspired vs. non-nature-provoked objective
functions, population-based vs. trajectory-based objective
functions, and dynamic vs. static objective functions are
only a few examples. Regardless of differences, among all
these metaheuristic algorithms share two key character-
istics: Exploration and extraction are two different things
[89]. Exploration seeks to provide a range of outcomes for
comparison, whereas exploitation is utilized to find best
answer currently available. Finally, the global optimum
outcome effectively achieved by fair balance of exploration
and exploitation.

As shown by four properties described below, meta-
heuristic algorithms provide a variety of benefits over
standard deterministic and stochastic optimization tech-
niques [84]. Metaheuristic methods may be used for both
sequential and discrete design variables in combinatorial
optimization problems. Furthermore, metaheuristic algo-
rithms do not consider whether or not gradient data is
available. Third, the convexity of an explicit connection
between the goal function and constraints is not required
for metaheuristic algorithms. Fourth, metaheuristic algo-
rithms are more effective in locating the best overall
solution. There have been numerous successful metaheur-
istic applications in structural optimization. For illustra-
tion, Kociecki and Adeli [90] a two-phase GA for size and
topology optimization was developed to minimize the total
weight of framemember with rectangular hollow structural
components.

Despite the advantages and widespread uses described
above, prior studies have found that metaheuristic
algorithms have certain flaws and limitations. As an
example, Sörensen [91] Metaheuristic algorithms are
challenging to design and evaluate on a limited number
of specimens with modest structural changes, according to
the research.Whilemetaheuristic algorithms are capable of
producing good outcomes, this does not imply that are
superior to constructive heuristic algorithms. Saka et al.
[15] explained metaheuristic algorithms drawbacks; they
are computationally costly, particularly while applying on
large and complicated structures that are subjected to a
range of stresses. According to Mahdavi et al. [92], the
major disadvantage of classical metaheuristic algorithms,
it successfully solve high-dimensional difficulties due to
high landscape complexity, and vast design space (search
space). As a result, a number of new structural optimi-
zation studies propose that present optimization methods
should be improved. Founded on the properties for every
metaheuristic algorithm, these algorithm modification
techniques aim to improve optimization efficiency. i.e.
Cheng et al. [93] Formulated a hybrid HS algorithm that
retained traditional HS algorithm’s harmony memory and
pitch adjustment features while replacing the randomiza-
tion function with PSO search and neighborhood search for
global optimum. When compared to traditional metaheur-
istic algorithms, this hybrid method has demonstrated to
perform well in terms of solution precision and convergence
rate. Further, Cao et al. [28] assumed four techniques to
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enhance the achievement of the traditional PSO algorithm:
(1) (2) merging PSO with diverse metaheuristic
approaches, (3) integrating traditional gradient-based
methods with PSO, and (4) restoring conventional global
topology with various local topologies These approaches
increase the traditional PSO algorithm’s searchability for
finding a global optimum, as well as its exploitation ability
to improve the convergence rate and precision of results.
Table 2 summarizes the findings of a number of additional
structure optimization experiments that included
improved metaheuristics. Although there are many
additional metaheuristic algorithms, each one focuses on
enhancing a different aspect (capacity) of the original
method. As a result, choosing the right approach for a
specific optimization problem is crucial for getting the best
design while keeping computational costs down.

In addition to increasing algorithm performance,
reducing the time-consuming inspections of optimization
objectives or constraint functions in the optimization
method is another way to improve optimization efficiency.
However, because this technique may result in an
optimization outcome that differs from the optimization
goal, it is not explored in this article.

Apart this, gradient-based and heuristic optimization
approaches, reliability-based design optimization (RBDO)
techniques stand out. By examining the structural system’s
issues, such as dimension, material, model, loads, and so on,
RBDO intends to find best balance between the cost of
structure and security [94]. As a result, this optimization
approach gives a minimal degree of dependability,
providing designers a place to start. The two-level method,
single loop approach, and decoupled approach are the three
basic types of RBDOmethods. Despite these benefits, these
RBDO approaches have significant limitations, as the high
computational cost of the dependability analysis every
iteration and difficulty of estimating probabilistic con-
straint gradients, which limit their application in bridge
structural optimization.

5.4 Computational tools and design platforms

Following structural analysis and modeling, optimization
problem formulation, and methodologies, it’s critical to use
appropriate computational and design tools programs to
run optimization programs and codes, and obtain the
optimal structural design. For structural design and
analysis, manual computations and trial and error were
formerly employed, resulting in a high degree of labor and a
substantial risk of inaccuracy. A multitude of computa-
tional and design tools platforms have emerged as a result
of the advancement of information technology to provide
environment for structural modeling, design, and analysis.
Few well-known software packages, such as ANSYS [95],
BIM [96], ABAQUS [97] Significantly improve computa-
tion speed and get acceptable results. However, not all
software packages work as well as others. When dealing
large-scale structures, several existing software packages
have been shown to be somewhat successful. Meanwhile,
software based on building information modeling (BIM),
which is often used for structural design and visualization,
is plagued by data interoperability issues [98].
Because software speed has a direct impact on
optimization efficiency, selecting the right software to
execute structural optimization is crucial. After establish-
ing the issue formulation and optimization approach, the
optimization procedure usually proceeds in the following
order: solution encoding, mathematical computing, struc-
tural calculation, and design. When employing metaheur-
istic operators, two encoding techniques are used: natural
encoding, which uses significances to present binary
encoding, and design variables which uses binary strings
to represent the design variables. The encoding strategy
selected is dictated on the metaheuristic algorithm
employed since each algorithm acts differently [67]. After
that, two sorts of software packages are used to optimize
the structure: computational software and design software.
The former is for running optimization programs, while the
latter is for structural analysis and design. The computing
program is stuck in the iterative phase of the optimization,
and each iteration yields a set of values for the design
variables.

MATLAB is a commonly utilized computing software
in structure optimization because of its excellent calcula-
tion and programming capabilities. For topology optimi-
zation, Yang et al. [24] proposed a modified bidirectional
evolutionary structural optimization (BESO) approach
that they applied using MATLAB software.

BIM software is a popularly borrowed type of structural
research, design, and visualization software. However, in
the same way to get best design, the structure information
from BIM environment should be transferred to finite
element analysis programs like ETABS, ABAQUS,
ANSYS, and SAP.

Some researchers already agreed a single integrated
platform to execute whole optimization of structure
method, rather of using two types of software and
executing mathematical calculations, structural analysis,
and design. In SAP2000, a wrapper was created to call the
MATLAB toolbox’s fmincon function. This method does
not need the use of computational tools in the optimization
process, nor does it necessitate data manipulation.

Although themajority of the papers in this collection do
not go into great detail on computational tools and design
platforms, they are essential since they may have a big
influence on optimization efficiency. The current tools are
confident in their capacity to convince computational and
design rules. Regardless, new tools or platforms to increase
optimization capacity, computational efficiency, and data
interchange are still needed.

6 Limitations and future work

6.1 Quantification of optimization objectives

Prior to employing mathematical analysis to find the best
answer, researchers must first construct a mathematical
quantification of the goal. In structural optimization, there
are several common quantification methodologies. For
example, cost of structure often expressed as structure’s
volume. The words total strain energy and compliance are
frequently called for characterize structural stiffness.
Theoretically, properties of structure, including beauty
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of structure, can be presented as optimization targets if
they are well characterized [99]. However, it might be
difficult to accurately assess motives in particular
situations. Aldwark and Adeli [72] Structural designers
have long time concept of the efficacy of utilizing structure
volume to predict overall cost of structure. Although
aiming for the less volume minimum material costs, which
include large portion of the whole structural cost, the entire
cost still includes carrier and facility fees. As a result, the
weight of the structure has no immediate impact on the
total cost.

While optimizing the design of continuous reinforced
concrete girder, Sharafi et al. [100] employed an objective
to reduce formwork and material costs. Some academics
employ the parametric mixed-integer non-linear program-
ming (MINLP) technique for structure optimization to
reduce the cost. References [101,102], that a mathematical
programming method that uses nonlinear objective
functions and constraints to optimize the discrete system
structure and subsequent parameters at the same time
[103]. Highly combinatorial, Large-scale, and highly
nonlinear problems are typically solved using the outer
approximation/equality-relaxation (OA/ER) technique
and the extended generalized Bender’s decomposition
(GBD) algorithm, both part of the MINLP strategy [103].
Material unit price, hourly labor costs, assessed loads,
structure lengths, steel and concrete classes, and other
structural cost-affecting design characteristics are all
designed using the MINLP approach and accompanying
algorithms. Reference [101] may be taken into account
simultaneously with the creation of the objective function,
resulting in a good optimization result. The difficulties in
MINLP, on the other hand, are particularly difficult to
comprehend because they cover all of the subclasses., i.e.
the combinatorial nature of mixed-integer programs (MIP)
and the complication in solving nonconvex (and even
convex) nonlinear programs (NLP) [103]. As a result, the
application of the MINLP approach is limited.

Despite these accomplishments, there is no commonly
acknowledged structural cost measurement since research-
ers would integrate multiple structural cost components in
various optimization tasks. As a result, future research is
expected to recommend a detailed system for structural
cost assessment that includes material costs, transporta-
tion costs, and invention and formation costs related to
construction technique (e.g., precast or cast in place) and
standardization rates for structural elements. In order to
construct such a system, structured cost data from existing
operations must be gathered, and a cost assessment system
based on in-depth analyses of existing project data must be
built. Furthermore, more accurate quantifications of
structural mechanical and aesthetic qualities appear to
be on the horizon, allowing these characteristics to be
addressed as structural optimization goals.

6.2 Weighting standards for multi-objective
optimization

Multi-objective optimization, as previously stated, is
appropriate and an important topic in the domain of
bridge structure optimization since it equated multiple
striving optimization aims and so persuades structure
developers’ regulations. Despite this, the subject of multi-
objective structure optimization still has a lot of unresolved
concerns. Optimization that takes into account two goals
at the same time does not yield a substantial outcome.
Although a set of perfect outcomes (Pareto set) is possible,
finding one exceptional choice that meets design standards
may be difficult. Furthermore, all multi-objective optimi-
zation research papers on this website only consider two
objectives at a time. In none of these studies, three or more
optimization goals were considered at the same time.

Researchers have experimented with a variety of
approaches to address the issues highlighted by multi-
objective optimization. The concession solution technique,
which gives a single best result, is an alternative to Pareto
optimality [104]. The best outcome is produced by
gradually shrinking the distance between the possible
ideal point and the outstanding point, as recommended by
this strategy. It is difficult to quantitatively demonstrate
the relationship between the two points unless the
objective functions have no direction [104]. When dealing
with multi-objective optimization, incorporating decision-
makers’ priorities is becoming more common. In these
strategies, weights are used as parameters to influence
decision-makers’ intentions. Prior strategies, interactive
strategies, and posterior strategies are the three sorts of
procedures based on the time period when the decision-
makers’ tendencies are given [105]. Prior approaches
evaluated the significance of each optimization target
before looking for the optimal result. To complement this
technique, many weighted standards, such as the linearly
weighted standard, have been produced [106], weighted
global standard [104] and evaluated scalar-valued achieve-
ment norm [107]. In the field of bridge engineering
structural optimization, Sanaei and Babaei [108] to
maximize the geometry and topology of continuum
structures at the same time, researchers applied the
weighted sum approach (WSM), which is the simplest
and most generally used weighted standards method. This
method uses a set of scalar values to interpret the weight of
each optimization objective, resulting in single objective
functions. As a result, the optimization crisis can be
addressed using the single-objective optimization strategy,
and a significant optimal result can be obtained. During the
search, the interactive techniques provide the decision-
maker with priorities. Regardless, interactive methods are
rarely used in the articles chosen, which could be due to
differences in the priority information provided by a
decision-maker [105]. After the search, the decision-
intentions makers are implicated in post-search
approaches. The information gathered can be utilized to
calculate weighted norms in posterior approaches [104].
For illustration, Zavala et al. [67] they endorsed posterior
techniques in their review study on multi-objective
structure optimization, where they gave decision-makers
outcomes based on an approximation of the Pareto front
and subsequently factored in the decision-makers’ Refer-
ences.

Despite these achievements, preference-based
approaches continue to face significant challenges. That
is, regardless of the criteria used to evaluate the objectives,
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it is subjective in some ways. To put it another way,
determining whether or not a weighting system is
acceptable for a certain task is difficult. Furthermore,
decision-makers may not always be able to communicate
their priorities for each objective or choose the most
appealing conclusion from optimization impacts data [104].
As a result, more research is needed to construct an
extended optimization objective weighting network that
provides a variety of weight importance based on the
methodology utilized, design specifications, and restric-
tions, allowing researchers to use suitable weighting norms.
Although such a weighting system may not be capable of
covering all sorts of structural optimization, this network
would suffice as a citation when the decision-makers’
objectives are unknown. This weighting strategy can also
be used to evaluate three or more goals at the same time by
integrating multiple objective functions into a single
objective function.

6.3 Application of optimization methods

Several structural optimization research have sought to
build unique methods with a high convergence ratio and
good optimal results. However, there has never been a
standardized way for assessing the efficacy of optimization
methods [109].

Metaheuristic algorithms are only beneficial in partic-
ular contexts, as evidenced by the facts and citations
above. Each algorithm may be limited to solving a single
optimization problem. Even if novel technique or
optimization algorithm is developed to solve single
optimization problem, its performance for other optimi-
zation problems will not be guaranteed, even if it
outperforms earlier algorithms for that problem. Further-
more, all of the recently recommended approaches have
been evaluated on a range of architectures, which makes
comparing the outcomes of these novel algorithms
challenging. As a result, the next step should be the
creation of a benchmarking network for comparisons of
optimization methods to aid the development of new
metaheuristic algorithms with better structural optimi-
zation application. Making algorithm comparisons easier,
structural optimization problems could be categorized
into a variety of classes based on structure variations,
hierarchies, and more aspects. For each category of
optimization problems, a few systematic structural
optimization challenges could be identified as benchmark
test model problems. Traditional metaheuristic algo-
rithms with reasonable performance for each classification
of optimization problems could be utilized as benchmark
algorithms in the meantime. The success of any newly
recommended algorithm can then be assessed by compar-
ing it to the benchmark algorithms for the relevant
classification of optimization problems, as well as the
benchmark test difficulties. Fresh optimization algorithms
based on the benchmarking technique are intended to
develop and discussed wide range of optimization queries
with acceptable working performance instead specific
optimization problem.
7 Conclusion

The findings of this study were scrutinized thoroughly in
order to assess previous structural optimization work in the
area of bridge structures. Following selection of data, 156
most suitable and relevant papers were found in Google
Scholar, Web of Science, and Scopus. The papers in this
collection were published between 1970 and 2021. The
publishing year, paper kind, journal, geographical area, and
optimization aims were all taken into account while
statistically evaluating these submissions. The optimization
targets’ global and geographical trendswere also thoroughly
explored. In general, amount of published research in this
area has risen over time, particularly in nations where the
government can afford to fund them adequately. Although
cost reduction is themost common optimization goal, recent
years have seen a surge in study into multi-objective
optimization and structural performance development.

The present exploration, structural optimization limits
were recognized, and more effort to break the rules was
proposed. Future study could focus on establishing a
precise weighting standard for each goal, effectively
turning multi-objective issues of optimization to single-
objective problems. More, mathematical quantifications
should be constructed in order, so that effectively portray
of optimization objectives to carry out optimization
process. Despite this, a fundamental technique for
assessing the precision of objective quantifications has
yet to be devised, which will be necessary. Third,
metaheuristic algorithms have restricted applicability.
To put it another way, depending on the optimization
problem, the outputs of a metaheuristic algorithm can
alter. As a result, future research may focus classifying
optimization issues according to their building a bench-
marking system to each type of optimization difficulty and
characteristics, such as standard test problems and model
algorithms. Unique optimization algorithms established on
the standard system level could be enhanced to effectively
solve optimization problem’s subset instead tackling a
specific optimization problem.
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