705 research outputs found

    Adaptive Douglas-Peucker Algorithm With Automatic Thresholding for AIS-Based Vessel Trajectory Compression

    Get PDF
    Automatic identification system (AIS) is an important part of perfecting terrestrial networks, radar systems and satellite constellations. It has been widely used in vessel traffic service system to improve navigational safety. Following the explosion in vessel AIS data, the issues of data storing, processing, and analysis arise as emerging research topics in recent years. Vessel trajectory compression is used to eliminate the redundant information, preserve the key features, and simplify information for further data mining, thus correspondingly improving data quality and guaranteeing accurate measurement for ensuring navigational safety. It is well known that trajectory compression quality significantly depends on the threshold selection. We propose an Adaptive Douglas-Peucker (ADP) algorithm with automatic thresholding for AIS-based vessel trajectory compression. In particular, the optimal threshold is adaptively calculated using a novel automatic threshold selection method for each trajectory, as an improvement and complement of original Douglas-Peucker (DP) algorithm. It is developed based on the channel and trajectory characteristics, segmentation framework, and mean distance. The proposed method is able to simplify vessel trajectory data and extract useful information effectively. The time series trajectory classification and clustering are discussed and analysed based on ADP algorithm in this paper. To verify the reasonability and effectiveness of the proposed method, experiments are conducted on two different trajectory data sets in inland waterway of Yangtze River for trajectory classification based on the nearest neighbor classifier, and for trajectory clustering based on the spectral clustering. Comprehensive results demonstrate that the proposed algorithm can reduce the computational cost while ensuring the clustering and classification accuracy

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Proceedings of the 2018 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The Proceeding of the annual joint workshop of the Fraunhofer IOSB and the Vision and Fusion Laboratory (IES) 2018 of the KIT contain technical reports of the PhD-stundents on the status of their research. The discussed topics ranging from computer vision and optical metrology to network security and machine learning. This volume provides a comprehensive and up-to-date overview of the research program of the IES Laboratory and the Fraunhofer IOSB

    Deep neural networks in the cloud: Review, applications, challenges and research directions

    Get PDF
    Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide range of important real-world applications. DNNs consist of a huge number of parameters that require millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A more effective method is to implement DNNs in a cloud computing system equipped with centralized servers and data storage sub-systems with high-speed and high-performance computing capabilities. This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud computing. Various DNN complexities associated with different architectures are presented and discussed alongside the necessities of using cloud computing. We also present an extensive overview of different cloud computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applications already deployed in cloud computing systems are reviewed to demonstrate the advantages of using cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing systems and provides guidance on enhancing current and new deployments.The EGIA project (KK-2022/00119The Consolidated Research Group MATHMODE (IT1456-22

    Detecting anomalous behaviour using heterogeneous data

    Get PDF
    In this paper, we propose a method to detect anomalous behaviour using heterogenous data. This method detects anomalies based on the recently introduced approach known as Recursive Density Estimation (RDE) and the so called eccentricity. This method does not require prior assumptions to be made on the type of the data distribution. A simplified form of the well-known Chebyshev condition (inequality) is used for the standardised eccentricity and it applies to any type of distribution. This method is applied to three datasets which include credit card, loyalty card and GPS data. Experimental results show that the proposed method may simplify the complex real cases of forensic investigation which require processing huge amount of heterogeneous data to find anomalies. The proposed method can simplify the tedious job of processing the data and assist the human expert in making important decisions. In our future research, more data will be applied such as natural language (e.g. email, Twitter, SMS) and images
    corecore