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a b s t r a c t

Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide
range of important real-world applications. DNNs consist of a huge number of parameters that require
millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A
more effective method is to implement DNNs in a cloud computing system equipped with centralized
servers and data storage sub-systems with high-speed and high-performance computing capabilities.
This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud comput-
ing. Various DNN complexities associated with different architectures are presented and discussed along-
side the necessities of using cloud computing. We also present an extensive overview of different cloud
computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applica-
tions already deployed in cloud computing systems are reviewed to demonstrate the advantages of using
cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing
systems and provides guidance on enhancing current and new deployments.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep neural networks (DNNs) are being developed for numer-
ous pattern recognition applications in a wide range of real-life
domains, such as e-commerce, manufacturing, medicine and
health, and autonomous vehicles. However, DNNs are computa-
tionally demanding, especially in training, because of the large
number of parameters required to train them. In general, DNNs
have millions of parameters; for example, a popular DNN, AlexNet,
has 60 million parameters and another, VGG-16, has 138 million
parameters. More recently, it took seven months to train a DNN
with 175 billion parameters, developed by OpenAI for natural lan-
guage processing (NLP) [1]. As such, it is not practical to use a sin-
gle stand-alone computer to train a large DNN. High performance
computational devices are required to train DNNs. Once the DNNs
are trained, they are usually run on online mobile devices or smart
phones, which are essential in our daily lives. However, DNNs
mostly require millions of float-point operations (FLOPs) or more
in computations. For example, AlexNet requires 720 million FLOPs
and VGG-16 requires 15,300 million FLOPs. Such large DNNs need
a lot of storage for their parameters, consume a lot of power in exe-
cution, and require a lot of FLOPs for calculations. Therefore, a
stand-alone computational device is not powerful enough to
deploy a large DNN.

Recently, it has become increasingly common to deploy DNNs
using cloud platforms, which are high-performance computing
platforms with tremendous speed and memory. Training can be
performed within a reasonable time on cloud machine learning
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Nomenclature

List of Acronyms and their Definitions
Acronym Explanation
1D One Dimensional
2D Two Dimensional
3D Three Dimensional
4G Fourth Generation
5G Fifth Generation
6G Sixth Generation
ARIMA Autoregressive Integrated Moving Average
AWS Amazon Web Service
BI Business Intelligence
BP Back Propagation
BTS Base Transceiver Stations
CAs Combinatorial Auctions
CNN Convolutional Neural Network
CPU Central Processing Unit
CUs Central Units
DL Deep Learning
DNN Deep Neural Networks
DQNs Deep Q-Networks
DRL Deep Reinforcement Learning
DUs Distributed Units
SA Sentiment Analysis
EA Evolutionary Algorithm
ECS Amazon Elastic Container Service
FCNN Fully Connected Neural Network
FER Facial Emotion Recognition
FLOPs Float-Point Operations
FWIoU Frequency-Weighted Intersection over Union
GAN Generative Adversarial Network

GBT Gradient Boosting Tree
GKE Google Kubernetes Engine
GNN Graph Neural Network
GPS Global Positioning System
GPU Graphics Processing Unit
IaaS Infrastructure as a Service
IoT Internet of Things
IDSs Intrusion Detection Systems
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCC Mobile Cloud Computing
mIoU mean Intersection over Union
MIP Mixed-Integer Programming
ML Machine Learning
MLP Multilayer Perceptrons
MPA Mean Pixel Accuracy
MSE Mean Square Error
NLP Natural Language Processing
ONOS Open Network Operating System
PS Parameter Server
PSLD PS Load Distribution
PaaS Platform as a Service
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SA Sentiment Analysis
SaaS Software as a Service
TELESTO Multivariate Time Series based Classification Model
TPU Tensor Processing Unit
WCE Wireless Capsule Endoscopy

K.Y. Chan, B. Abu-Salih, R. Qaddoura et al. Neurocomputing 545 (2023) 126327
(ML) platforms, such as Amazon Web Services (AWS) Deep Learn-
ing and Google Colab. Cloud computing-based centralized servers
provide large computational resources, large data storage, high-
speed computation, low latency, and high availability. Cloud com-
puting is also used to deploy DNNs for online applications. This
manuscript references several recent survey articles related to
the deployment of cloud platforms for demanding computations.
We divide these survey articles into three categories: security tech-
nologies, performance enhancement technologies, and
applications.

For security technologies, Yan et al. [2] presented a survey of
various technologies encountering malicious attacks. This article
also discussed several defense mechanisms against malicious
attacks that disrupt cloud servers and services by creating huge
amounts of internet traffic. Nita and Mihailescu [3] and Sun et al.
[4] presented several recent security technologies, such as encryp-
tion, access structure, multiauthority, fine-grained trace mecha-
nism, trust, reputation, and extension of tradition access control.
Gai et al. [5] presented a survey, discussing the recent technical
fusion of blockchain and clouds, including several cloud-relevant
blockchain service models and encryption schemes in blockchain.
They also analyzed the performance of a cloud data center in which
hardware and software are integrated with blockchain.

For performance enhancement, Xu et al. [6] reviewed several
technologies used for managing the performance of virtual machi-
nes in cloud infrastructure services. These technologies optimize
virtual machine performance in terms of cost, accuracy, effective-
ness, and implementation complexity. Pupykina et al. [7] pre-
sented several memory management technologies in cloud
2

computing that perform multiple applications, for which users
request different quality-of-service levels; these users share the
same heterogeneous infrastructures and resources. Wang et al.
[8] presented a survey, discussing offloading technologies to opti-
mize offload tasks between cloud and edge systems. These tech-
nologies enhance offloading effectiveness in terms of energy
consumption, cost, and response time. In addition, several chal-
lenges are summarized to provide future research directions and
promote edge-cloud markets. Xu et al. [6] presented a survey
which provides an overview of computational distribution mecha-
nisms that manage virtual machines in the cloud where requests
from multiple users are received. The mechanisms optimize the
operational cost, computational accuracy, and complexity. Some
challenges and future directions are also outlined. Zhou et al. [9]
and Feng et al. [10] provided an overview of cloud resource
scheduling technologies that use deep reinforcement learning.
These approaches minimize energy consumption to satisfy large
demands of user services which are highly dynamic, uncertain,
and resilient. However, a general overview of DL is not presented
in either survey.

Regarding applications, Khan et al. [11] presented a general
overview of mobile cloud architectures, the benefits of cloud com-
puting, and offload decisions for mobile cloud. Applications of
mobile cloud computing (MCC), such as mathematical tools, file
search, imaging tools, and games, were discussed. Bera et al. [12]
provided a survey of cloud computing applications in a smart grid,
specifically in the areas of energy management, information man-
agement, and security. Cao et al. [13] presented a survey of cloud
computing architectures, which provide sensing, computing, con-
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trolling, and storing services for cyber-physical systems. Several
applications such as building smart grids, intelligent transporta-
tion, personalized healthcare, and smart manufacturing were
reviewed. However, none of these survey articles focused on devel-
oping DNNs in cloud computing systems. Soni and Kumar [14] and
Khana et al. [15] presented overviews of machine learning tech-
nologies to handle a variety of resource management tasks, such
as workload estimation, task and virtual machine (VM) scheduling,
resource optimization, and energy minimization. However, only a
few deep learning (DL) technologies were covered briefly, and
the existing surveys on DL by Saiyeda and Mir [16] and Priya
et al. [17], are either too old or too brief.

Recent review articles on cloud computing and deep learning
are summarized in Table 1. There is a growing interest in develop-
ing cloud computing technologies for DL in many government [18],
public [19], private [20], and commercial sectors [21,22]. These
technologies use large data storage and super-powerful computa-
tional resources for various applications including machine vision,
speech recognition, language translation and processing, weather
and climate forecasting, bioinformatics, manufacturing automation
and defect detection, and drug development. It is important for
researchers to integrate DL with high-performance computing.
However, Table 1 shows that eleven of the eighteen review articles
discuss issues of security [2–5] or performance enhancement
[23,7,8,6,9,10]. Seven of the eighteen review articles discuss cloud
deployment for demanding computations [11–15,17,16]. In these
reviews, descriptions of DL in cloud platforms are either brief or
nonexistent [11–15,17]. One of the eighteen review articles pre-
sents a more detailed survey of cloud deployment; however the
survey was conducted in 2017 which is too old [16]. There are
no review articles or recent surveys focusing on the deployment
of cloud computing for DNNs. Also no review article has discussed
the challenges of deploying DNNs in the cloud and relevant future
research directions. This is the motivation for the survey conducted
in this article on cloud computing techniques for DNN deployment.

The rest of this article is organized as follows: Section 2 briefly
presents several DNN mechanisms, namely the traditional multi-
layer perceptron (MLP), the recurrent neural network (RNN), con-
volution neural network (CNN), deep reinforcement learning
Table 1
Recent review articles of cloud computing for demanding computations.

Categories Articles Survey on cloud computing

Security issues

[2] Defense technologies against malicious att

[3,4] Security technologies in cloud platforms su
trust and reputation

[5] Blockchain services and encryption scheme

Performance enhancement

[23] DL for solving cloud computing issues such

[7] Cloud memory management for multiple u

[8] Offloading effectiveness enhancement such
time

[6] Enhancement technologies for virtual mac
accuracy, and computational complexity

[9,10] Cloud resource scheduling using deep rein

Cloud deployment

[11] Mobile cloud architectures for demanding
[12] Cloud computing in a smart grid for energ

management
[13] Cyber physical-based cloud computing arc

storing services
[14,15] Machine learning technologies to handle a

in cloud
[16] Cloud platforms for DL deployment and ch

[17] Effects of using cloud computing and DL o
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(DRL), graph neural network (GNN), and optimization of DNNs.
The network complexity and the necessity for using cloud comput-
ing are discussed. The motivation for deploying DNNs in the cloud
is also discussed. Section 3 presents the commonly used cloud
computing platforms for deploying DNNs. This information pro-
vides guidance for researchers interested in deploying DNNs in
the cloud. Section 4 presents several DNN applications imple-
mented in cloud systems, such as in health systems, NLP, business
intelligence, anomaly detection, wireless capsule endoscopy
(WCE), and mobile-cloud-assisted applications. These applications
demonstrate the advantages and effectiveness of deploying DNNs
in cloud systems. In addition, researchers may develop cloud-
based DNN applications for yet unexplored areas. Section 5 dis-
cusses the challenges of the current DNN deployments using cloud
computing systems along with prospects for enhancing the current
deployments of DNNs on cloud systems. Finally, conclusions are
drawn in Section 6.

2. Preliminary: computational complexities in deep learning

A single DNN consists of a large number of parameters, which
requires huge amounts of memory space to store. Both training
and executing a DNN require a significant amount of time. This sec-
tion discusses several commonly used DNN architectures, such as
MLP, CNNs, and GNNs, which have complex architecture structures
and a large number of DNN parameters. This section also highlights
the long computational time required to train a DNN. The lengthy
computational time is the reason a single stand-alone computer is
not practical for training a DNN. Therefore, cloud computing is
essential for DNN training.

2.1. Multilayer perceptron

The multilayer perceptron is a commonly used neural network
[24–26]. MLP is composed of multiple layers, including an input
layer, hidden layers, and an output layer, where each layer contains
a set of perception elements known as neurons. Fig. 1 illustrates an
MLP with two hidden layers, an input and output layer. In interac-
tions, each node displays a certain amount of bias. The input layer
DL (or ML) and cloud computing

acks to cloud servers Brief discussion of real-time
deployment in ML

ch as encryption, access structure, Brief discussion of deployment in DL

s in cloud platforms Brief discussion of deployment of DL

as resource and offloading allocations Deploying DL in cloud is briefly
discussed

sers with demanding computations Deployment of ML is briefly discussed;
no DL discussion

as energy consumption and response Brief description of offloading DL

hine performance including cost, Deployment of ML is not discussed

forcement learning in the cloud General overview of DL in the cloud not
given

computations No discussion of DL applications
y management and information No discussion of DL applications

hitectures for sense networks and Brief description of ML applications

variety of resource management tasks Brief description of DL applications

allenges Survey is too old as it was published
5 years ago

n commercial sectors Brief description of DL applications



Fig. 1. MLP topology.
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contains n input variables X ¼ fx1; x2; . . . ; xng and the output layer
contains m output variables Y ¼ fy1; y2; . . . ; ymg.

The total number of parameters in an MLP can be determined
by [27]

n � h1 þ
XNh�1

k¼1

hk � hkþ1 þ hNh
� n ð1Þ

where the number of hidden nodes hi in the ith layer is Nh. Longer
computational times are required to optimize an MLP when Nh and
hk are higher. Multiple applications have been developed by apply-
ing MLP in the cloud. The study of [28] built a forecasting model
using multiple input variables of different types of daily staple food
prices to predict the consumer price index of Surabaya using the
Amazon Cloud Services environment. The multilayer perceptron
algorithm was used to build a prediction system with a hidden
layer, epoch, and a number of neurons. Another study [29] used
transfer learning based cancer segmentation (TL-CAN-Seg) technol-
ogy to subdivide cancer-affected areas and store the relevant fea-
tures in the cloud. To accurately classify areas affected by breast
cancer, a novel MLP with an adjusted Levenberg–Marquardt (LM)
algorithm was used to learn complicated image patterns and ulti-
mately boost the accuracy of breast cancer diagnosis.

2.2. Recurrent neural network

Compared with MLPs, recurrent neural networks (RNNs) are
more effective in processing temporal information, such as text
or time series which are correlated sequentially. RNNs introduce
new forms of neural processing units in which the output from
the previous step in the sequence is used as the input of the current
step [30]. The recurrent processing has a hidden state which cap-
tures and stores the information in the sequence. This learning
capability of RNNs persists, retrieves, and exploits past information
to predict. Memory is conferred by virtue of model relationships at
different scales in time. The aforementioned hidden state captures
information of all previous steps. Therefore, the trained RNN is cap-
able of combining the input sequence and the hidden state to yield
the output at a given step of the sequence.

Although RNNs were invented decades ago, computational time
and memory storage remain prohibitive, and this drawback has
stimulated intense research efforts recently [31]. The number of
parameters of a simple RNN is

N2
h þm � Nh þ Nh � n ð2Þ
4

where Nh;m, and n are the dimensions of the hidden, output, and
input layers, respectively. When RNNs are deployed, long training
and inference times are required to learn sequential data [32]. After
deployment, extra time is also required to update RNNs with newly
supervised sequential data.

Cloud applications leveraging the deployment of RNNs have
mainly relied on natural language processing and time series fore-
casting tasks. Predictive modeling over naturally sequential data
has largely harnessed cloud-deployed RNNs and include workload
prediction [33,34], resource usage [35,36], biometric health moni-
toring [37], and power load forecasting [38], to mention a few.
Video processing and/or summarization [39,40] have also been
explored via long short-term memory (LSTM) and other recurrent
neural architectures deployed on a cloud computing infrastructure
in combination with CNNs.

2.3. Convolutional neural network

Fig. 2 shows a CNN consisting of a set of hidden layers, input/
output layers, and a fully connected network [41,42]. A hidden
layer consists of a convolution layer, activation function, and a
pooling layer. In the hidden layer, the convolution layer extracts
the input features. An activation function is applied to the convo-
lution output to learn the nonlinear input patterns. The pooling
layer combines the activation function outputs into a single value.
After several convolutions and pooling operations, useful features
are extracted to perform classification. A fully connected neural
network (FCNN) uses these useful features to generate N outputs
of which each output corresponds to a particular class. For exam-
ple, the input is classified as the ith class if the value of the ith out-
put is highest.

In general, a CNN consists of millions of network parameters
which require a certain amount of time to determine. For example,
ShuffleNet has two million parameters [43]; GoogLeNet [44] has
6.4 million parameters; DenseNet has 8–33 million parameters
[45]; ResNet has 11.5 million parameters [46]; AlexNet has 62.4
million parameters [47]; VGGNet has 138.4 million parameters
[48]; and in particular, ConvNet [48] consists of 133–144 million
network weights. More than two weeks are required to train a Con-
vNet when a system equipped with four NVIDIA Titan Black GPUs
is used. OpenAI developed a CNN, namely neural architecture
search (NAS), consisting of 175 billion parameters for NLP. Six
months are required to train this CNN when 8�P100 in parallel
scalings are used [1]. Using a stand-alone computer to train a large
CNN is unreasonably time consuming and hence unfeasible; pur-
chasing many computers to train a single CNN is not cost effective.

Examples of CNN deployment in cloud infrastructure to
enhance scalability and reduce computational time, were demon-
strated in a number of applications including facial emotion recog-
nition [49], business intelligence for trading [20], web spam
detection [50], intrusion detection [51], detection of reoccurring
anomalies [52,53], classification of protruding lesions [54],
image-aware inferencing [55], and intelligent video recording [56].

2.4. Graph neural network

A GNN was developed based on graph representation learning
[57–59] which embodies transforming and learning constituents
of a graph (nodes and edges) into a low-dimensional continuous
space. GNN covers non-Euclidean domains with complex data
structures representing relationships between these entities [60],
despite using Euclidean 1-D sequences such as texts and 2-D grids
such as images [61]. In GNNs, a graph G ¼ ðV ; EÞ is the abstraction
of an underlying data structure, where V denotes the set of vertices
or nodes, and E denotes the edges between them. The relation
ðu;vÞ 2 E can be either symmetric or asymmetric. Graphs can be



Fig. 2. CNN for classification.
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homogeneous, such as social networks, as in Facebook friendships
shown in Fig. 3. Nodes and edges can be heterogeneous as in
knowledge graphs. Furthermore, graphic topologies or embedded
features can change over time.

The number of nodes grows exponentially for GNNs, incurring
high computational complexity and memory consumption [62].
For example, ForceNet-Large [63] has 34.8 million parameters;
DimeNet++-Large [64] has 10.8 million parameters; SpinConv
[65] has 8.9 million parameters; and GemNet-T [66] has 31 million
parameters. The Twitter social network is a very large-scale com-
plex graph which contains hundreds of millions of nodes and bil-
lions of edges [67,68]. Some large GNNs such as GemNet-XL have
several billion parameters [69]. Various current GNN models have
only been tested on graphs of very modest size and proved to be
inadequate for large-scale graphs which embody complex architec-
tures [70]. Examples of GNN deployment in cloud infrastructure to
enable scalable and efficient graph analysis, were demonstrated in
a number of applications including recommender systems [71],
traffic flow prediction [72], industrial IoT [73,74], privacy preserva-
tion [75], and matrix completion [76]. Discussing the sources of
latency in training and inference stages of different DNN architec-
tures is important for understanding the optimization of deploy-
ment in cloud-based applications. For example, dilated
convolutions in CNN can increase the receptive field of the network
without increasing the number of parameters or layers, which can
help reduce computational complexity and inference latency
[77,78]. Randomization-based learning techniques [79] such as
echo state network (ESN) can also help reduce latency in training
Fig. 3. A symmetric graph of a real anonymous Facebook online social network
dataset.This visualization is generated by the second author’s own code and is
based on the dataset obtained from http://snap.stanford.edu/data/egonets-Face-
book.html.

5

by obviating the need for backpropagation gradients through time,
which can be computationally expensive. Pruning techniques in
GNNs and CNNs can also help reduce the number of parameters
and computations required, which can lead to faster inference
times [80,81].It is important to note that different architectures
have different prerequisites for training and inference latency,
and thus, the techniques used to overcome them may vary. For
example, while dilated convolutions may be effective in reducing
latency in CNNs, they may not be as effective in other architectures
like RNNs or GNNs. Therefore, it is important to consider the speci-
fic architecture and its unique sources of latency when developing
optimization techniques for cloud-based deployment.

Table 2 summarizes the computational complexity and
required training time for commonly used DNNs.
3. Cloud computing architectures for deep learning based
applications

DNN structures are complex and require massive numbers of
parameters. The time required for training and execution is long.
Thus, it is not practical to use a single stand-alone computer to
train or deploy a DNN. Cloud computing is a solution for such
demanding computations. Cloud computing provides huge
amounts of computing power and data storage to users for various
DNN implementations and training, which are both computation-
Table 2
Computational complexity in DNNs.

Deep neural
networks

Computational complexity

Multilayer perceptron
(MLP)

Number of hidden nodes hi in the ith layer is

Nh : n � h1 þ
PNh�1

k¼1 hk � hkþ1 þ hNh
� n,Longer

computational times are required to optimize MLP
when Nh and hk are larger.

Recurrent Neural
Network(RNN)

Number of parameters of a simple RNN is

N2
h þm � Nh þ Nh � n,where Nh;m, and n are the

dimensions of hidden, output, and input layers,
respectively.

Convolutional neural
network(CNN)

ShuffleNet has 2 million parameters [43]; GoogLe-
Net has 6.4 million parameters [44]; DenseNet has
8–33 million parameters [45]; ResNet has 11.5
million parameters [46]; AlexNet has 62.4 million
parameters [47]; VGGNet has 138.4 million param-
eters [48]; ConvNet has 133–144 million network
weights [48].

Graph neural network
(GNN)

ForceNet-Large has 34.8 million parameters [63];
DimeNet++-Large has 10.8 million parameters [64];
SpinConv has 8.9 million parameters [65]; GemNet-
T has 31 million parameters [66].
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ally demanding. Thus, the cloud benefits users performing inten-
sive applications using DNNs [82].

This section is organized as follows: Section 3.1 presents the
structure and architecture of cloud data centers. Section 3.2 intro-
duces the commonly used commercial cloud platforms for DNN
deployment; an overview is also presented of public or volunteer
cloud computing platforms used to deploy DNNs. Section 3.3 pre-
sents the commonly used streaming platforms in the cloud; data-
streaming implementations in the cloud are also discussed. This
information benefits DL researchers who require powerful, cost-
effective, and fast computational platforms to develop DNNs.
1 https://aws.amazon.com/ec2/autoscaling/
2 https://learn.microsoft.com/en-us/azure/app-service/manage-scale-up
3 https://www.tensorflow.org/tutorials/distribute/parameter_server_training
4 https://mxnet.apache.org/versions/1.8.0/api/faq/distributed_training
3.1. Cloud data centers

Data storage and computations are performed in a cloud data
center or on remote clouds such as backhaul and core networks
[83]. Fig. 4 illustrates a general cloud-computing architecture con-
sisting of cloud users, internet network providers, and cloud ser-
vice providers. Computational data are transmitted by users
through network providers, and the data are received by servers.
Cloud resources are requested to process the data. Users request
sufficient access to a shared pool of cloud resources. To satisfy user
demands, cloud resources are leveraged to deliver flexible comput-
ing capacity and storage [84], thereby supporting cloud providers
and making businesses such as Amazon and Google cloud highly
profitable [85].

Computational requests from users are shared among dis-
tributed cloud platforms with multiple data centers [86].
Resources are shared within a data center or between data centers
to facilitate demanding computations. In addition, a distributed
cloud can be integrated with a public cloud, hybrid cloud, and edge
computing, to further increase computational power. User requests
can be allocated to a data center nearby, to reduce data transmis-
sion latency. Fig. 5 illustrates the distributed cloud architecture
which consists of a distributed cloud and many sub-clouds. A cen-
tral controller in the distributed cloud allocates computational
6

tasks to sub-clouds based on resource availability. The workload
allocations are dependent on the physical limitations of the sub-
clouds, such as distributed units (DUs) and central units (CUs).
The sub-cloud performs the work by directing it from a single node
to a multi-node edge site.

3.2. DL in the cloud

A main advantage of cloud computing is providing dynamic
computing resources, and this is particularly important for numer-
ous DL workloads with varying levels of computational require-
ments for different tasks and datasets. Many cloud providers
offer such services, for example Amazon EC2 auto scaling1 or
Microsoft Azure scale up (increased capacity) and scale out (multiple
instances).2 Cloud providers facilitate DL workloads on limited cloud
resources.

3.2.1. Parameter server
The approach of parameter servers (PSs) [87] is developed to

scale distributed ML contexts in cloud data centers [88]. PSs have
been implemented on many DL platforms, such as tensorflow3

and mxnet,4 to train DNNs.
Server failures are still possible in cloud data centers, and hence,

servers are not fully reliable. Learning task terminations in a cloud
environment have to be preempted by appropriate job-sharing and
backup [88]. The PS framework consists of a server group and
worker group. The server group has a manager and server nodes.
The worker group has a task scheduler and worker nodes. The
group has access to DNN training. The shared parameters are rep-
resented as vectors of (key, value) using consistent hashing. Work-
ing information from nodes is pushed to the server and global

https://aws.amazon.com/ec2/autoscaling/
https://learn.microsoft.com/en-us/azure/app-service/manage-scale-up
https://www.tensorflow.org/tutorials/distribute/parameter_server_training
https://mxnet.apache.org/versions/1.8.0/api/faq/distributed_training


Fig. 5. Cloud system with distributed architecture.
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information is then pulled from the server to each node. The frame-
work supports asynchronous tasks and dependency by invoking a
call. The framework also facilitates flexible consistency when the
algorithm is not sensitive to data inconsistencies. Hence, reliability
in PS can be improved.

The PS architecture is more suitable for heterogenous produc-
tion data centers and public clouds compared with other
approaches such as AllReduce5 because the computing clusters
are usually connected to a large and dynamic pool of resources.
However, the original PS framework has several limitations includ-
ing lack of elasticity, imbalance, and static parameter assignments.
Extra available resources cannot be integrated into training tasks
which have been started. Many workloads assigned to each node
do not have optimal capacities. Approaches have been proposed to
overcome these limitations to empower cloud computing. For exam-
ple, Harlap et al. [89] proposed an elastic PS framework called Pro-
teus to scale up training on public clouds. The framework uses
three transition stages to dynamically assign PSs and workers, as a
cost-saving measure, when transient revocable resources are avail-
able. To improve elasticity, Litz [90] introduced logical executors
which map physical nodes and allow an executor state to control
individual applications. This approach also uses micro-tasks to
establish dependency, thereby performing micro-task dispatch
accordingly.
3.2.2. Advanced learning frameworks
Advanced learning frameworks have been proposed to improve

system reliability and performance for training DNNs in the cloud.
The DL-driven framework DL2 [91] uses a combination of super-
vised learning and reinforcement learning to schedule workloads
and dynamically resize resources allocated to jobs. The DNN is first
trained offline to learn the resource allocation from past decisions,
and reinforcement learning is then used to train the DNN. More
recently, Chen et al. [92] proposed a dynamic PS load distribution
scheme, called PSLD, which uses the exploitation–exploration
strategy. The scheme consists of three stages. First, information is
gathered on each PS. Second, profiling is performed by requesting
that each worker measure the performance of each PS. Based on
the gathered information, superior and low-performing PSs can
be identified. Third, a PS is selected from either the superior set
5 https://github.com/baidu-research/tensorflow-allreduce

7

(exploitation) or the entire PS set (exploration) in a probabilistic
manner, considering the communication time between workers
and workloads. PSLD also performs dynamic PS scaling using the
information of redistributing gradients to PSs. The PSLD requests
workers to update information at each iteration. Wang et al. [93]
proposed a lightweight method called elastic parameter server
(EPS) which allocates and deallocates resources to jobs dynami-
cally. The approach attempts to improve resource utilization and
training speed. Two heuristic scheduling modes, namely incoming
job scheduling and running job scheduling, are used to improve
scalability. These two modes update selected workers for sched-
uled jobs and remove workers who have no access to extra
resources.

Recent frameworks are more specific with regard to DL work-
loads and private clouds. For example, Hu et al. [94] studied prac-
tical resource scaling issues on AWS and Huawei clouds. They
found that only a small number of computationally intensive train-
ing jobs monopolize the system’s resource pool; jobs in another
queue require significant amounts of waiting time. To reduce the
waiting time, a concept of training progress based on integer pro-
gramming was proposed to perform the optimization. Such an
approach is particularly useful for cloud services, such as Google
Kubernetes Engine (GKE),6 Amazon Elastic Container Service (ECS),
Red Hat OpenShift Container Planform, and Huawei ModelArts.
Menouer et al. [95] proposed a scheduling strategy specifically
developed so that cloud providers can select optimal computing
nodes to execute submitted Kubernetes containers, which is based
on a multi-criterion strategy involving node computing information,
such as utilization of CPU, memory, disk, power consumption, num-
ber of running containers, and container size. The multi-criterion
strategy aggregates all criteria in a single rank. Performance evalua-
tion was conducted with respect to computing time, power con-
sumption, waiting time, makespan, and power consumption.
3.3. Data streaming for the cloud

In many sensor networks and control systems such as driverless
cars or smart grids, real-time data streaming is essential for DL.
Real-time measures or data have to be captured to perform recog-
nition or for decision making. Otherwise, system performance and
6 https://kubernetes.io/

https://github.com/baidu-research/tensorflow-allreduce
https://kubernetes.io/


Table 3
Cloud data-streaming platforms.

Cloud data-streaming platforms/ Providers Links Deployment of DNNs

Spark streaming/ Spark parallel data analysis
system

spark.apache.org/streaming Create data ingestion and streaming pipelines for deploying DNNs and running
distributed SQL queries

Apache Flink/ German Stratosphere flink.apache.org Machine learning APIs and infrastructures that simplify the building of
pipelines for DNN deployments

Google’s Cloud Dataflow/ Integration of Flink,
Spark, and Google’s Cloud [100]

beam.apache.org Deploy batch and streaming data processing pipelines to simplify large-scale
data dynamics for DNN deployments

Amazon Kinesis/ Amazon Cloud Service [100] aws.amazon.com/kinesis Ingest streaming data using Kinesis Data Streams and use DNNs to emit the
results to AWS data stores such as Lambda, DynamoDB

Azure Event Hubs/ Azure azure.microsoft.com/en-us/
services/event-hubs/

Use dynamic data pipelines to stream big data and use DNNs as user-defined
functions to perform real-time data analysis

IBM stream analytics/ IBM ibm.com/analytics/us/en/
technology/stream-computing

Build streams flow and pipeline to analyze data using IBM Watson and use
DNNs to perform real-time predictions
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safety levels decline because the measures or data are not the most
up-to-date versions. As data volumes captured in each sample can
be large, DNNs cannot be retrained using a stand-alone computer.
Therefore, data streaming is essential in a cloud. Section 3.3.1
introduces several cloud data-streaming platforms for research
purposes and Section 3.3.2 discusses some recent data-streaming
approaches for cloud systems.

3.3.1. Cloud data streaming platforms
In academic or government sectors, cloud data-streaming plat-

forms have been used to analyze data captured by sensor net-
works. For example, a geophysical sensor network has been
developed by the Southern California Earthquake Center to per-
form geospatial data analysis [96]. This sensor network is installed
with thousands of sensors to capture data continuously at a high
sampling rate. The captured geospatial data are used to study cli-
mate change and develop earthquake and inland flooding forecast-
ing systems. The Geodesy Advancing Geosciences and EarthScope
(GAGE) global positioning system (GPS) network uses data from
more than a thousand GPS sensors to study seismic hydrological
properties in North America [97]. The US National Science
Foundation-funded developed a sensor network at multiple world-
wide locations to study climate change and carbon cycling [98]. A
sensor network was developed by the City of Chicago array of
things (AoT)7 to capture city-related data such as environmental
temperature, humidity, surface vibrations, and magnetic fields along
with atmospheric information such as carbon monoxide and air par-
ticles. The captured data are analyzed for future city development
and planning.

Several other cloud data-streaming platforms for research pur-
poses are reported in [99]. These data-streaming platforms are pro-
vided by open-source communities and are summarized in Table 3.

3.3.2. Data-streaming approaches
As many DNNs are implemented in time-varying environments,

they must continuously learn or be retrained on newly captured
data. A data-streaming approach is developed to determine when
streaming data are required to update DNN parameters [101].
The approach decides whether to update DNNs by trading off per-
formance and training costs. The approach was implemented on
TensorflowOnSpark for three online learning workloads, thereby
reducing the overall elapsed time. Ashfahani et al. [102] developed
a data-streaming approach to modify the network structure with
respect to newly captured data. Network nodes can be grown
and pruned depending on time-varying dynamics to increase net-
work performance while minimizing network complexity. When
the approach was tested on commonly used datasets, the DNNs
7 arrayofthings.github.io

8

developed by Ashfahani et al. [102] outperformed those developed
by existing approaches in terms of network complexity and
performance.

Li et al. [103] proposed an incremental high-order DL model to
adapt online data which are captured at a very high sampling rate.
The approach first transforms the data in a vector space into a
high-order tensor space to reduce adaptation time. The first-
order approximation is then developed to avoid parameter incre-
mentation which is time consuming but common in iterative
methods. Hence, DNNs are more efficient at adapting to time-
varying environments and satisfying real-time requirements com-
pared with existing iterative methods. Pratama et al. [104] pro-
posed a novel fuzzy neural network which automatically embeds
fuzzy rules from data streams. A simplification procedure was used
to merge redundant hidden layers to prevent uncontrollable
growth in the network size. Experimental results showed that
the approach is effective at controlling network size and maintain-
ing network performance. Nguyen et al. [105] also developed a
sensor network to capture maritime data to enhance maritime
traffic levels, safety, and security in real time. A deep recurrent
neural network integrated with streaming data was developed to
control fishing activities, detect smuggling and transshipment,
and forecast maritime pollution. Latent variable modeling and data
streaming were combined to capture key components in maritime
dynamics. The approach was effective at analyzing noisy and irreg-
ular time-sampling data in maritime environments.

When imposing data streaming on the design of DNNs in the
cloud, low inference latencies are required for the DNNs to predict
in real time. To respond to actions in real time, the serving latency
can be improved in two ways.8 First, smaller DNNs can be designed
or accelerators can be used to boost DNNs. Second, data features can
be stored in a low latency data storage location. Those data features
can be used to perform offline precomputing predictions to reduce
the response time for real-time predictions. To further enhance
DNN responses and accuracy, incremental training can be used to
adapt to newly streamed data [106]. After deploying DNNs for a cer-
tain period of time, the predictions of the DNNs are not as accurate
as they used to be; the environments change gradually such that
past data do not fully indicate the current environment which is
time-varying. A DNN can be trained on newly streamed data, the
patterns of which are not included in the previous training. Integrat-
ing data streaming with incremental training is essential to enhance
DNN performance. Based on the newly streamed data, incremental
training updates the DNNs at regular intervals. Model artifacts from
a popular publicly available DNN can also be used to adapt to the
8 https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-
machine-learning

https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-machine-learning
https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-machine-learning


K.Y. Chan, B. Abu-Salih, R. Qaddoura et al. Neurocomputing 545 (2023) 126327
newly streamed data. A new DNN can be updated without training
from scratch.
4. Applications of DNNs in the cloud

Cloud-based DNNs have been deployed in various applications.
This section presents several DNN cloud applications including
NLP, business intelligence (BI), cybersecurity, anomaly detection,
travel, wireless capsule endoscopy, and mobile-cloud-assisted
implementations. These applications are presented in subsections
which are followed by tables summarizing the application content.
The summaries help identify the research challenges involved in
applying cloud systems to DNNs, as discussed in Section 5.
4.1. Natural language processing

Natural language processing is an important application in DL
for automatically manipulating natural language such as text and
speech. NLP can be used in medicine, security, economics, and agri-
culture, and relies on the availability of accurate textual material
and related tools [107]. Sentiment analysis (SA) is an NLP task that
measures the sentiment of the text. Medhat et al. [108] defined SA
as a computational approach for processing sentiments, subjectiv-
ity, and opinions within the text. Feldman et al. [109] described SA
as opinion mining, seeking the authors’ opinion on particular enti-
ties. Many DL approaches have been proposed to solve problems
related to SA [110–112]. The utilization of cloud computing and
DL is essential to the processing of huge amounts of text data in
SA, and some attempts have been made to utilize cloud computing
resources for SA on social networks [18].

Sinnott et al. [113] proposed a cloud-based sentiment approach
based on DNN for solving sentiment prediction problems in rela-
tion to opinions expressed on the social network Twitter. A DNN
was implemented using cloud resources to analyze Twitter big
data. These resources helped in data processing, analysis, distribu-
tion, and storage of large-scale data. Their approach outperformed
other approaches with an accuracy of 80%. An SA cloud-based sys-
tem was proposed for facial emotion recognition (FER) of medical
patients [49]. In this system, a CNN was used to capture facial
expressions and classify the emotions as disgusted, happy, angry,
sad, neutral, or surprised. Furthermore, the FER model was imple-
mented on a cloud-based GPU platform to increase processing
speed. The proposed framework could measure and identify the
intensity of patient’s pain based on the FER system.

A recommendation system for SA was proposed by integrating
DNN in the cloud such that an RNN recommends places based on
the user’s current location while analyzing the reviews of these
places simultaneously. The accuracy of the recommendation sys-
temwas improved by having RNN learn the collected reviews. Sim-
ilar to this approach, stock price prediction through SA was
proposed by Mohan et al. [19]. This approach gathers volatile infor-
mation including various economic and political factors, investor
sentiment, and leadership change to perform predictions. Mohan
et al. [19] created a dataset by collecting five years of daily stock
prices from S&P500 companies and nearly 265,000 financial news
articles. As the data size was very large, cloud resources were
employed to train their DL-based prediction model, whereby more
accurate stock price predictions were achieved compared with
other classical prediction methods.

The rapid development of social media and certain websites
with critical reviews of products serve as a huge collection of
resources for customers worldwide. Reviews of essential services
and products are useful resources when making business decisions
[111]. The data contains information regarding customers’ opin-
ions about services and products, opinion sentiment, and market
9

changes. Ghorbani et al. [114] applied a model combining long
short-term memory (LSTM) with CNN to determine word polarity
in a cloud environment. The proposed model utilizes DL algorithms
and word embedding techniques for feature representation,
thereby achieving more than 89% accuracy. Raza et al. [115]
employed LSTM and RNN for sentiment prediction using a cloud
review dataset. The dataset contains consumer reviews of the
cloud provider services. The experiments show that the proposed
approach with RNN and LSTM achieved 95% accuracy in predicting
customer opinion.

The aforementioned approaches demonstrate that the utiliza-
tion of cloud computing and DL is very effective for various
resource-intensive NLP applications, such as SA. Table 4 summa-
rizes the DL deployed for NLP using cloud computing mechanisms,
covering the characteristics of the deployments including network
models, loss functions, specific task, evaluation metrics, datasets
and state-of-the-art methods, and the corresponding
performances.

4.2. Business intelligence

Business intelligence helps organizations analyze and process
business data through a decision support system, in an attempt
to produce sustainable, stable, and productive businesses [117].
BI deployed in the cloud enhances production for available big BI
data. Many services on the cloud are made accessible to BI special-
ists by cloud providers such as Amazon’s Redshift hosting BI data
warehouse, Google’s BigQuery data analytics service, IBM’s Blue-
mix cloud platform, and Amazon’s Kinesis data processing service
[118]. Deploying BI in the cloud has attracted much attention from
researchers. Balachandran and Prasad [118] have discussed the
benefits, challenges, and risks of deploying cloud storage and cloud
computing for BI. Cloud deployment improves BI processes
because cloud services are cost-efficient and easily available; cloud
services also provide fast deployment and ease of integration. In
addition, cloud BI-based approaches have been discussed for
improving the decision-making strategies of business owners.

Solutions for general-purpose BI services are also provided
based on cloud computing and DL. Prasomphan [20] proposed a
chatbot service to provide customer support information, training
schedules, customer reservations, and virtual assistant services
whereby CNNs are used to understand and respond to customer
questions and comments. Moreno et al. [119] proposed a BI and
data-driven cloud architecture which uses cloud services to ana-
lyze big data using a prescriptive rather than a descriptive
approach. The proposed architecture uses big data to help modern
market-oriented organizations determine new marketing insights,
create new products and services for potential customers, and pro-
duce new lines of business.

Certain domains of BI have also been integrated with cloud
computing and DL. Mohan et al. [19] considered time-series data
from news articles regarding daily stock prices of 500 companies.
They also used DNNs to predict stock prices in the cloud environ-
ment, whereby DNNs were used by decision-makers to infer real-
time stock prices. Autoregressive integrated moving average
(ARIMA), RNN, and LSTM were incorporated into generate models
and the performance was evaluated. Juarez and Afli [120] studied
the stock market prices based on a framework which was inte-
grated with DL and cloud computing for web applications. The
framework analyzes news articles from financial publications and
predicts whether stock prices will increase or decrease to advise
users to buy or sell in the stock market. Khan et al. [117] developed
a model based on DL to perform forecasting for products using
real-time organization data collected from the market. A DL model
implemented in the cloud was used to predict weekly, monthly,
and quarterly product demands based on these real-time data.



Table 4
Deploying DLs in cloud for NLP.

Applications Network
models

Lossfunctions Evaluationmetrics Datasets Performance

Twitter-based
sentiment
analysis [113]

DNN Not reported Accuracy 55 million Tweets Compared with other approaches, their approach is 80%
more accurate.

Facial emotion
recognition
(FER) [49]

CNN Error function Probability FER2013 Patients receive easy yet accurate treatment.

Recommendation
system [116]

RNN Not reported Accuracy and F1
measure

Movie and restaurant datasets With the help of recursive methods and Z-values, the
proposed system enables users to identify precise
location.

Stock price
prediction [19]

RNN and
LSTM

MAE MAPE Five years of daily stock prices
and 265,000 financial news
articles

In comparison with other classical prediction methods,
DL improves stock price accuracy.

Polarity in a cloud
environment
[114]

LSTM and
CNN

Not reported Accuracy Not reported The proposed model has been demonstrated to be more
than 89% accurate.

Reviews sentiment
[115]

LSTM and
RNN

Cross-entropy Accuracy,
precision, recall,
and F1 score

Cloud review dataset (6259
reviews)

The approach typically achieves an accuracy of 95%.

Table 5
Deploying DLs in the cloud for business intelligence.

Applications Network
models

Loss
functions

Evaluation
metrics

Datasets Performance

Future sale/product
demand
forecasting [117]

DeepAR Not
reported

Accuracy Sales, inventory, and calendar data 92.38% accuracy for store demand forecasting

Chatbot in trading
system for SMEs
[20]

CNN Not
reported

Accuracy Cornell_Movie-Dialogs_Corpus dataset DNN accuracy for chatbot learning is better than
traditional models

Stock price
prediction [19]

ARIMA, RNN,
and Facebook
Prophet

Not
reported

MAPE Daily stock prices for S&P500 companies for
five years, more than 265,000 financial news
articles

Better results achieved with RNN; higher
correlation between textual information and
stock price direction

Stock price
prediction [120]

RNN and
sequential
model

Sigmoid Accuracy Google News articles from financial
publications

46% accuracy for the 2505 test set, 43% accuracy
for the 3521 test set, and 63% accuracy for the
3789 test set
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Table 5 summarizes the DL deployed in cloud-computing mecha-
nisms for BI.
4.3. Cybersecurity

Cyberspace has evolved at a dramatic pace because of the aug-
mented connectivity of a vast volume of electronic devices causing
an urgent need to develop sophisticated technologies to ensure
space security. Therefore, cybersecurity is essential for safeguard-
ing systems to avoid potential digital attacks [121]. Furthermore,
the continuous propagation of big data can be considered an
opportunity to detect and deter digital threats [122]. This can be
attained by incorporating DL techniques such as CNN, deep belief
networks, generative adversarial networks (GANs), RNNs, deep Q-
networks (DQNs), and autoencoders [123,121]. Incorporating DL
techniques with cloud computing, offers automatic intelligence
capability for the detection and prevention of cyber threats, such
as phishing, spamming, and spoofing.

Gupta et al. [124] developed a DNN to detect and prevent cyber-
security threats in healthcare systems. The DNN predicts cyberat-
tacks on dataflows by analyzing the data being transferred
between clouds and detecting the changes which occur in the asso-
ciated metadata. This is accomplished by using a hierarchy of coop-
erating DL models in an edge computing environment to reduce
training time. Chai et al. [125] proposed a DNN to detect meaning-
ful phishing websites. Specifically, three modalities of content
namely webpage text, navigation content, and visual content of
images were used as DNN inputs.
10
To stop social spammers, Abu-Salih et al. [126] developed a sys-
tematic and effective approach. The notions of spammers’ behavior
and topics of interest were built to extract consolidated features
which were used as the inputs of ML- and DL-based classifiers.
The utility of Abu-Salih et al.’s [126] approach was validated by
cloud computing services including the Australian Pawsey cloud-
based services. Approaches based on DL and cloud services were
also proposed to detect spammers, phishers, and similar categories
of cyber threats [127–130,50]. Abdullayeva et al. [127] developed
an autoencoder DL-based approach to detect advanced persistent
threats which target confidential and personal data in the cloud.
The utility of the proposed model was validated over a large vol-
ume of data in the cloud environment. Makkar et al. [50] proposed
a framework to detect web spam at three layers of services,
namely, data collection, edge computing, and cloud computing.
The developed system architecture outperformed the previously
developed cloud-based spam detection schemes.

Intrusion and threat discovery from very large-scale event and
log datasets point to another important research direction. Tech-
nologies have been developed by implementing DL in cloud com-
puting. Sethi et al. [131] proposed a DQN by incorporating cloud
infrastructures; the approach achieved higher accuracy in detect-
ing attacks. Hossain et al. [132] proposed a log data reduction tech-
nique for forensic analysis. The developed system was able to offer
a reduction factor of 4.6 to 19, displaying capability for analyzing
around 1 million events per second. DeepLog [133] is another DL
approach based on an LSTM technique which is designed to parse



Table 6
Deploying DLs in the cloud for cybersecurity.

Applications Network models Loss functions Evaluation
metrics

Datasets Performance

Security in healthcare
[124]

Stacked autoencoder1 MSE Accuracy,
precision, recall,
and F1 score

UNSW-BOT-IoT
dataset2

Shorter computational time is achieved with
improved performance

Detecting phishing
websites [125]

Multi-modal hierarchical
attention mechanism
(MMHAM)3

Cross-entropy Accuracy,
precision, recall,
and F1 score

DMOZ4 More effective and accurate for detecting phishing
websites

Detecting social spam
[126]

Multi-layer feed-forward
neural network

Quadratic Average
precision, recall,
and F1 score

Social manually-
labeled Twitter
dataset

Higher model utility was validated by cloud
computing services including Australian Pawsey
cloud-based services

Detecting advanced
persistent threat
[127]

Autoencoder DNN Reconstruction
loss

Accuracy Malware training
sets [136]

Higher model utility was validated through a large
volume of data in the cloud environment

Detecting web spam
[50]

LSTM and CNN Categorical
cross-entropy

Accuracy Manually
collected dataset

A reduction in response time of up to 70% when
transferring computation of DNN model to the
edge

Intrusion detection
[131]

Deep reinforcement
learning

Not reported Accuracy and
area under curve

UNSW-NB155 Higher performance achieved in identifying new
and complex attacks

Intrusion detection
[134]

RCNN Not reported Accuracy and
precision

DARPA IDS6 and
CSE-CIC-
IDS20187

More efficient threat classifier to protect cloud
network layers

Intrusion detection in
multi-cloud
environments [51]

CNN Cross-entropy Accuracy,
detection rate,
and precision

NSL-KDD8 Higher performance in multi-cloud IoT
environment

1 Autoencoders are a subcategory of unsupervised ANNs, used to minimize the dimensionality of the data when a nonlinear function defines how dependent and independent
characteristics relate to one another. 2 The BoT-IoT dataset was developed in the UNSW Canberra Cyber Range Lab by constructing a realistic network environment. The traffic
on the network is a mix of regular and botnet activity. The source files for the dataset are offered in a variety of forms, such as original pcap files, produced argus files, and csv
files [137]. The dataset can be accessed via the following link: https://research.unsw.edu.au/projects/bot-iot-dataset (accessed 28/11/2022) 3 The hierarchical attention
mechanism, which was first developed for document categorization, expands the classic attention mechanism by making use of the hierarchical structures of the document
[138] 4 A multilingual open-content repository of WWW links: https://dmoz-odp.org/ (accessed 29/11/2022) 5 A dataset for network intrusions is UNSW-NB15 comprising
nine different attacks, including worms, backdoors, DoS attacks, and fuzzers. Raw network packets are included in the collection. A total of 175,341 records make up the
training set, whereas 82,332 records from the attack and normal types make up the testing set [139] 6https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-
evaluation-datase (accessed 28/11/2022) 7https://www.unb.ca/cic/datasets/ids-2018.html (accessed 28/11/2022) 8https://www.unb.ca/cic/datasets/nsl.html (accessed 28/
11/2022).
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large volumes of log data to detect cyberattacks. The system could
detect five out of six attacks in the VAST Challenge 2011 dataset.

Intrusion detection systems (IDSs) have also incorporated cloud
computing and DL for large-scale events and log data [134,51,135].
Thilagam and Aruna [134] developed a convolution-based RNN to
build an IDS in the cloud network environment. The Ant Lion opti-
mization algorithm was embedded into LSTM and CNN to build a
threat classifier to protect cloud network layers. Two datasets
namely DARPA IDS9 and CSE-CIC-IDS201810 were used to evaluate
model performance. Selvapandian et al. [51] built a CNN to detect
intrusions in a multi-cloud IoT environment. CNN with minimal fea-
tures was developed to address the vulnerabilities caused by net-
work complexity and open broadcast characteristics of IoT
networks. The performance of the CNN was verified using the NSL-
KDD dataset11 which simulates intrusions in a multi-cloud IoT
environment.

Table 6 summarizes the DL deployed in cloud computing mech-
anisms for cybersecurity.
4.4. Anomaly detection

Similar to humans who are capable of detecting anomalies sig-
naling potential hazards or beneficial opportunities, DNNs have
recently been deployed on the cloud to perform anomaly detection
[140]. Wu et al. [141] developed a model based on GNN to detect
anomalies in industrial IoT which embodies an evolving inter-
connectivity between sensors, instruments, and other IoT devices.
9 https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-
dataset
10 https://www.unb.ca/cic/datasets/ids-2018.html
11 https://www.unb.ca/cic/datasets/nsl.html

11
The evolving inter-connectivity is distributed and managed by
multi-cloud systems. Scheinert et al. [52] developed a multivariate
time-series-based classification model (TELESTO) to detect recur-
ring anomalies which are deployed for infrastructure as a service
(IaaS) in the cloud environment. The TELESTO model transforms
multivariate time series into graphs in spatial and temporal dimen-
sions. A novel graph CNN architecture is used to detect recurring
anomalies using graphic classifiers. Detecting and localizing
anomalies using GNNs were also studied in the distributed cloud
[21,142,143,22]. In addition, the complexity introduced by state-
of-the-art distributed smart resources such as electrical vehicles,
smart heating and cooling systems, and other internet-connected
devices can be mitigated by designing GNNs in the cloud [144]
to model the collective behavior of interconnected assets.

Cloud-based GNNs were also implemented for anomaly detec-
tion applications. Lee et al. [145] developed a GNN-based method
for winner determination in multi-unit combinatorial auctions
(CAs) running on the cloud. An augmented bipartite bid–item
graph-based GNN was developed to learn a continuous probability
map which indicates the probability of each bid belonging to the
designated optimal allocation. The approach resolved the combina-
torial auction problems in cloud networks. Gao et al. [146] devel-
oped a GNN to tackle the low-utilization-rate problem for cloud
computing resources. The approach of Gao et al. benefited from
several variations of GNN architectures constructed based on
homogeneous and heterogeneous graphs, making predictions of
cloud computing load more accurate. Rafiq et al. [147] examined
the utility of a GNN by modeling the complex relationship between
network traffic features. A topology-aware knowledge defined net-
working (KDN) system based on GNN was proposed to predict
optimal paths for service function chaining (SFC) deployment and
traffic steering. The utility of Rafiq et al.’s model was validated

https://research.unsw.edu.au/projects/bot-iot-dataset
https://dmoz-odp.org/
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-datase
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-datase
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/nsl.html


Table 7
Deploying DLs in the cloud for anomaly detection.

Applications Network
model

Loss
function

Evaluation metrics Datasets Performance

Detect recurring anomalies
in cloud services [52]

Graph
CNN

Cross-
entropy

Accuracy, recall,
precision, and F1 score

Manually labeled dataset Better detection of recurring anomalies that benefit
from multi-cloud environment

Winner determination in
multi-unit auctions [145]

GNN Cross-
entropy

Execution time
complexity

A manual collection of 500
bids

Smaller resource consumption, revenue loss, time
complexity, and higher user satisfaction

Anomaly detection in
system logs [133]

LSTM Cross-
entropy

Precision, recall, and F
measure

HDFS log [155] and
OpenStack log (manually
collected)

The system is able to detect five out of six attacks in
the VAST Challenge 2011 dataset using CloudLab
[156]

Detecting low-utilization-
rate problems in the
cloud [146]

GNN Not
reported

Micro-precision Various enterprise-based
datasets

More accurate cloud computing workflow loads

Anomaly detection in
surveillance networks
[53]

CNN with
LSTM

Not
reported

Area under the curve
(AUC) and runtime
complexity

UCF-Crime1 and
UCFCrime2 Local2 datasets

Higher functionality within complex surveillance
scenarios in cloud environment

1:https://www.kaggle.com/datasets/odins0n/ucf-crime-dataset (accessed 28/11/2022) 2:https://www.kaggle.com/datasets/lamnguyenvu98/ucfcrime2local (accessed 28/11/
2022).
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by a complete animated environment embodying the open net-
work operating system (ONOS),12 OpenStack,13 and open-source
MANO (OSM).14 GNNs embedded into the cloud have proven to be
effective in tackling other cloud-based problems including job dis-
patching [148], mobile app recommendation in edge computing
[149], parallel computing [150], connected autonomous vehicles
[151], and runtime performance prediction [152].

Real-time and instant anomaly detection have recently
attracted the attention of researchers for their importance in over-
all surveillance and management. Waseem et al. [53] proposed a
real-time anomaly detection method for surveillance scenarios
using efficient CNN and B-LSTM. Waseem et al. [153] developed
an attention residual LSTM for effective anomaly detection. Ullah
et al. [154] also proposed a two-stream neural network for anom-
aly detection in surveillance videos, which was assisted by an AI of
Things (AIoT) paradigm. This research reflects an important trend;
however, more investigation is required with test-bed simulations
and deployments in diverse environments, such as fog, snow, sand,
and rain.

Table 7 summarizes the DL deployed in cloud computing mech-
anisms for anomaly detection.

4.5. Travel

In the tourism and hospitality industries, AI accommodates and
processes relevantly large datasets which are generated by both
consumers and service providers. For example, one of the large rel-
evant data islands in tourism is collected from GPS applications
[157] which are commonly integrated with social data [158], IoT
data [159], and web traffic data [160]. This massive dataset is pro-
cessed within the context of ‘‘smart” tourism industry which pro-
vides intelligent and personalized services for tourists [161].
Sophisticated intelligent techniques are required to analyze such
heterogeneous, multifaceted, and distributed datasets [162].
Recently, Cepeda and Domingo [163] proposed a DNN-based rec-
ommendation system which advises personalized tourist activi-
ties/attractions in smart cities. The proposed architecture consists
of three technical layers, namely device, fog, and cloud layers.
The device layer is used to collect tourist sensor activities including
search and visit-planning data. The fog layer is responsible for
digesting and dispatching activities which are collected from edge
networks. The top layer is the cloud layer which conducts intelli-
gent analytics. In particular, a multi-classification DNN model
12 https://opennetworking.org/onos/
13 https://www.openstack.org/
14 https://osm.etsi.org/
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was developed in the cloud and used to provide personalized and
real-time recommendations for tourist attractions. Incorporation
of cloud computing reduces data processing time.

DNNs were also proposed to understand tourists’ behavior and
improve their experiences [164,165,161,166]. Piccialli et al. [165]
developed a DNN for path prediction to monitor and predict occu-
pancy of available rooms. Visitors’ behavioral data was collected by
IoT and cloud services thereby providing effective real-time predic-
tions, offering tourists improved visiting routes. Chang et al. [166]
proposed a multiple-CNN model which is integrated with the
Word2Vec model to analyze hotel reviews collected from
‘‘TripAdvisor” to extract semantic and syntactic relations. The
model extracts hidden patterns, understands consumer booking
behavior, and furnishes strategic recommendations to decision-
makers. Kontogianni et al. [161] developed a DNN for smart tour-
ism. The framework encompasses two modules: (i) image labeling
of objects and landscapes and (ii) collaborative filtering based on a
DNN architecture. The proposed framework is effective in accom-
modating large-scale distributed tourism datasets.

Applying DNN technology in transportation and traffic domains
has also attracted the attention of research and industrial commu-
nities with respect to population growth, climate change, air pollu-
tion, and other relevant urgent matters [167]. This is also
reinforced by recent developments in intelligent transportation
systems which are based on large-scale and distributed sensor
data, including traffic density and speed, road cameras, and public
transport transponders [168]. DNN technologies are crucial in the
development of various solutions in support of intelligent trans-
portation domains such as transportation safety planning [169],
traffic speed prediction [170], collision prediction [171], and park-
ing occupancy prediction [172]. However, the sophistication of the
developed DNNs and the abundant heterogeneous datasets require
high-speed and high-performance computing. Therefore, cloud
computing offers a solution for accommodating the computational
demand of DNNs, thereby resolving the latency and bandwidth
limitations of intelligent transportation systems [173]. Chen et al.
[174] developed a DNN-based traffic flow detection system using
cloud and fog computing services. In particular, three modules
were embedded into the cloud-based system, namely a vehicle
detection module, vehicle tracking module, and vehicle counting
module. Each module was integrated using cloud and edge com-
puting facilities to allow high-speed data processing.

Iqbal et al. [175] proposed an integrated system which combi-
nes an intelligent decision-making scheme with cloud computing
to benefit intelligent transportation systems. The DNN was trained
using large-scale traffic congestion datasets; the proposed
integrated system improves traffic multimedia data transmission.

https://www.kaggle.com/datasets/odins0n/ucf-crime-dataset
https://www.kaggle.com/datasets/lamnguyenvu98/ucfcrime2local
https://opennetworking.org/onos/
https://www.openstack.org/
https://osm.etsi.org/


Table 8
Deploying DLs in cloud for travel.

Applications Network
model

Loss function Evaluation metrics Datasets Performance

Tourist attraction
recommendations in smart
cities [163]

MLP Binary cross-
entropy

Loss, accuracy,
precision, recall and F1-
score

Survey collection Higher modeling efficiency and less data
processing time

Path forecasting in an IoT
system [165]

Encoder-
Decoder
DNN

Categorical
cross-entropy

Accuracy 5,200 manually
collected visitor paths

More effective real-time predictions for visitor
behaviors

To analyze hotel reviews and
responses [166]

CNN Cross-
entropy

Recall, precision, and
F1-Score

113,685 hotel reviews Higher utility and effectiveness in extracting
hidden patterns for consumer booking

Promoting tourism
personalized services [161]

ANN Mean-
squared error

Accuracy and loss Movielens dataset1 More effective in accommodating large-scale
and distributed tourism datasets

Traffic flow detection CNN Sum of
squared
errors

Accuracy, precision, and
runtime

UA-DETRAC2 More effective data processing

Ambulance tracking in video
surveillance [175]

ANN Not reported Runtime Manually-collected
multimedia dataset

Higher utility for transmitting multimedia
data

Intelligent traffic congestion-
avoidance system [176]

ANN Not reported Case study Manually-collected
vehicle movement data

More effective data analytics for traffic data

1 This dataset includes 100,000 user ratings for 9000 films:https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset (accessed 28/11/2022) 2 The dataset used in
vehicle detection and tracking contains 8250 manually-labeled vehicles and 1.21 million target object frames:https://detrac-db.rit.albany.edu/ (accessed 28/11/2022).
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Thejaswini et al. [176] proposed a DNN which was trained on traf-
fic data at the edge. The proposed DNN establishes a ‘‘digital twin”,
for which the data were collected from roadside cameras. The DNN
can also be retrained by newly collected data.

Table 8 summarizes the DL deployed in cloud computing mech-
anisms for anomaly detection.
4.6. Remote medical diagnosis: wireless capsule endoscopy as a use
case

Over the past two years, an exponential growth has been
observed in wireless capsule endoscopy (WCE). WCE approaches
are comparable to conventional endoscopy in visualization of the
interior of humans for diagnosis. These technologies were initially
developed in 2000 and received endorsement in 2001 following
clinical trials by the Food and Drug Administration. The technolo-
gies have better portability and distinct applications in systemic
biologic delivery [177] and health services [178,179].

In WCE, a patient swallows a pill-sized capsule that contains a
camera for recording and monitoring gastrointestinal tracks. The
camera attached to the capsule head captures the stream and pro-
ceeds to transmit the data to a portable image recording device.
This device is fixed to a human body containing an antenna array
with a few leads. The time to expel the capsule from the body
requires approximately 72 h, with the initial 8 h being the most
significant for visual representation of the gastrointestinal tract
[180]. During the initial 8 h, about 50,000 frames are captured
depending on the capture rate of the underlying capsule. Inspect-
ing all captured frames to identify abnormalities is time consum-
ing. In addition, this approach is not preferable because of the
significant amount of redundancy in the frames. The capsule often
stops due to food particles, affecting capsule flow and greatly
increasing the chance of capturing redundant frames. In traditional
endoscopy, the patient must visit the hospital for the endoscopy
set to be inserted to enable the transfer of the video data to the
diagnostic system. The enormous amount of captured video data
requires inordinate efforts and time for physical inspection. A prac-
titioner requires an average of two hours to inspect about 50,000
frames for only one patient.

To solve these issues, a patient’s phone uses a light DNN to per-
form lightweight processing of the generated data during the diag-
nostic process; the application is deployed in the cloud to identify
and discard redundant frames during the WCE procedure [181].
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The system is illustrated in Fig. 6(a). In addition, sharing massive
amounts of data with specialists and doctors in remote areas for
diagnosis is quite challenging because observation and analysis
time is excessive. Filtering methods such as those proposed in
[182,183] discard and eliminate non-informative and redundant
frames [184,185]. Similarly, other techniques such as segmentation
[186] and anomaly detection [187–189] in WCE frames need
automation for enhanced analysis. Technologies have been pro-
posed for WCE data detection, classification, and segmentation.

To illustrate the concept with an example, the sequence of WCE
frames acquired from the capsule is Ft with t ¼ 1;2;3; . . . ;NT ,
where NT is the total number of frames. The approach eliminates
redundant frames and classifies the remaining WCE frames as
informative or non-informative. The frames are converted from
RGB into a COC color-based model to compute the integral image.
Similarly, features such as inertia moments, curvature map, and
multi-scale contrast are calculated whereby the saliency scores
obtained from these features are normalized. Depending on the
available resources such as the patient’s smartphone battery,
important information is then sent to the health center and cloud
systems for further analysis, whereas the non-informative part is
discarded [190]183.

Table 9 summarizes the DL deployed in cloud computing mech-
anisms for WCE.
4.7. Mobile-cloud-assisted applications

A mobile cloud-assisted application is an emerging technology
with a wide range of applications. MCCmainly focuses on the capa-
bility of offloading tasks towards cloud servers to extend the sys-
tem lifetime. MCC also reduces the computational burden of
mobile devices such as smartphones, tablets, and iPads. An exten-
sive trace-driven assessment is performed to ensure an efficient
offloading inference engine and to reduce resource constraints
from smartphones with far lower processing power than conven-
tional approaches [195]. During the WCE procedure, analysis and
sharing of huge amounts of data require instant removal of redun-
dant and irrelevant frames to prioritize the video before using
DNNs. However, video prioritization in WCE is quite challenging
and is likely to be infeasible when resources and computational
power are limited. Therefore, MCC is incorporated to provide stor-
age, massive computation, and software services at low cost. This
mechanism is illustrated in Fig. 6(b). Using this strategy, light-

https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
https://detrac-db.rit.albany.edu/


Fig. 6. WCE procedure for personalized and efficient healthcare [183]. (a) The patient’s smartphone is used to process the frames, thereby discarding redundant information
using a lightweight DNN redundancy removal network. (b) Mobile-cloud-assisted mechanism that assists the WCE in reducing computational power.

Table 9
Deploying DLs in the cloud for wireless capsule endoscopy.

Applications Network model Loss
function

Evaluation metrics Datasets Performance

Bleeding areas
segmentation

DFCA-Net
(withRes2Net101 as
backbone) [179]

Joint loss
function

Mean pixel accuracy (MPA), mean intersection over
union (mIoU)

GI bleeding image
dataset

mIoU: 86.858%,
MPA: 95.211%

Image segmentation
[187]

CNN Not
reported

Sensitivity and accuracy Largest WCE dataset
with 440,000 images

Accuracy: 88.5%,
sensitivity: 84.6%

Polyp recognition
[191]

Stacked sparse
autoencoder with
image manifold
constraint

Not
reported

Overall recognition accuracy (ORA) 3000 WCE images from
35 patients’ WCE videos

ORA: 98%

Bleeding detection
[192]

DCNN Not
reported

F1 score 10,000 WCE images F1 score: 0.9955

Anomaly detection
and localization

WCENet [193] Categorical
cross-
entropy loss

Accuracy, receiver operating characteristic (ROC),
frequency-weighted intersection over union
(FWIoU), average dice score (ADS)

KID dataset Accuracy: 98%,
ROC: 99%, FWIoU:
81%, ADS: 56%

Detection of erosions
and ulcerations
[194]

DCNN Not
reported

ROC 5360 WCE images ROC: 0.958

Detection and
classification of
protruding lesions
[54]

DCNN Not
reported

AUC, sensitivity, specificity 30,584 WCE images of
protruding lesions from
292 patients

AUC: 0.911,
Sensitivity: 90.7%,
specificity: 79.8%
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weight processing can be performed at the edge whereas the
resource-hungry activities are performed in the cloud which has
powerful computational resources.

Yang et al. [196] presented an offloading service for resource-
constrained mobile devices. They combined numerous resources
including memory, CPUs, and bandwidth to reserve mobile
resources. Miettinen et al. [197] claimed that energy efficiency is
significant for mobile devices, and MCC saves energy through
offloading strategies. Hsieh et al. [198] showed the strengths of
MCC in telemedicine. They advised that the combination of mobile
technologies and cloud computing is necessary because high-speed
data delivery is required for mobile teleconsultants and big data
centers. In addition, patient data are securely stored in and
retrieved from the cloud. Fortino et al. [199] proposed a framework
to develop cloud-assisted body sensor applications. This frame-
work consists of a multi-tier architecture integrating data streams
from body sensors, cloud computing, and middleware. The large-
scale sensor data are processed and shared among users in mobile
14
devices and the cloud, to ensure security and privacy issues in
mobile-cloud assisted applications.

Table 10 summarizes the DL deployed in cloud computing
mechanisms for mobile-cloud-assisted applications.
5. Challenges and future directions

As discussed in Section 4, many applications requiring big data
analysis and high-performance computing have been deployed
using cloud-based DNNs, benefiting from the large computational
and data storage resources of cloud systems. DNNs are powerful
tools for pattern recognition. However, they present several
research challenges including energy consumption, training and
execution time, data security, and cloud interoperability. This sec-
tion discusses some of these challenges and suggests future
research directions for those who are interested in performing
research on both DNNs and cloud computing. Fig. 7 summarizes
these challenges and directions graphically.



Table 10
Deploying DLs in mobile-cloud assisted applications.

Applications Network
model

Loss
function

Evaluation
metrics

Datasets Performance

Video summarization DNN [181] Not
reported

F measure Selected videos from Gastrolab
and WCE Video Atlas datasets

F measure: 0.82

Video summarization DNN [190] Not
reported

Precision, recall,
and F measure

Selected videos from Gastrolab
and WCE Video Atlas datasets

Precision: 0.85, recall: 0.84, F measure: 0.85

Image-aware inferencing
[55]

IF-CNN Custom-
loss

Processing latency
and accuracy

ILSVRC2012 Accuracy: 92.21%, latency: 159 ms

DNN tuning [200] DNNTune Not
reported

Speed and energy ImageNet, PASCAL VOC, Penn Tree
Bank (PTB), MNIST

1.66� speedup and 15� energy saving compared
with mobile- and cloud-only approach

Intelligent video recording
[56]

Faster R-CNN Not
reported

Detection rate PASCAL VOC 2007 4 FPS

LiDAR data classification
and reproduction [201]

Multi-faceted
CNN (MFC)

Not
reported

Accuracy and
kappa score

KITTI and MLS Improvement in accuracy: 1.7%, improvement in
kappa: 2.2%

Efficient training and
inferencing [202]

JointDNN Not
reported

Latency and
energy
consumption

Raw data (image, videos) Reduction in latency and energy: 18–22�

Fig. 7. Summary of challenges and research directions discussed in this section.
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5.1. Energy efficiency

Developing a DNN requires a certain amount of training time.
For example, a CNN was developed by OpenAI for NLP. It took six
months to train this CNN using P100�8 parallel scaling [1]. The
carbon footprint of developing this CNN is the same as that
required during the lifetime of running five cars. Large amounts
of energy are required by DNNs. Future research can focus on
developing techniques to increase the efficiency of cloud data cen-
ters through green IT [203] by reducing carbon emissions due to
energy consumption to maximize energy savings. Ideas need to
be explored on the use of renewable energy sources, smart grids,
and efficient energy data storage and computation for data centers.
At the hardware-component level, various techniques can be
developed to minimize the energy consumption of servers and
maximize memory and storage in data centers. At the network
level, techniques can be developed to increase the efficiency of
data exchanges between nodes in data centers. In the long term,
hardware technologies need to be investigated and developed to
build green data centers.

This is also being actively investigated from multiple modeling
perspectives, from weight sparsification to temporal neural pro-
15
cessing (e.g. spiking neural networks), with the latter better suited
for low-consumption neuromorphic hardware. However, cloud
implementations of deep learning models have not incorporated
such advances yet. In general, performance is affected and
degraded when the design of the deep learning model embraces
such approaches to reduce energy consumption. The race towards
Green Machine Learning (also referred to as Green Artificial Intel-
ligence [204,205]) should bring new visions to this issue, so that
cloud systems leveraging deep learning-based pipelines can stop
being a threat to sustainability.

5.2. Training cost

Although the cloud resource is large and effective in speeding
up the training process of DNNs, a cost-effective way to reduce
training cost is to perform the DNN training on a free cloud provi-
der, such as Google Colab. However, these computational resources
are limited and are constrained by the number of required running
hours. Renting a cluster of virtual machines is extremely costly. For
example, training a model such as Transformerbig using P100�8
requires at least 289 USD; training an NLP model such as BERTbase
using V100�4 requires at least 3751 USD; training an NLP model



K.Y. Chan, B. Abu-Salih, R. Qaddoura et al. Neurocomputing 545 (2023) 126327
such as NAS using TPUv2�1 requires at least 44,055 USD [1]. Effec-
tive parallel programming makes full use of the computational
resources of cloud cluster multi-nodes [206].

For example, Li et al. [207] proposed a population-based search-
ing algorithm using an asynchronous parallel framework which
consists of a controller and workers. The controller generates var-
ious architectures of DNNs; the workers train and evaluate DNNs.
Workers require a significant amount of time to train DNNs; they
return the network performance to the controller and the con-
troller sends newly updated DNNs to perform another iteration
of training until a DNN is generated with good performance.

This asynchronous parallel approach which generates a set of
DNNs is more effective than the parallel process at computing a
single DNN. The approach improves computational efficiency.
Hence, the computational cost can be reduced. The development
of a cost-effective parallel computing framework is envisaged as
a research direction for integrating DNNs and cloud computing.

5.3. Scalability

In general, deep-learning models of realistic complexity require
a relatively higher inference latency than other shallow learning
approaches. This may not yield issues in latency-insensitive (i.e.
delay-tolerant) applications, when the rate at which the model is
queried is low enough not to saturate the computing resources of
the cloud system in which it is deployed. However, this may not
be the case in deep learning-powered services that are concur-
rently accessed by several users, or in applications that demand a
fast, near-real-time response from the cloud model. Under these
circumstances, one can replicate and launch on demand container-
ized implementations of such deep learning models. However, this
workaround does not scale nicely in terms of resources. Therefore,
implementing a deep-learning model in the cloud can be trouble-
some if it is done without bearing in mind the inference working
regime at which the model will operate.

A promising direction is to perform neural architecture search
(NAS [208,209]) driven by objectives tightly coupled with the
hardware characteristics of the cloud system. Unfortunately, most
NAS exercises considering complexity as one of the optimization
goals, also consider deployment-agnostic measures of complexity,
such as the number of trainable parameters. An interesting
research direction would be to explore different methodologies
to get such measures of performance closer to the specifics of the
cloud system so that the neural architecture search yields opti-
mized models capable of scaling up more efficiently than their
off-the-shelf, non-optimized containerized counterparts.

5.4. Data security

In cloud computing, data security is a main concern in applying
DNNs or cloud computing in many applications, such as healthcare
systems and banking systems that involve private, personal, and
confidential data. For example, patient data are used to train DNNs
in healthcare systems [210–212]. Online patient data are transmit-
ted to the cloud which is embedded with a DNN to perform data
analysis. In addition, DNNs need to be adjusted online for dynamic
environments because additional data transmissions are required.
However, local storage and data transmissions do not fully satisfy
the data security issues. To solve the data security issues, block-
chain is used to keep data private and secure [213]. Blockchain is
deployed in the cloud-based IoT architecture which is engaged in
DNNs, providing access and storage control for private data to
exchange between nodes in the cloud and the outside network.
For example, blocks are created to store patient identifiers in the
health blockchain systems. Each patient’s data are also encrypted
and authenticated, whereby a pointer is created. The blockchain
16
contains patient data captured from wearable sensors and smart-
phones. These patient data are stored in a database which can be
accessed by the DNN in the cloud for patient data analysis. Similar
blockchain systems can be implemented in other applications such
as banking systems which require high data privacy and security.
The development of a blockchain system integrated with DNNs
and cloud servers is another future research direction.

Further along these lines, different attacks have been studied to
discover characteristics of the training data by querying deep
learning models, exploiting the fact that such models tend to mem-
orize much of the characteristics of the training data. Property
inference, feature reconstruction and membership inference are
some of the attack methodologies that can successfully leak private
information from a trained deep learning model [214,215]. Cloud
implementations of these models can further exacerbate the
chances of being attacked, revealing private information that can
be sensitive in some applications (e.g. medical diagnosis). Further
research is required to reduce the exposure of deep learning mod-
els deployed on the cloud to these attacks.

5.5. Privacy awareness

Privacy preservation is a critical concern in deploying DNNs on
cloud computing platforms. Differential privacy [216,217], homo-
morphic computing [218], and federated learning [219] are three
promising approaches for addressing this challenge. Differential
privacy aims to provide strong privacy guarantees by adding noise
to the data before sharing it with a third party. This approach has
been successfully applied to various DNN architectures, including
CNNs and LSTMs [220–223]; however, it also comes with a
trade-off between privacy and accuracy. Homomorphic computing
enables computations on encrypted data without decrypting it,
thereby preserving the privacy of the data. However, homomorphic
computing is currently limited in terms of scalability and perfor-
mance, which precludes its applicability to large-scale DNNs
[224,218,225]. Federated learning is a distributed machine learn-
ing approach that enables DNN training on local data without shar-
ing it with a central server. This approach has gained significant
attention because of its ability to address privacy concerns while
leveraging the collective intelligence of data across multiple
devices [226]. However, federated learning also poses new chal-
lenges such as hierarchical federated learning [227], explainability
in federated learning [228], newmethodologies for model aggrega-
tion in federated environments, and proper scheduling of the local
updates and deliveries upstream depending on the availability of
local resources. Although the aforementioned approaches hold
promise for addressing privacy concerns in cloud-based DNNs,
they also bring new challenges that need to be addressed in future
research.

5.6. Cloud interoperability

Deep-learning techniques have become the preferred effective
method for processing and analyzing big data [229]. To ensure
scalability, DNNs can be partitioned across large-scale clusters of
machines to distribute training and inference [230]. The training
dataset can be massive with various big data features which
require efficient multi-cloud computing resources to accommodate
the propagation, storage, and analysis of real-time and heteroge-
neous datasets [231]. Multi-cloud computing has made great
strides in fulfilling the needs of big data. However, immaturity of
various cloud services has resulted in integration issues, technical
incompatibilities, and operational complexity [232,233]. Further-
more, the massive amount of generated data as well as the need
for real-time data processing have conflated this issue. In fact,
75% of 572 cybersecurity professionals surveyed by Fortinet
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reported that the skills and knowledge to integrate multi-cloud
solutions are inadequate [234]. These challenges can be mitigated
by ensuring cloud interoperability [235,236].

Cloud interoperability refers to the process of seamlessly
deploying, migrating, and configuring application workloads across
various multi-cloud environments [237], whereby organizations
can easily access, manipulate, exchange, or share information and
use functionalities across various cloud service providers [238].
Interoperability depicts a perfect solution because it enables
multi-cloud multi-vendor cloud environments to share and access
their data and interact with each other. To ensure cloud interoper-
ability, semantic technologies such as knowledge graphs can be
incorporated to enable semantic representation of different hard-
ware and software resources as well as server configuration across
heterogeneous multi-cloud environments. For example, the under-
lying structure of knowledge graphs can be used to provide a for-
mal representation of different multi-cloud services which can
pave the way to data integration, unification, and information
sharing [239]. Despite a few attempts to address the interoperabil-
ity in multi-cloud environments [240–242], this remains an open
research area where more approaches are needed to construct ade-
quate and coherent knowledge graphs.

5.7. Learning from non-stationary data: retraining efficiency and
adaptation

When data are produced continuously over time, the knowl-
edge captured by the model may become obsolete because of the
non-stationary, time-varying nature of the modeling task
[243,244]. This is often the case in scenarios where the source that
produces the information is subject to exogenous phenomena that
imprint the changes on the data, such as temperature sensors mon-
itoring a machine in industrial prognosis. When this task variabil-
ity holds, a straightforward strategy is to adapt the model by
retraining it with the most recent data at the cloud end. This
approach, however, echoes the scalability issues mentioned previ-
ously, as the training times required by deep learning models can
exhaust the responsiveness of the cloud system. To avoid this,
training can be done incrementally, that is, by updating the train-
able parameters only using the most recent data instances received
by the model. However, the so-called catastrophic forgetting issue
of deep neural networks refers to incremental updates becoming
so dominant in the knowledge captured by the model, that the
model forgets about relevant patterns observed in the past, overfit-
ting and considering primarily the recent information. More elab-
orated continual learning approaches [245] for cloud-deployed
models should be in the research agenda in years to come.

5.8. Elastic implementations of deep learning models and flexible
resource allocation

The layered structure of deep neural networks should be a suit-
able framework for developing flexible models that can be redis-
tributed on-the-fly over different parts of the communication
setup, from the edge to the cloud. However, in our experience
the literature often approaches this allocation statically, without
considering the availability of resources in the different devices
involved in the communication between the user(s) and the cloud
system. In practice, available resources vary, either due to inter-
mittent communications links, battery depletion of mobile devices,
or the need for addressing other computing tasks that have priority
over the neural processing task allocated to the device. To accom-
modate this variability, elastic deep Learning implementations (in
terms of their capability to be distributed over different remote
subsystems) and flexible/intelligent resource allocation strategies
should be further investigated and put to practice. Reinforcement
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learning is a promising path to consider for the intelligent manage-
ment of flexible models [246].

5.9. Deep reinforcement learning

Deep neural networks also prevail in the reinforcement learning
of the behavioral policy of an agent which interacts with the envi-
ronment toward the fulfillment of a given goal [247]. DNN-based
reinforcement learning provides good function approximators for
high-dimensional data, when the state-space or actions are too
large to be modeled using traditional methods based on look-up
tables, such as Q learning [248,249]. Hence, deep reinforcement
learning (DRL) is effective at mapping states or state–action pairs
to values. For example, neural architectures comprising convolu-
tional layers can be used for reinforcement learning based on
visual data such as autonomous driving [250] and robotic naviga-
tion [251]. In DRL, the environment is assumed to deliver a scalar
measure of reward in response to every new action of the agent.
The computation of this reward is environment or task specific,
whereas the specific procedure by which the value for every
state–action pair is learned and exploited in the policy. This distin-
guishes between different architectures existing in the DRL panor-
ama such as deep Q learning and actor–critic networks [252,253].

When implementing DRL in a cloud platform, delivering the
observations of the agent to the cloud and receiving the action
therefrom can be satisfied if, (1) the timing constraints of the rein-
forcement learning task are able to accommodate the bandwidth
requirements, communication, and processing latencies upstream;
(2) the architecture of the DRL is able to remain private or is
trained with the observations of different agents deployed over
several albeit interrelated environments. Satisfying the two condi-
tions is challenging because DRL requires buffering information,
such as the replaying experience, which stabilizes the convergence
of the agent’s learning process. Such advances have important
implications in terms of the bandwidth and latency incurred by
data communicating with the cloud. Consequently, delegating
the agent’s learning process to a cloud must be decided by a man-
ifold of factors, including preprocessing observations on the edge
and adjusting the agent’s learning schedule to alleviate bandwidth
and timing requirements. Resolving these conditions can be a
future research direction.

5.10. 3D vision applications

Driverless autonomous vehicles which require DNNs for object
detection and navigation have not been fully implemented in cloud
systems [254]. Implementation of driverless autonomous vehicles
requires high-performance and high-power computations. Accu-
rate and fast driving decisions are necessary. Higher computation
power is required because DNNs are updated when vision data
are newly captured, necessitating the integration of DNNs and
cloud computing. DNNs perform the decisions and cloud systems
provide the computational resources and data storage. In addition,
high-speed data transmissions are required because data for
driverless autonomous vehicles are 3-D and data exchanges
between cloud and cars are large. Similarly, high-power computa-
tions and high-speed data exchanges are necessary for 3-D video
games and small-sized object detection [255]. The emerging 6G
communication technology together with cloud-based DNNs have
the potential to provide a practical solution for implementing 3-D
vision analysis in real time.

5.11. Optimization of DNNs

Backpropagation methods are used to optimize DNNs. However,
only local optima of DNNs are found because DNNs with large
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numbers of parameters and complex searching landscapes are
highly nonlinear. To overcome this problem, heuristic methods
such as evolutionary algorithms (EAs) have been employed
[256,257]. EAs have been used to optimize hyperparameters
[256,258–261], network weights [256,257], network configura-
tions [257], and network architectures [262–265]. However, the
computational time of heuristic algorithms is impractically long
[264,266]. The unreasonably long computational time can be
explained by the evolutionary mechanism whereby a large popula-
tion of individuals evolve through many generations. Each individ-
ual represents a DNN structure. In each generation, the fitness of
each individual is evaluated. The DNN parameters are optimized
by backpropagation, which requires very long computational times
[267]. Many articles do not report the computational time of DNN
training in EAs [268–273]. It is impractical to develop DNNs using
EAs locally on standalone machines or remotely on a cloud
machine [267]. Although early research has been suggested on
integrating metaheuristic algorithms with cloud platforms to
speed up the training [274], recent evolutionary deep learning net-
works are associated with fewer than thousand weights [275]. A
practical cloud platform has not been developed for metaheuristic
algorithm implementation or gradient-independent heuristic
search algorithms. This development can be a future research
direction.
6. Conclusion

DNNs have been implemented and deployed in many real-life
application domains. However, DNNs are computationally
demanding and consist of thousands or even millions of parame-
ters which enable the learning during training; they also require
millions of FLOPs to execute in prediction mode. It is not feasible
to deploy DNNs on single stand-alone computers or run them on
mobile devices for many applications which involve the storage
and analysis of big data. There is currently noticeably growing
interest in deploying DNNs in cloud computing systems. This
review article first presented the motivation for DNN deployment
and training in cloud systems, thereafter discussing the computa-
tional complexity of the commonly used DNNs including MLP,
CNN, RNN, and GNN, which involve large numbers of parameters
and FLOPs. The article also presented an extensive overview of
public or volunteer cloud computing platforms that have devel-
oped and deployed DNNs. This information can be used by
researchers or software engineers to select the most appropriate
cloud computing platform for their applications involving DNNs.
The article also provided an overview of some application areas
such as NLP, BI, cybersecurity, anomaly detection, and travel,
which have recently benefited from DNN deployments in cloud
computing. This overview first illustrated the advantages and the
effectiveness of deploying DNNs in cloud systems, and subse-
quently outlined the main challenges encountered when deploying
DNNs in the cloud. Future directions were also proposed to
enhance current deployments using cloud computing systems with
DNNs. It is expected that this review article will serve as a useful
guide for researchers and developers who are interested in deploy-
ing DNNs on cloud computing platforms.
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