101 research outputs found

    A Distributed Approach for Networked Flying Platform Association with Small Cells in 5G+ Networks

    Get PDF
    The densification of small-cell base stations in a 5G architecture is a promising approach to enhance the coverage area and facilitate the ever increasing capacity demand of end users. However, the bottleneck is an intelligent management of a backhaul/fronthaul network for these small-cell base stations. This involves efficient association and placement of the backhaul hubs that connects these small-cells with the core network. Terrestrial hubs suffer from an inefficient non line of sight link limitations and unavailability of a proper infrastructure in an urban area. Seeing the popularity of flying platforms, we employ here an idea of using networked flying platform (NFP) such as unmanned aerial vehicles (UAVs), drones, unmanned balloons flying at different altitudes, as aerial backhaul hubs. The association problem of these NFP-hubs and small-cell base stations is formulated considering backhaul link and NFP related limitations such as maximum number of supported links and bandwidth. Then, this paper presents an efficient and distributed solution of the designed problem, which performs a greedy search in order to maximize the sum rate of the overall network. A favorable performance is observed via a numerical comparison of our proposed method with optimal exhaustive search algorithm in terms of sum rate and run-time speed.Comment: Submitted to IEEE GLOBECOM 2017, 7 pages and 4 figure

    Cost-Effective Delay-Constrained Optical Fronthaul Design for 5G and Beyond

    Get PDF
    With the rapid growth of the telecom sector heading towards 5G and 6G and the emergence of high-bandwidth and time-sensitive applications, mobile network operators (MNOs) are driven to plan their networks to meet these new requirements in a cost-effective manner. The cloud radio access network (CRAN) has been presented as a promising architecture that can decrease capital expenditures (Capex) and operating expenditures (Opex) and improve network performance. The fronthaul (FH) is a part of the network that links the remote radio head (RRH) to the baseband unit (BBU); these links need high-capacity and low latency connections necessitating costeffective implementation. On the other hand, the transport delay and FH deployment costs increase if the BBU is not placed in an appropriate location. In this paper, we propose an integer linear program (ILP) that simultaneously optimizes BBU and FH deployment resulting in minimal capital expenditures (Capex). Simulations are run to compare the performance of star and tree topologies with the varying line of sight probabilities (LoS) and delay thresholds. We consider fiber-optic (FO) and free-space optics (FSO) technologies as FH for the CRAN. Finally, we provide an analysis of Opex and the total costs of ownership (TCO), i.e., a technoeconomic analysis

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; Pérez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks

    Get PDF
    The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as low-power consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the optical-electrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation

    Post-disaster 4G/5G Network Rehabilitation using Drones: Solving Battery and Backhaul Issues

    Get PDF
    Drone-based communications is a novel and attractive area of research in cellular networks. It provides several degrees of freedom in time (available on demand), space (mobile) and it can be used for multiple purposes (self-healing, offloading, coverage extension or disaster recovery). This is why the wide deployment of drone-based communications has the potential to be integrated in the 5G standard. In this paper, we utilize a grid of drones to provide cellular coverage to disaster-struck regions where the terrestrial infrastructure is totally damaged due to earthquake, flood, etc. We propose solutions for the most challenging issues facing drone networks which are limited battery energy and limited backhauling. Our proposed solution based mainly on using three types of drones; tethered backhaul drone (provides high capacity backhauling), untethered powering drone (provides on the fly battery charging) and untethered communication drone (provides cellular connectivity). Hence, an optimization problem is formulated to minimize the energy consumption of drones in addition to determining the placement of these drones and guaranteeing a minimum rate for the users. The simulation results show that we can provide unlimited cellular service to the disaster-affected region under certain conditions with a guaranteed minimum rate for each user.Comment: 2018 IEEE Global Communications Conference: Workshops: 9th International Workshop on Wireless Networking and Control for Unmanned Autonomous Vehicle
    corecore