4,946 research outputs found

    Overlay networks for smart grids

    Get PDF

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Multi-layer virtual transport network design

    Full text link
    Service overlay networks and network virtualization enable multiple overlay/virtual networks to run over a common physical network infrastructure. They are widely used to overcome deficiencies of the Internet (e.g., resiliency, security and QoS guarantees). However, most overlay/virtual networks are used for routing/tunneling purposes, and not for providing scoped transport flows (involving all mechanisms such as error and flow control, resource allocation, etc.), which can allow better network resource allocation and utilization. Most importantly, the design of overlay/virtual networks is mostly single-layered, and lacks dynamic scope management, which is important for application and network management. In response to these limitations, we propose a multi-layer approach to Virtual Transport Network (VTN) design. This design is a key part of VTN-based network management, where network management is done via managing various VTNs over different scopes (i.e., ranges of operation). Our simulation and experimental results show that our multi-layer approach to VTN design can achieve better performance compared to the traditional single-layer design used for overlay/virtual networks.This work has been partly supported by National Science Foundation awards: CNS-0963974 and CNS-1346688

    Implications of Selfish Neighbor Selection in Overlay Networks

    Full text link
    In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230); National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 020206

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    Multicast traffic aggregation in MPLS-based VPN networks

    Get PDF
    This article gives an overview of the current practical approaches under study for a scalable implementation of multicast in layer 2 and 3 VPNs over an IP-MPLS multiservice network. These proposals are based on a well-known technique: the aggregation of traffic into shared trees to manage the forwarding state vs. bandwidth saving trade-off. This sort of traffic engineering mechanism requires methods to estimate the resources needed to set up a multicast shared tree for a set of VPNs. The methodology proposed in this article consists of studying the effect of aggregation obtained by random shared tree allocation on a reference model of a representative network scenario.Publicad

    Mobile Online Gaming via Resource Sharing

    Full text link
    Mobile gaming presents a number of main issues which remain open. These are concerned mainly with connectivity, computational capacities, memory and battery constraints. In this paper, we discuss the design of a fully distributed approach for the support of mobile Multiplayer Online Games (MOGs). In mobile environments, several features might be exploited to enable resource sharing among multiple devices / game consoles owned by different mobile users. We show the advantages of trading computing / networking facilities among mobile players. This operation mode opens a wide number of interesting sharing scenarios, thus promoting the deployment of novel mobile online games. In particular, once mobile nodes make their resource available for the community, it becomes possible to distribute the software modules that compose the game engine. This allows to distribute the workload for the game advancement management. We claim that resource sharing is in unison with the idea of ludic activity that is behind MOGs. Hence, such schemes can be profitably employed in these contexts.Comment: Proceedings of 3nd ICST/CREATE-NET Workshop on DIstributed SImulation and Online gaming (DISIO 2012). In conjunction with SIMUTools 2012. Desenzano, Italy, March 2012. ISBN: 978-1-936968-47-

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems
    corecore