10 research outputs found

    Accessibility for Line-Cutting in Freeform Surfaces

    Get PDF
    Manufacturing techniques such as hot-wire cutting, wire-EDM, wire-saw cutting, and flank CNC machining all belong to a class of processes called line-cutting where the cutting tool moves tangentially along the reference geometry. From a geometric point of view, line-cutting brings a unique set of challenges in guaranteeing that the process is collision-free. In this work, given a set of cut-paths on a freeform geometry as the input, we propose a conservative algorithm for finding collision-free tangential cutting directions. These directions, if they exist, are guaranteed to be globally accessible for fabricating the geometry by line-cutting. We then demonstrate how this information can be used to generate globally collision-free cut-paths. We apply our algorithm to freeform models of varying complexity.RYC-2017-2264

    Representing rational curve segments and surface patches using semi-algebraic sets

    Get PDF
    We provide a framework for representing segments of rational planar curves or patches of rational tensor product surfaces with no singularities using semi-algebraic sets. Given a rational planar curve segment or a rational tensor product surface patch with no singularities, we find the implicit equation of the corresponding unbounded curve or surface and then construct an algebraic box defined by some additional equations and inequalities associated to the implicit equation. This algebraic box is proved to include only the given curve segment or surface patch without any extraneous parts of the unbounded curve or surface. We also explain why it is difficult to construct such an algebraic box if the curve segment or surface patch includes some singular points such as self-intersections. In this case, we show how to isolate a neighborhood of these special points from the corresponding curve segment or surface patch and to represent these special points with small curve segments or surface patches. This framework allows us to dispense with expensive approximation methods such as voxels for representing surface patches.National Natural Science Foundation of ChinaMinisterio de Ciencia, InnovaciĂłn y Universidade

    On inverse construction of isoptics and isochordal-viewed curves

    Get PDF
    Given a regular closed curve α in the plane, a ϕ\phi-isoptic of α\alpha is a locus of points from which pairs of tangent lines to α\alpha span a fixed angle ϕ\phi. If, in addition, the chord that connects the two points delimiting the visibility angle is of constant length ℓ\ell, then α\alpha is said to be (ϕ,ℓ)(\phi,\ell)-isochordal viewed. Some properties of these curves have been studied, yet their full classification is not known. We approach the problem in an inverse manner, namely that we consider a ϕ\phi-isoptic curve cc as an input and construct a curve whose ϕ\phi-isoptic is cc. We provide thus a sufficient condition that constitutes a partial solution to the inverse isoptic problem. In the process, we also study a relation of isoptics to multihedgehogs. Moreover, we formulate conditions on the behavior of the visibility lines so as their envelope is a (ϕ,ℓ)(\phi,\ell)-isochordal-viewed curve with a prescribed ϕ\phi-isoptic cc. Our results are constructive and offer a tool to easily generate this type of curves. In particular, we show examples of (ϕ,ℓ)(\phi,\ell)-isochordal-viewed curves whose ϕ\phi-isoptic is not circular. Finally, we prove that these curves allow the motion of a regular polygon whose vertices lie along the (ϕ,ℓ)(\phi,\ell)-isochordal-viewed curve

    Topologically reliable approximation of curves and surfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1997.Includes bibliographical references (p. [213]-222).by Wonjoon Cho.Ph.D

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore