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Abstract

Manufacturing techniques such as hot-wire cutting, wire-EDM, wire-saw cutting, and flank CNC machining all belong to a class of
processes called line-cutting where the cutting tool moves tangentially along the reference geometry. From a geometric point of view,
line-cutting brings a unique set of challenges in guaranteeing that the process is collision-free. In this work, given a set of cut-paths on
a freeform geometry as the input, we propose a conservative algorithm for finding collision-free tangential cutting directions. These
directions, if they exist, are guaranteed to be globally accessible for fabricating the geometry by line-cutting. We then demonstrate
how this information can be used to generate globally collision-free cut-paths. We apply our algorithm to freeform models of varying
complexity.
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1. Introduction & Motivation

Geometric modeling of a curved object represented as a set
of NURBS surfaces is a well known and common task, using
contemporary geometric CAD software. In contrast, physical re-
alization (or manufacturing) of curved objects is far more chal-
lenging. Given a free-form object, its realization as a tangible
object has attracted a considerable research attention, for many
years. See [1] for a recent survey. The geometric challenges can
be mostly found in multi-axis machining, where the tool can cut
at its tip (i.e. [2]) or on it side (shank, i.e [3]).

Modeling of manufacturing processes requires one to consider
many factors: starting from geometrical issues like local and
global accessibility, collision detection, and manufacturing tech-
nology, through related issues such as the choice of tool’s shapes
and sizes (for example in the context of 5-axis flank CNC ma-
chining), to physical parameters like material properties. For
certain type of materials such as foam or polystyrene, (hot-wire)
line-cutting is the most common subtractive manufacturing (SM)
methodology. Other types of line-cutting processes also include
wire electrical-discharge machining (wire EDM), and even more
traditional tools, such as the band-saw. In hot-wire cutting, for
example, the cutting tool is typically a thin straight conductive
wire, stretched between two points on a rigid frame. During
the manufacturing process, an electric current passes through the
wire, heats it up, and the wire consequently cuts a ruled surface
off the material, as it moves in space, forming the desired shape.

The development of hot-wire cutting machines started with
2-axis machines. Having the wire fixed vertically, the material
block moves on a 2D platform, yielding two degrees of freedom.
The state-of-the-art technology offers hot-wire machines with 5
degrees (or more) of freedom which can remove large amounts of
material in a single cut, making it suitable for manufacturing of
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general 3D objects. Alternatively, the hot wire can be tensioned
on a bracket, mounted on a robotic arm, (e.g. see Figure 1),
to yield a multi-axis control. Most recently, a robotic hot-blade
prototype that consists of 18 degrees of freedom has been intro-
duced [4, 5]. The extra degrees of freedom stem from the fact
that the cutting curve is not a straight line, but a bent 3D curve.
The tool-path planning algorithm uses the bending energy of the
wire to adapt its shape dynamically to the surface during the cut-
ting process. While having that many of degrees of freedom is
an advantage from the point of view of approximation quality,
curved wire is a fragile tool and a straight wire dominates the
industry.

Figure 1: A hot-wire cutting configuration based on a 6-DoF robot arm.

Another work inspired by how wire cutting deals with approx-
imation of free-form surfaces by 3D motions of planar curves
[6]. The 3-parametric space of planes intersecting the input sur-
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face is explored to reveal segments of the planar cuts that admit
tangential movability along the free-form surface. Partial shape
matching is sequentially applied to find congruent profiles that
are used to initialize the sweep approximation. Finally, an opti-
mization loop is performed to optimize the planar profile and its
motion. However, global collision detection between a handler
of the curved wire and the surface is not considered.

In this work, we consider hot-wire cutting with a straight wire
in a multi-axis cutting context. We focus solely on the geometric
aspects of line-cutting, most notably the accessibility questions,
which can be relevant also to any physical implementation of the
line-cutting process.

1.1. Previous work
In the computer aided geometric design literature, quite a few

results are devoted to free-form surface approximation by ruled
surfaces [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Rationalization of complex surfaces appearing in free-form ar-
chitecture is studied by Flöry and Pottmann [7]. The input free-
form surface is approximated by ruled surface strips. The rulings
of the strips are initialized by the asymptotic curvature network
and the initial planar strips are further optimized to become cur-
vature continuous across strip boundaries.

Sprott and Ravani approximate a ruled surface by a motion
of a cylindrical tool [10]. They conceptualize a ruled surface
as a curve on Plücker’s quadric and use the striction curve of
the ruled surface to initialize the position of the tool as the axis
of the cylinder is required to intersect surface normals along a
single ruling. Senatore et al. look for the maximum size of a
cylindrical tool while guaranteeing bounds on under- and over-
cutting errors[12].

Li et al. consider approximation of a ruled surface by a mo-
tion of a conical tool and propose an optimization base approach
[8]. The conical tool moves along two guiding rails and position
of the tool’s axis is sequentially optimized to minimize the error
between the tool and the input ruled surface. Another work that
considers cylindrical cutters and uses optimization approach is
[11]. The offset of the input ruled surface is computed and three
curves on it are selected. A position of the tool’s axis is com-
puted to minimize, in the least square sense, the distance from
these three curves. This formulation is linear and therefore only
linear system of equations needs to be solved to compute the po-
sition. However, the algorithm requires three guiding curves and
therefore the initialization is hardly automatic.

Elber and Fish use subdivision approach to approximate a gen-
eral free-form surface by ruled surfaces [9]. The reference sur-
face is subdivided along parametric directions to get a set of bi-
linear patches as the final approximation. Each patch is guaran-
teed to approximate the reference surface within a user-defined
threshold and, due bilinearity, two possible solutions of ruling’s
motion are found for each patch. To meet high tolerances, how-
ever, a large number of subdivision steps is needed.

An automated ruled-surface approximation algorithm is intro-
duced in [15]. This algorithm starts with a point cloud as the
input (even thought conceptually it can also work on a discrete
sampling of parametric surfaces), which is first partitioned into
elliptic and hyperbolic regions. For hyperbolic regions (parabolic
being treated as a special case of hyperbolic), the asymptotic
curves on the sampled input data are computed and used as for
initialization of the rulings. The initial ruled surface is further
optimized towards smoothness and approximation quality.

Another attempt to optimize the piecewise ruled surface
approximation was proposed in [14] that employed multi-
dimensional dynamic programming between opposite rail curves

on the input general freeform surfaces. By optimally matching
the sampled points on the rails curves, a set of piecewise ruled
surface approximation with minimal error can be computed.

A similar approach that uses asymptotic curve network is pro-
posed in [16]. The segmentation into strips is formulated as a
level-set problem, in which discretely sampled points x on the in-
put surface are assigned values f (x) and f is optimized to choose
strip boundaries with properties which are desirable, both for the
ruled surface fitting and for the overall aesthetic quality of the
end-result. Specifically the algorithm seeks conoidal ruled sur-
faces that are preferable for fabrication of wooden panels, as all
the panels can be placed parallel to the same plane.

In the context of 5-axis CNC machining, physical experiments
of machined ruled surfaces using cylindrical milling tools are
presented in [13]. The key ingredient is the feedrate adjustment
that increases the machining quality, especially in highly curved
regions.

Our work tackles a problem of global accessibility. While
global collision detection algorithms for flat-end and ball-end
CNC milling are quite well studied, see e.g. [1] and the ref-
erences therein, to the best of our knowledge, there is very lit-
tle research on global accessibility in the context of flank (aka
side or peripheral) CNC machining, see discussion [3, Section 3].
Most of the research on flank milling deals only with local colli-
sions [17, 18, 19]. Typically, locally gouging-free position of the
tool is computed via optimization, followed by global collision
test as a post-process that eliminates poses that collide globally
[20, 21]. In contrast, in the proposed work we aim to design
the motion of the tool (hot-wire), considering global collision di-
rectly in the motion-planning stage. Moreover, since most of the
above discussed works were inspired by CNC machining, only
collision detection of a ruled surface with finite rulings is consid-
ered. In this work, our assumptions are different as they come
from the constellation of the hot-wire cutting machine, namely
that material is posed inside a large frame that holds the hot wire,
see Figure 1, and therefore the design surface has to be accessible
by ruled surfaces with infinite rulings.

Recently, hot-wire cutting was studied for a special class of
input surfaces, namely minimal surfaces [22]. These surfaces
are in fact manufactured as thin shells and therefore the material
has to be removed from both sides of the surface. The man-
ufacturing technology is 5-axis hot wire cutting, however, the
path-planing is realized on both sides of the surface. Weierstrass
parametrization is used to map a complex planar domain to a
minimal surface. Hot-wire cutting lines follow the principal cur-
vature lines of the surface, which are claimed as positions that
minimize global collisions. However, these arguments are based
on experimental observations which is in contrast to asymptotic
lines approach [16] that offers locally the best fit of a line to a
surface. When compared to our approach, [22] consider only a
special class of (minimal) surfaces while our algorithm handles
any (at least C2 continuous) free-form surface.

Another category of research dealing with tangential contact
of infinite lines and curved surfaces belongs to computer graph-
ics, namely to computing silhouettes of 3D objects [23]. While
for a 3D quadric, its silhouette from an arbitrary viewpoint is
known to be a planar curve (conic section), for surfaces of higher
degrees and more complicated shapes, the silhouettes are 3D
curves [24]. The silhouette is a contact curve between the in-
put surface and the silhouette cone. Given a modelM, its outer
visual hull, VH(M), is the maximal water-tight model which has
identical silhouettes as M in all viewing directions outside the
convex hull ofM [23]. The visual hull is then the intersection of
all possible silhouette cones, considering all possible viewpoints
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lying outside the convex hull of the input surface. The hot-wire
cutting problem is therefore linked to the visual hull problem by
the fact that the visual hull is the smallest super-set (in terms of
inclusion) ofM that can be manufactured by infinite lines.

The visual hull problem have been introduced and extensively
investigated by A. Laurentini, in the context of reconstructing 3D
shape from multiple photos [23]. The 2D visual hull is first de-
fined on planar configurations of multiple polygons P, and an al-
gorithm is proposed for computing the visual hull of such scenes.
Visual hull computation of 2D scenes is done by partitioning the
plane into regions by the number of lines passing through these
regions that do not pass through the interior of any polygon in
P. The regions for which this number is zero form the interior of
the visual hull of P. This approach is generalized to polyhedra
in 3D (which, of course needs to partition 3D with planes, rather
than lines). In a series of papers, this approach has been further
generalized to computing the visual hull of shapes of increasing
complexity: solids of revolution [25], smooth curved solids [26],
and piecewise-smooth solids [27].

A different approach to line-accessibility of smooth 3D ob-
jects (represented as B-rep with parametric surfaces) has been
proposed in [24], which forgoes the partitioning of the entire 3D
Euclidean space, and instead computes the boundaries between
the accessible and inaccessible directions. This approach can
also be possibly applied to computing accessibility with respect
to external obstacles, while it does not enumerate the tangential
line-accessible directions. While [23, 25, 26, 27, 24] focus on the
problem of finding which regions of the geometry that are line-
accessible, our work aims to classify the tangent directions that
are line-accessible in each region.

In the context of flat-end cutting, the global collision detection
is performed by bounding the tilt angle that guarantees globally
collision free pose [28]. Having such a cone that bounds the
admissible directions of the tool axis at every contact point, so
called iso-conic partitioning of the input surface is applied and
the contact curves are computed to minimize the variation of the
bounding cone.

On a conceptual level, our paper follows [2] where the acces-
sibility of a free-form surface is studied, in the context of 5-axis
ball end milling. Motion of the tool axis is navigated by explor-
ing a three dimensional search space. The first parameter is the
parameter value of the input contact curve over the free-form sur-
face, and the other two are a pair of angles determining locally
the orientation of the tool’s axis (inclination and tilt angles). The
search space is being subdivided until a conservative estimate of
admissible positions of the milling axis is found. This approach
guarantees globally accessible and gouging-free configurations
of the milling tool.

Unlike previous related work on line-cutting, this work offers
global accessibility assurances for given cut-path lines. Herein
and unlike [2], only tangential line contacts are of interest and
considered.

The rest of the paper is organized as follows. Section 2 pro-
vides some necessary background on bounding differential prop-
erties of surfaces. Section 3 presents the accessibility algorithm
itself, Section 4 employs the previous results toward motion plan-
ning in line-cutting while Section 5 portrays some examples. Fi-
nally, we conclude in Section 6 and discuss possible future work.

2. Background

Let S be a C1, and sometimes C2 as necessary, regular para-
metric surface in modelM, S ⊂ M, and let S be subdivided into

S i

v

Cn(v, θ)

Ct(v, π2 ± θ)

p

Figure 2: An illustration of the bounding normal cone Cn(v, θ) (blue), and com-
plementary tangent cone Ct(v, π2 ± θ) (the space between the green cones) of a
surface patch S i. Several arbitrarily chosen normal directions are shown inside
the normal cone, as well as its axis v.

small-enough patches, {S i} (The term ”small-enough” is quanti-
fied by means of the patch size and the angular span of the normal
directions later in Section 3). Given a single such patch, denoted
S 0, in this section we consider how to bound the tangents and
normals of S 0, in Section 2.1, and S 0’s asymptotic directions, in
Section 2.2.

2.1. Bounding the normals and tangents

Hence-after, we assume surfaces are oriented with their nor-
mal vectors pointing outsideM. The normal field of C1 surface
S 0 can be computed as

nS 0 (u, v) =
∂S 0(u, v)

∂u
×
∂S 0(u, v)

∂v
, (1)

and it never vanishes, as S 0 is regular. Following [29], a tight
bounding cones for nS 0 can be derived as Cn(v, θ), with axis v
and angular span θ. See also Figure 2. S 0 is considered small
enough if its bounding box is below some prescribed size dmax
and θ is below some prescribed angular span θmax.

Given Cn(v, θ), the normal cone of S 0, the tangent directions
of S 0 are all bounded inside the double complementary cone
Ct(v, π2 ± θ) (See also Figure 2):

Lemma 1. Let S 0 be a regular, C1-continuous, surface
patch with a normal cone Cn(v, θ). Then, the tangent
directions in S 0 are all bounded inside the double com-
plementary cone Ct(v, π2 ± θ).

Proof: Let u be a tangent line in S 0 at p ∈ S 0, and let n
be the normal vector of S 0 at p. n ∈ Cn(v, θ) and hence
∠(n, v) ≤ θ. But∠(n,u) = π

2 , or π
2−θ ≤ ∠(v,u) ≤ π

2 +θ,
and u ∈ Ct(v, π2 ± θ). �

2.2. Bounding the asymptotic directions

Given a hyperbolic patch S 0, we aim to construct geometric
bounds on all tangents to S 0. Such a bound of S 0 is clearly going
to intersect the neighboring sub-patches, in particular the 1-ring
(8-connected) neighborhood of S 0. This 1-ring neighborhood
consists of 8 surrounding patches that arise from the subdivision
process and share with S 0 either a corner point or a boundary
curve. See Figure 3.
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(b)
Figure 3: An 8-connected (1-ring) neighborhood. (a) The parameter domain
[umin, umax] × [vmin, vmax] (blue) of S 0 is surrounded by 8 neighboring parameter
domains that are pre-images of S i, i = 1, . . . , 8. (b) The 3-space analogue. Patch
S 0 and all its neighboring patches are assumed to be hyperbolic, and all together
form S h.

To remedy the difficulty of intersecting neighboring patches,
we treat this 1-ring neighborhood differently. Consider a hyper-
bolic patch S 0, and let

S h = S 0∪{S i | S i is hyperbolic and S i 8-connected neighbor of S 0},

be the 1-ring hyperbolic neighborhood of S 0, forming a larger-
patch, S h. We seek to bound the ranges of directions in which
S h is guaranteed to have only negative normal curvature. That
is, the surface curves ”down” with respect to the tangent plane
(See Figure 4 or, for example, Chapter 3.3 in [30]). Toward this
end, we must bound all the asymptotic directions of S h. For a
fixed point S h(u, v), a tangent direction aS h

u(u, v) + bS h
v(u, v) is

asymptotic if

0 = a2L(u, v) + 2abM(u, v) + b2N(u, v), (2)

where S h
u denotes the first derivative of S h with respect to u,

L(u, v),M(u, v),N(u, v) are the coefficients of the second funda-
mental form of S h at (u, v) and a, b ∈ R (see Chapter 3.6 in [30]).
We also impose a normalization constraint

1 = a2 + b2, (3)

as (2) is a homogeneous quadratic form in (a, b) with a trivial
solution (0, 0). We further write:

L(u, v) = S h
uu(u, v) · n̄h(u, v) = S h

uu(u, v) · nh(u,v)
|nh(u,v)| ,

M(u, v) = S h
uv(u, v) · n̄h(u, v) = S h

uv(u, v) · nh(u,v)
|nh(u,v)| ,

N(u, v) = S h
vv(u, v) · n̄h(u, v) = S h

vv(u, v) · nh(u,v)
|nh(u,v)| , . (4)

where again S h
uu denotes the second derivative of S h with respect

to u, etc., and · denotes the inner product. Further, n̄h(u, v) de-
notes the unit normal of S h that can be computed as nh(u,v)

|nh(u,v)| , where
nh(u, v) = S h

u×S h
v . Assuming S h is regular, |nh(u, v)| , 0 through-

out the patch. Then, we can simplify Equations (4) by factoring
out the (non zero) magnitude of the normal, |nh|. If S h is a piece-
wise polynomial or rational surface, then this step results in the
piecewise polynomial or rational constraint:

0 = a2L(u, v) + 2abM(u, v) + b2N(u, v)

= a2S h
uu ·

nh

|nh|
+ 2abS h

uv ·
nh

|nh|
+ b2S h

vv ·
nh

|nh|
⇒

0 = a2S h
uu · n

h + 2abS h
uv · n

h + b2S h
vv · n

h. (5)

To further simplify the notation, let:

L̂(u, v) = S h
uu(u, v) · nh(u, v),

M̂(u, v) = S h
uv(u, v) · nh(u, v),

N̂(u, v) = S h
vv(u, v) · nh(u, v),

nh

TpS h

OpS h

p

aS h
u + bS h

v

d

Figure 4: Second order analysis at a point. The osculating paraboloid OpS h of
S h at p is intersected with the tangent plane TpS h to define the two asymptotic
directions (red). For a fixed point p, the coefficients a, b ∈ R are computed from
Equation (6). A direction d (yellow) in which ∂2

dS h ·nh < 0 defines a line (green)
that is locally penetration-free with S h.

then also (5) becomes

0 = a2L̂(u, v) + 2abM̂(u, v) + b2N̂(u, v). (6)

In order to bound the asymptotic directions of S h, we need to
bound all the pairs (a, b) in the patch which satisfy Equation (6).
We accomplish this in two steps:

1. First, we reduce the problem to finding the range of values
of a single variable, rather than (a, b). This is explained in
Section 2.3

2. Then, we solve the equation using a mix of symbolic com-
putations over piecewise polynomial/rational B-spline func-
tions and interval arithmetic. This is discussed in Sec-
tion 2.4

Remark 1. So far we used the terms appearing in the second
fundamental form (L̂(u, v), M̂(u, v), N̂(u, v)) evaluated at a spe-
cific point (u, v), i.e., as real numbers. From now on, unless
stated otherwise, we will use these terms as bivariate functions
in (u, v) as our aim is to bound these entities for whole surface
patches, not just as values at a point. We also omit the parame-
ters and will write M̂, etc.

2.3. A reduction to a single variable problem
Due to homogeneity, if (a, b) is a solution to Equation (6),

then so is (λa, λb), for λ ∈ R. We seek non trivial solutions
and hence assume λ , 0. Solving (6) satisfying the normaliza-
tion constraint (3) gives two non-linear equations that need to
be simultaneously solved. However, the problem is essentially a
single-variable problem as the family of (normalized) tangent di-
rections is one-parametric. Therefore, if possible, we solve only
a univariate case, in particular we do:

1. Remember that N̂ is a B-spline function if S h is. If all the
coefficients of N̂ are all positive (or all negative), then N̂ > 0
(or N̂ < 0), by the convex hull property. Inspecting Equa-
tion (6), if N̂ > 0, then a , 0. If (a, b) is a solution and
a , 0, then (1, b

a ) is also a solution. We can then restrict a
to a = 1, and solve for b in Equation (6).
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2. Otherwise, if N̂(u, v) = 0 for some (u, v) in the domain, we
examine if L̂ can be zero. If L̂ , 0, we restrict b to b = 1,
and solve for a, in Equation (6).

3. Finally if N̂ = L̂ = 0 for some (in general different) pairs of
parameters, we solve a bivariate system consisting of Equa-
tions (6) and (3) and unknowns a and b, for example, us-
ing [31].

2.4. Solving the single variable problem

We now present the complete formulations only for the a = 1
case, while the other one follows a similar path. We emphasize
that the patch S h, see Figure 3, is assumed hyperbolic. For case
1 (a = 1), we obtain

b =
−2M̂ ±

√
4M̂2 − 4L̂N̂

2N̂
=
−M̂
N̂
±

√
M̂2 − L̂N̂

N̂2
, (7)

where the term under the square root is guaranteed to be positive
everywhere (due to S h being hyperbolic everywhere). The ra-
tional expressions −M̂

N̂
and M̂2−L̂N̂

N̂2 are computed using symbolic
(product and difference) operations on rational B-spline func-
tions [32], which are performed with machine-precision. Since

the square root in
√

M̂2−L̂N̂
N̂2 cannot be represented as a rational B-

spline function, we continue solving for the intervals where the
asymptotic directions may reside using interval arithmetic [33].
Exploiting the convex hull property of B-spline function, we find
the minimum and maximum values of those rational expressions,
[−M̂

N̂ min
, −M̂

N̂ max
] and [ M̂2−L̂N̂

N̂2 min
, M̂2−L̂N̂

N̂2 max
], and represent them as

intervals. The rest of the formula is computed by interval arith-
metic, resulting in a solution for b: an interval [bmin, bmax].

The asymptotic directions of S h in Euclidean space all have a
representation of the form: aS h

u +bS h
v . Herein, however, a and/or

b represent ranges of values, and they are parameterized:

1. a(r) = 1, b(r) = r · bmin + (1 − r)bmax, for case 1.
2. a(r) = r · amin + (1 − r)amax, b(r) = 1, for case 2.
3. a(r) and b(r) as univariate solutions for the two Equa-

tions (3) and (6) and two unknowns, a and b.

For each univariate solution, we obtain the trivariate:

T (u, v, r) = a(r)S h
u(u, v) + b(r)S h

v(u, v),

for each computed bound on the asymptotic directions of S h.
Since (7) returns, in general, two solutions (i.e. two interval
ranges), the trivariate T (u, v, r) typically consists of two dis-
connected components. Consequently, the bounding region of
the (trivariate) asymptotic directions in 3-space typically consist
of two bounding double-cones (see Figure 5 (a)). Finally, the
bounding cones are projected onto a plane, TS h , orthogonal to v,
the axis of the normal cone of S h, Cn(v, θ). The 2D situation in
TS h is shown in Figure 5 (b).

The 2D angular spans between the projected cones on TS 0 rep-
resent the ranges of directions in which the normal curvature is
either entirely positive, or entirely negative. All that remains is
to sample each of those angular spans at a single point, to find
the spans with the negative normal curvature, or the spans that
are locally line-accessible in S 0.

3. The tangent line-accessibility analysis algorithm

Consider a C1 regular parametric surface S(u, v), representing
some (part of) 3D modelM, and let nS(u, v) be the (unnormal-
ized) normal field of S . Given some tangent line to S, Lt, we
define the global tangent line-accessibility problem, or simply
line-accessibility problem, as follows:

Definition 1. Given an infinite line tangent to surface
S, Lt, at p ∈ S, Lt is globally line-accessible if it inter-
sects modelM at no location other than p.

In order to line-cutM, two major tasks must be fulfilled:

1. First, a set of covering cut-paths must be formulated forM
so that line-cuttingM by sweeping Lt along these cut-paths
will yield a good approximation toM.

2. The second task is: given a cut-path curve, Cp, find the best
globally accessible tangential direction, if any, to line-cut
with, while moving along Cp. The focus of this work is
about this second accessibility task.

Given a C2 regular parametric surfaceS(u, v), one can determine,
if it is elliptic (convex or concave) or hyperbolic, or a mix of
the above, by computing the parabolic curves in S [34]. Fol-
lowing [35], one can compute the Gaussian curvature field of
B-spline surface S(u, v), as a scalar B-spline function K(u, v).
The zero set of K, K(u, v) = 0, delineates the parabolic curves of
S , if any, and these parabolic curves, in turn, divide S(u, v) into
hyperbolic and elliptic zones.

Consider a prescribed cut-path curve, Cp ⊂ S, along which
the tangential cut-line moves on S. We seek to detect, if ex-
ists, tangential direction(s) to S that are line-accessible, for all
p ∈ Cp. Further, we seek to employ optimal tangential direc-
tions, as much as possible, directions where the cutting line best
fit S. Given a hyperbolic location p ∈ Cp, the optimal tangen-
tial directions are typically the asymptotic directions [16]. Given
a convex elliptical region, the best tangential directions are the
principal directions with the minimal (in absolute value) normal
curvature. Finally, for parabolic locations, the direction with
zero normal curvature is to be preferred while concave ellipti-
cal regions are locally (and globally) line-inaccessible. Herein,
we seek to verify that these preferred directions are indeed line-
accessible, and if not, we aim to select those that are as close as
possible.

Finding all the valid (tangential) cut-lines for all points on S is
an intractable task. Instead, we employ a conservative discretiza-
tion of the problem (See Figure 6):

1. As discussed in Section 2, S is subdivided into small yet
finite patches, as set {S i}, until the size and normal devia-
tions in all S i (if not singular) are small, and below dmax and
θmax, respectively. In addition, to ensure that the subdivision
process is finite, we stop the subdivision for patches smaller
than dmin. Some examples will be presented in Section 5.

2. For each such small patch S i:
(a) Classify S i as a convex, concave, hyperbolic, or a

mixed patch.
(b) Define a set of n tangent vectors ui j, j = 1...n, form-

ing an angular division of a (central) tangent plane of
S i. The tangent plane is defined by the axis of the cone
Cn(v, θ), as described in Section 2.1. For an illustra-
tion of the angular division, see Figure 6 (a).
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(a)

S h

(b)

TS h

Figure 5: (a) An illustration of the bounding cones (in red) of the asymptotic direction of a small hyperbolic region S h (in blue). (b) A zoomed-in orthogonal projection
of (a) in the direction of the axis of the bounding normal cone of S h onto the tangent plane TS h is shown. The range of locally (and conservatively) accessible directions
is marked in green, presenting negative normal curvatures. The range of directions marked in yellow is also outside the asymptotic directions bounding cones, however,
the normal curvature in these directions is positive and hence these directions are locally inaccessible. The directions in the green area are locally accessible; global
accessibility test must still be conducted.

(c) Compute n bounding frustums, F =
{
FS i,ui j

}n
j=1

, of
tangent lines of {S i} in approximate direction ui j.
These frustums overlap and are large enough to (to-
gether) include all possible tangent lines of S i. See
Figure 6 (b)-(d).

(d) If frustum FS i,ui j intersects with some portion of sur-
face patch S k ⊂ M, k , i, more rigorous tests are
applied to determine if any tangents of S i inside FS i,ui j

are indeed obstructed by S k. If such an obstructing
patch is detected, even after rigorous tests, we conser-
vatively declare all tangent lines in FS i,ui j as inacces-
sible. Otherwise, FS i,ui j , and all the tangent lines of S i
it contains, is defined as line-accessible. This task is,
by far, the most challenging task.

In the rest of this section, we will describe our proposed ob-
struction tests in details, and demonstrate how to achieve con-
servative accessibility classifications for each of the frustums.
Hence-after and without loss of generality, we consider the line-
accessibility of one surface patch in {S i}, that is denoted S 0. Note
that the set {S i} covers all surfaces of modelM and hence acces-
sibility with respect to {S i} reflects on accessibility with respect
toM.

3.1. The main algorithm
After the initial steps discussed above, we have, for S 0, its

normal and tangent cones, Cn(v, θ) and Ct(v, π2 − θ), respectively.
The tangent space of S 0, bounded by Ct(n, π2 − θ), is discretized
by constructing the set of frustums

{
FS 0,u0 j

}n
j=1

, using the follow-
ing construction rules (Recall Figure 6):

1. The axis of FS 0,u0 j is u0 j.
2. The smaller base of FS 0,u0 j is aligned orthogonally to u0 j,

behind S 0. The size of the smaller base of FS 0,u0 j is chosen
so that FS 0,u0 j is a bounding volume of S 0.

3. The vertical opening angle of FS 0,u0 j , in v, is set to θ, fol-
lowing the computed vertical opening angle of the comple-
mentary tangent cone.

S i

ui j

FS i,ui, j
S i

(a)

(b)
(c)

(d)
Figure 6: (a) A division of the tangent plane of surface S i (in red) to n tangents
ui, j, j = 1, ..., n. (b) An example of one frustum FS i ,ui, j , for one surface patch
S i and one tangent ui, j. (c) Three samples of frustums of the tangential space of
surface patch S i. (d) a covering set of frustums of the tangent space of S i, using
all ui, j, j = 1, ..., n. Note frustums must overlap to guarantee a full coverage of
the tangent space.

4. The radial opening angle of FS 0,u0 j is 2π/n, where n is the
number of frustums.

5. The depth of frustum FS 0,u0 j is chosen so the frustum will
extend beyond the bounding box ofM.
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Definition 2. Hence after, we use the term locally ac-
cessibly direction to denote a tangent direction in a
hyperbolic patch S 0, that (following the asymptotic
directions analysis in Section 2.2) was found to have
only negative normal curvature. Note that for a convex
patch S 0 all directions are locally accessible.

Assumption 1. From Section 2.2, conservative bounds
on the asymptotic directions of S 0 are also available.
That said, consider a tangent line Lt at point p to S 0,
in a direction that was detected to be locally accessi-
ble. We assume Lt intersects S 0 at no location except
p. While for a convex patch this assumption holds, for
a hyperbolic patch, it is not difficult to synthesize an
example in which Lt will penetrate S 0 in another loca-
tion q. That said, this penetration error is minute and
clearly depends on the size of the (small) patch and the
differential properties’ variations in S 0 that we already
bound. Hence, this penetration error is also bounded
and a bound for this error is computed and discussed
in Appendix A.

Further, for simplicity of the forthcoming algorithms,
we also assume tangent line Lt to S 0 will not penetrate
the 1-ring (8-connected) neighborhood of S 0. Again,
for similar reasons, the error can be bounded.

While in convex S 0 patches, all tangent lines are guaranteed
not to penetrate S 0, and for hyperbolic cases, Section 2.2 pro-
vides a way of eliminating directions with non-negative normal
curvature, we have no such guarantee for mixed patches. Our al-
gorithm will therefore aim to determine which tangent directions
of mixed S 0 patches are globally line-accessible, while due to
assumption 1, we can bound the potential error for S 0 itself and
its immediate 1-ring neighborhood.

All that said, and excluding S 0 itself and its 1-ring neighbor-
hood, we are now ready to verify the tangent directions in S 0,
that are globally accessible, against all other patches inM.

The accessible directions of a surface patch S 0 are found by
the main algorithm, Algorithm 1. Given all patches in M, the
algorithm, in Line 1 (using NoObstructGlbl(S 0), Algorithm 2),
first filters out, other patches that are trivially irrelevant to the
question of line-accessibility to S 0. Then, for each sampled di-
rection u0 j, Algorithm 1 constructs a frustum FS 0,u0 j , and checks,
in Line 4, if this direction is locally accessible and if not purges
this frustum (in Line 5).

If FS 0,u0 j is locally accessible, we find (in Line 7) the subset
of patches, PS 0,u0 j , that intersect with FS 0,u0 j , and hence poten-
tially obstruct tangent lines in FS 0,u0 j . We use a bounding vol-
ume hierarchy (BVH), that contains all surface patches S i ⊂ M,
to efficiently find the subset of patches that intersect with FS 0,u0 j .

Then, for all S i ∈ PS 0,u0 j , Algorithm 1 invokes Algorithm 3
to determine if a patch S i, actually obstructs line-accessibility
to S 0 in frustum FS 0,u0 j . If Algorithm 3 finds at least one patch
S i which obstructs accessibility to a tangent line in FS 0,u0 j , frus-
tum FS 0,u0 j , with all its (tangential) directions, is conservatively
decreed inaccessible.

Algorithm 2 performs some simple filtering of patches that
are immediately identified as non-obstructing for the line-
accessibility of patch S 0. Let Ĉt(S 0) be a bounding volume of
the Minkowski sum of the complementary tangent cone of S 0,
Ct(S 0), with S 0 (See Line 1). Then, in Line 2 of the algorithm,

Algorithm 1 The main line-accessibility algorithm: Finding
the subset of frustums of S 0 ⊂ M with line-accessibility.
Input:
S 0: a surface patch from a surface S ⊂ M;
{S k}: a set of all surface patches fromM, excluding S 0;
n: the number of frustums to discretize tangent space of S 0.
R: number of refinements iterations to apply - See Algorithm 3;

Output:
A subset of frustums, F A =

{
FS 0,u0 j

}
, in which S 0 is line-

accessible, if any;

Algorithm:
1: I := NoObstructGlbl(S 0, {S i}); // Initial set of patches that

tangent line-obstruct S 0 in no frustum. See Algorithm 2.
2: F A :=

{
FS 0,u0 j

}n
j=1

; // All frustums around S 0. Their con-
struction depends on S 0, as well as the parameter n.

3: for all FS 0,u0 j ∈ F do
4: if FS 0,u0 j is locally inaccessible then // according to

asymptotic directions analysis in Section 2.2.
5: F A := F A − {FS 0,u0 j };
6: else
7: PS 0,u0 j := {S k | FS 0,u0 j ∩S k , φ}−I; // Set of potentially

obstructing patches that intersect frustum FS 0,u0 j .
8: for all S i ∈ PS 0,u0 j do
9: if TestObstructInFrustum(S 0, FS 0,u0 j , S i,R) then //

see Algorithm 3
10: F A := F A − {FS 0,u0 j };
11: break; // Once detected as obstructed, FS 0,u0 j can

conservatively be purged.
12: end if
13: end for
14: end if
15: end for
16: return F A; // All the accessible frustums, if any.

every other surface patch S k is tested for inclusion in Ĉt(S 0). Ev-
ery patch S k that does not intersect with Ĉt(S 0) is immediately
marked as non-obstructing.

Algorithm 2 then performs two other tests to mark additional
cases as irrelevant. In Lines 5 and 6 of the algorithm, patches
in a convex neighborhood are also marked as non-obstructing.
Finally, in Lines 7 and 8, patches that are in the 1-ring neigh-
borhood of S 0 are also marked as non-obstructing, following as-
sumption 1.

Algorithm 3 does a more precise (and more expensive) test
for the possibility of S k obstructing line-accessibility from S 0.
Toward this end, we present the following:

Lemma 2. Consider parametric patch S 0(u, v) and
another patch S k(r, t), and let Lt be some line tangent
to S 0. S k can line-occlude Lt only if ∃(u, v, r, s) such
that,

O(u, v, r, s) = (S 0(u, v) − S k(r, t)) · N0(u, v) = 0, (8)

where N0 is the normal field of S 0(u, v).
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Algorithm 2 NoObstructGlbl(S 0): Computes a set of patches
that obstruct line-accessibility to S 0 in no tangent direction.
Input:
S 0: a surface patch from the input surface S ⊂ M;
{S k}: a set of all surface patches fromM, excluding S 0;

Output:
I: a set of patches fromM which are guaranteed to obstruct no
line-accessibility to S 0;

Algorithm:
1: Ĉt(S 0) := MinkowskiS um(Ct(S 0), S 0);
2: I := {S k | Ĉt(S 0) ∩ S k = φ}; // Initial set of no-obstruction

patches - no-overlap with expanded (via Minkowski sum)
tangent complementary cone of S 0;

3: C := if S 0 is convex, the set of convex adjacent patches to
S 0, forming an angular span of up to 180 degrees (preventing
self-occlusions);

4: for all S i ∈ {S k} − I do
5: if S 0 is convex and S i ∈ C then
6: I := I ∪ {S i};
7: else if S 0 and S i are adjacent then
8: I := I ∪ {S i}; // By Assumption 1
9: end if

10: end for
11: return I;

Proof: By contradiction. Assume S k obstructs line-
accessibility from S 0 and yet Equation (8) never vanish. Then
there exist a point p on S 0 such that the line Lt tangent to S 0
at p intersects with S k at point q. But then S k is intersect-
ing with the tangent plane of S 0 at p that contains Lt. L =
S 0(up, vp) − S k(rq, tq) but because Lt is tangent to S 0 we have
(S 0(up, vp) − S k(rq, tq),N0(up, vp) = 0, a contradiction. �

Lemma 2 presents a way to precisely determine if patch S k
can line obstruct S 0. Given (regular) B-spline surfaces S 0 and
S k, and the unnormalized normal field N0 that is also a B-spline
vector function, symbolically compute [32] the 4-variate func-
tion O(u, v, r, s) in Equation (8) as a Bspline function. If all co-
efficients of O are positive or all coefficients are negative we are
ensured line-accessibility from S 0 is not occluded by S k.

We apply additional inequality constraints to Constraint (8) to
further rule out cutting directions which are irrelevant for decid-
ing whether S 0 is occluded by S k in frustum FS 0,u0 j . Let PL, PR
be the two normals of the side planes of FS 0,u0 j (oriented to point
inside the frustum). A cutting direction L = S 0(up, vp)−S k(rq, tq)
is inside FS 0,u0 j if QL(u, v, r, s) = L(u, v, r, s) · PL ≥ 0 and
QR(u, v, r, s) = L(u, v, r, s) · PR ≥ 0. Therefore, S 0 is occluded
by S k if for some parameters u, v, r, s in the common domain of
S 0, S k all following conditions hold:

1. O(u, v, r, s) = 0.
2. QL(u, v, r, s) ≥ 0.
3. QR(u, v, r, s) ≥ 0.

If one can precisely determine if such u, v, r, s exist, one can
precisely determine if S k can line-occlude S 0. While methods to
determine minima and zeros of spline do exists they are expen-
sive. Instead, we reexamine the signs of all the coefficients of

O(u, v, r, s),QL(u, v, r, s),QR(u, v, r, s) and apply several succes-
sive subdivisions the common domain of S 0, S k to improve the
accuracy as necessary.

Algorithm 3 summarizes this process. Given S 0 and S k, the
relevant frustum FS 0,u0 j and the number of allowed refinement it-
erations over O, the algorithm first finds the minimal tensor prod-
uct sub-region of S k that is in frustum FS 0,u0 j . It can happen that
the full S k might line-obstruct S 0 but the portion of S k in frus-
tum FS 0,u0 j might not. See also Figure 7. Then, Algorithm 3 goes
and compute O for S k and S c

k and examines its coefficients. If
all coefficients positive or all negative, the algorithms terminates
with the recognition that no obstruction can occur. Otherwise,
R successive refinement attempts are made over O to achieve a
tighter and tighter bound.

Algorithm 3 TestObstructInFrustum(S 0, FS 0,u0 j , S i,R): De-
termines if S i obstructs line-accessibility to S 0 in frustum
FS 0,u0 j .
Input:
S 0: a surface patch from input surface S ⊂ M;
FS 0,u0 j : a frustum of S 0 in Ct(n, π2 ± θ);
S k: another surface patch fromM;
R: number of refinements iterations to apply;

Output:
True if S i obstructs line-accessibility to S 0 within FS 0,u0 j ,
False otherwise;

Algorithm:
1: S c

k := Clip(S k, FS 0,u0 j ) := Minimal tensor product sub-
domain of S k in FS 0,u0 j ;

2: R := {(O(u, v, r, s),QL(u, v, r, s),QR(u, v, r, s))} // triplets of:
O(u, v, r, s) =

{
(S 0(u, v) − S c

k(r, t)) · N0(u, v)
}
,

QL(u, v, r, s) = (S 0(u, v) − S c
k(r, t)) · PL,

QR(u, v, r, s) = (S 0(u, v) − S c
k(r, t)) · PR.

3: for i = 1 to R do // Subdivision cycles over u, v, r, s
4: IsObstructed :=False;
5: for (O,QL,QR) ∈ R do
6: if 0 ∈ BBox(O) and max(QL) ≥ 0 and max(QR) ≥ 0

then // Examining the coefficients of O,QLQR

7: IsObstructed :=True;
8: end if
9: end for

10: if IsObstructed then
11: return True;
12: end if
13: R := Subdivide all triplets (O,QL,QR) ∈ R;
14: end for
15: return IsObstructed;

4. Using the line-accessibility information for motion plan-
ning

To demonstrate how the line-accessibility information, pro-
duced by the presented algorithm, can be used in motion plan-
ning, we developed a simple cutting scheme which takes line-
accessibility into account, and used it in the fabrication process.
Because the cutting line is considered infinite, opposite frustums
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S 0

FS 0,u0 j

S k

(a)
S 0

FS 0,u0 j

Clip(S k, FS 0,u0 j )

(b)

Figure 7: In (a), a patch S k can intersect with some frustum FS 0 ,u0 j and also line-obstruct S 0. Yet its intersection portion with FS 0 ,u0 j might not line-obstructing S 0.
By clipping S k to the minimal tensor product sub-region that is in FS 0 ,u0 j , in (b) as Clip(S k , FS 0 ,u0 j ), Clip(S k , FS 0 ,u0 j ) is detected as not line-obstructing and hence is
not occluding for frustum FS 0 ,u0 j . The green extensions depicts the tangent line-accessibility from S 0.

are paired together: FS i,ui j , FS i,uik , such that ui j = −uik. Given
n frustums around the tangent plane, we have n/2 such paired
frustums.

Consider a cut-path parametric curve Cp(t) on model M. In
our experiments, we used a covering algorithm of the model
M by isoparametric curves, following [36]. However, the line-
accessibility analysis described in the previous sections is ap-
plicable for any sets of cut-paths. The following succession of
operations is performed:

1. Find the sequence of surface patches S 0, S 1, ..., S m−1
through which Cp(t) passes. Recall that for each patch, we
know which frustums of tangent directions FS i,ui j are acces-
sible, as determined by Algorithm 1.

2. Create a 2D table with n/2 rows and m columns. The i-th
column represents the accessible tangent directions of S i,
and the j-th cell in each column represents the paired frus-
tums, FS i,ui j and its opposite frustum. Note each column is
periodic, as the angular domain is.

3. Recall that for hyperbolic regions, directions of cuts close to
the asymptotic directions, and for convex regions directions
of cuts close to the smaller principal curvature (in absolute
value) are preferred. Hence, assign each (i, j) cell in the
2D table with a cost that relates to the preferred minimal (in
absolute value) normal curvature, in the direction of the axis
ui j of FS i,ui j .

4. Find a minimum-cost path from the first column (of S 0) of
the table to the last column (of S m−1), using a BFS (breadth-
first search), and under the following rules:

(a) The path can traverse only cells for which there exist
paired frustums that are line-accessible.

(b) The path can progress from cell (i, j) only to (i, j + 1),
(i, j − 1), or (i + 1, j). That is, to the next or previous
frustum (within the periodicity of the columns), or to
the next surface patch, along Cp(t).

If no such path exists, the entire cutting curve is decreed
inaccessible.

5. In the computed minimum-cost path, each surface patch S i
along Cp(t) (represented by a column) is traversed via one
or more cells. Let ti0 and ti1 be the parameter values of Cp(t)
where it enters and exits S i, respectively. Set the line-cutting
directions at ti0 and ti1 to be the best tangent direction in
the frustums corresponding to the cell through which the
path enters and exits (respectively) the column. The rest
of the cutting tangents for each t ∈ [ti0, ti1] will be assigned
by computing a spherical-linear interpolation (Slerp [37]) of

ti0, ti1, and projecting it onto the surface normal at parameter
value t.

Remark 2. While adjacent surface patch do not share the same
tangent plane, the tangent planes are very similar. Further, since
the crossing point in Cp(t) on the boundary shared by S i and S i+1

is in both accessible frustums and the geometry is assumed C1,
this transition is always feasible.

5. Examples

We now demonstrate the different algorithms presented as part
of this work. Figure 8 classifies the different, flat enough and
small enough, patches of four different models into elliptic con-
vex (green), hyperbolic (yellow) and mixed (magenta), by com-
puting the Gaussian curvature field of these four spline surfaces,
as a spline scalar field.

Given a classified patch, frustums which discretize the direc-
tion for line-accessibility are constructed. Figure 9 shows two
models and the whole set of parallel (that do not overlap, for
clarity) frustums of two patches in these models. Green colored
tips in the frustums denote an accessible direction whereas red
inaccessible. Note also that for an elliptic patch all the 360 de-
grees is populated with frustums where as in a hyperbolic patch
on the valid regions between the asymptotic directions.

As we stated, treatment of adjacent patches is quite challeng-
ing. Given patch S 0, if we assume no tangent line penetrate S 0
or its 1-ring 8 neighbors in any other location, all patches of the
Banana and Vase model in Figure 10 right are found accessible
(green). Otherwise, as can be seen in Figure 10 left, some patches
that are accessible are not found as such (red).

In more complex models, such as the duck in Figure 11, our
algorithm fails to guarantee accessible cutting directions in some
of the patches. This occurs most often at or around mixed patches
(patches which contain both elliptic and hyperbolic regions).
However, one should note that while red patches are marked as
inaccessible to wire-cutting, in practice, we expect that infinite-
wire cutting of patches in their close proximity, or immediate
adjacent patches, is likely to cut above the red patches as well.
If the red patches are fairly isolated, the result is likely to be a
complete part with only small gaps (but not gouging) between
the final cut artifact and these red patches.

In our final example, we used a rough covering of our in-
put vase surface with isoparametric curves. Along with the
tangent line-accessibility analysis in Section 3 and the motion
planning described in Section 4, we create the line-accessible
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Figure 8: Four different freeform spline models, divided into small enough and flat enough patches, only to be classified as elliptic convex (green), hyperbolic (yellow)
and mixed (magenta) patches.

Figure 9: Two models of a banana (top) and a duck (bottom) are presented (in cyan), along with two patches with all their frustums. Note some frustums are found
inaccessible (red tip) due to global inaccessibility. Accessible frustums are marked with green tips.

cut-paths that is shown in Figure 12. This cutting was used
to drive the robot shown in Figure 1 (b) yielding the final cut
part, from Styrofoam, shown in Figure 1 (c). A video pre-
senting the robot cutting the Styrofoam is available in https:
//youtu.be/THwKUoJmEA8

6. Discussion and future work

This work has presented a complete set of algorithms that en-
able one to not only detect line-accessible zones in a given model

M but also to conservatively compute all globally accessible
directions, and from that derive conservatively optimal line-cut
paths overM.

In this work, we focused our discussion on the problem of the
accessibility of infinite tangent lines overM. However, there are
quite a few directions this proposed set of algorithms can extend
to:

• While we ensured global accessibility, we allowed for
minute errors in the 1-ring neighborhood of the examined
hyperbolic patch and the patch itself. This allowed local
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Figure 10: Given the classified patches of these Banana and Vase models into
elliptic convex, hyperbolic and mixed patches, our assumption that tangent lines
do not penetrate their own patches or the patches immediate neighbors renders all
patches accessible (green on the right). Without this assumption, some patches
that are accessible are detected as inaccessible (red on the left).

Figure 11: The accessible patches in the duck model. Note that our algorithm
fails to detect accessible directions to some of the patches. These are typically
mixed patches, or close to mixed patches (recall also Figure 8).

minute gouging clearly deserves some further research.

• Instead of using an infinite line-shaped tool (e.g. a heated
wire) for fabrication, it is possible to use a rod-shaped tool,
which extends from the cutting wire machine into the stock
and ends at the contact point with the model. To modify our
algorithm to solve the accessibility problem for such a ray-
tool, the motion planning component simply need to seek
a single accessible frustum, rather than a pair of opposite
accessible frustums.

• Some wire-cutting configurations use a short wire, rather
than a long (i.e. infinite) one which always extends outside
the boundaries of the model. To solve the accessibility prob-
lem for this configuration, it is possible to limit the depth of
the frustums to the length of the wire, while accessibility of
the arc-frame that holds the finite wire needs to be verified
as well.

• The presented algorithm can easily be adapted to detect ob-
structions that are caused by additional objects other than
modelM itself, similarly to [24]. This can be done by ap-
plying the same subdivision scheme to the additional ob-
jects, and considering the resulting surface patches as po-
tentially obstructing patches. This could also be useful for
handling parts of the manufacturing environment that are
not the model, but can still interfere with the cutting pro-
cess, such as the fixture that holds in place the work piece.

• Since the line-accessibility analysis of each surface patch S i
does not depend on the analysis results of any of the other
patches, Algorithm 1 can be executed in parallel, virtu-
ally unmodified. This can greatly improve the performance
of the algorithm and make it applicable for more complex
models.

• Another, more complicated improvement to the presented
algorithm is support of line-accessibility analysis for mod-
els with trimmed-surface. Most industrial-grade models
consist of multiple trimmed surfaces, rather than tensor-
products. This challenge can possible be faced by using an
untrimmed algorithm [38] that converts trimmed geometry
to tensor products.

• Another emerging manufacturing technology is cutting with
flexible (non-linear) blades [4, 5]. The flexible blade allows
for cuts that better approximate the curvature and hence the
shape of the model, while it can also access regions which
are inaccessible for line-shaped cutting tools. The accessi-
bility analysis for cutting with a flexible blade is a highly
challenging problem, which has not yet been studied to the
best of our knowledge. Yet, it has the potential of greatly
improving the usability of this technology.

• Yet another important direction for future research is com-
bining algorithms for optimizing the approximation of sur-
faces by line-cutting with the presented ability to analyze
the geometry for line-accessibility. For example, meth-
ods for approximating models with ruled surfaces, such
as [7, 15, 16], can be used to generate cut-paths with
better coverage and approximation accuracy of the input
model. Then, a cutting scheme which takes into account
both the ruled surface approximation and the presented line-
accessibility analysis will be able to generate high-quality,
collision-free cutting paths.
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(a) (b) (c)
Figure 12: In (a), a vase with one ruling cut-path is presented. in (b), eight such ruling cut-paths are presented around the vase. Note the changes in the ruling direction
as the paths are traversed. In (c), the actual cut part is presented, from Styrofoam. See also the video in https://youtu.be/THwKUoJmEA8.
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Appendix A. Bounds on penetration error in local neigh-
borhhod

According to Assumption 1, our algorithm does not test ad-
jacent patches for obstruction. Therefore, cases of tangent lines
penetrating the interior of the modelMmay go undetected if they
are limited to the patch S 0 and its 1-ring neighborhood, denoted
together as patch S . In this appendix, we compute a bound on the
error which may occur from ignoring obstructions within a sur-
face patch S . Obstructions extending beyond S will be detected
by our algorithm, causing the entire frustum of cutting directions
to be inaccessible. Hence, we only consider cases for which both
the entry and exit points are within S . The error is defined in
terms of the ’depth’ of the obstructed tangent line below the sur-
face patch S .

Our subdivision process guarantees either one of the follow-
ing:

1. The size of S (in terms of the diagonal of the bounding
box) is bounded from above by d̃max (computed as d̃max =
√

3dmax, where dmax is the longest edge of the bounding box
of S ), and the angular span of the normal directions of S is
bounded from above by θmax, or:

2. The size of S is bounded from above by d̃min =
√

3dmin
(where dmin is the longest edge of the bounding box of S ),
regardless of the angular span of the surface, for cases of
extremely curved geometry.

In the first case, we bound the error as follows:

Lemma 3. Let S be a patch created from S 0 and its 1-
ring neighborhood. Let d̃max be the upper bound on the
size of S , and θmax be the upper bound on the angular
span of the normal directions of S . Then, the maximum
depth of the obstruction below S is d̃maxsin(2θmax).

Proof: Let A, B be the points where the tangent enters
and exits S . Position the complimentary tangent cone,
Ct(n, π2 ± θ), of S , at A and B. Since S is fully con-
tained inside each of the two complimentary tangent
cones, B is inside the tangent cone constructed at A,
and A is inside the tangent cone constructed at B (see
Figure A.13).
Let P be the plane which contains the line AB and the
vector n, and Let C be the intersection point of the
two tangent cones and the plane P. Further, let a, b, c
be the angles of triangle ABC, at the vertices A, B,C,
respectively. Then, the depth of line segment AB un-
der S is bounded by the altitude of triangle ABC at
C, denoted hC . Using the Law of Sines, this altitude
is in turn given by: hC = |A − B| sin(a)sin(b)

sin(c) . The angle

c = π−2θ, and the angles a, b are each smaller than 2θ.
Further, the length of the line segment AB is less than
d̃max. Therefore: hC < d̃max

sin2(2θ)
sin(π−2θ) = d̃maxsin(2θ) <

d̃maxsin(2θmax). �

A
B

C

hC

2θ

c

a
b

Figure A.13: A diagram of the error bound computation for patches with bounded
normal cone angles, as described in Lemma 3.

The second case is fairly rare, and as stated already, occurs
only in regions of very high curvature, and hence, no bound on θ
exists. In this case, the error can be simply bounded by d̃min.
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