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Abstract
Many application programs driven from modern CAD/CAM systems often operate
on approximate lower order representations of the exact geometric definition. These
applications include visualization, fundamental geometric calculations such as inte-
grals, finite element or boundary element meshing for analysis and data exchange
between various geometric modelers or design and fabrication systems. For this rea-
son, a robust piecewise linear approximation method of high order and procedural
curves and surfaces is necessary.

This thesis presents a piecewise linear approximation method of edges and faces
of complicated boundary representation (B-rep) models within a user specified geo-
metric tolerance. The proposed method uses numerically robust interval geometric
definitions and computations and also addresses the problem of topological consis-
tency between the exact geometry and its approximation. These are among the most
important outstanding issues in geometry approximation problems. The possible in-
appropriate intersections of the approximating elements are efficiently checked and
removed by local refinement of the approximation to guarantee a homeomorphism
between the exact geometry and its approximation. We extract important differen-
tial geometric features of input geometry for use in the approximation. Our surface
tessellation algorithm is based on the unstructured Delaunay mesh approach which
leads to an efficient adaptive triangulation. A robustness problem in the conventional
Delaunay triangulation is discussed and robust decision criteria are also introduced
to prevent possible failures in the Delaunay test. To satisfy the prescribed geometric
tolerance, an efficient node insertion algorithm is utilized and furthermore, a new effi-
cient method to compute a tight upper bound of the approximation error is proposed.
Unstructured triangular meshes for free-form surfaces frequently involve triangles with
high aspect ratio. Our proposed surface triangulation algorithm constructs 2D trian-
gulation domains which sufficiently preserve the shape of triangular elements when
mapped into 3D space and furthermore, the algorithm provides an efficient method
explicitly controlling the aspect ratio of the triangles on the triangulation domain.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Professor of Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation and Objective

Modern CAD/CAM systems allow users to access specific application programs for

performing several tasks, such as rendering objects on a graphical display, funda-

mental geometric calculations and finite element or boundary element meshing for

analysis. These application programs often operate on approximate piecewise lower

order representations of the exact geometric definition. For this reason and also in

order to support reliable data exchange between various geometric modelers, a ro-

bust piecewise linear approximation method of high order and procedural curves and

surfaces is necessary.

For complicated 3D curved objects, a boundary representation (B-rep) model

coupled with constructive solid geometry (CSG) is regarded as the most promising

representation method in the current CAD/CAM systems [63]. Parametric curves

and trimmed parametric surfaces have a fundamental role in B-rep [14, 29, 65] since

they represent edges and faces of the complicated 3D curved objects. One of the

most appropriate ways to accomplish a piecewise planar approximation of trimmed

parametric patches is a triangular tessellation within a specified geometric tolerance,

following a piecewise linear approximation of the interior and exterior boundary loops.

The triangular tessellation allows topological simplicity which enables the local

adaptivity of the unstructured triangular network or mesh [8, 55, 70, 71, 90] and it
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also provides a unique database i.e., the same triangular facets can be used for ren-

dering [79] as well as for other geometric computations or general analysis. Solid

free-form fabrication methods for example, currently use surface faceting for data

exchange and manufacturing [54]. We need to note the rendering of surfaces on the

basis of a faceted model is becoming increasingly advantageous in comparison with the

scan-line technique, owing to the increasing power of graphics workstations to handle

facets [84]. The local adaptivity feature of the unstructured triangular faceting pro-

vides an efficient tool for discretizing a geometry which has rapidly changing intrinsic

characteristics. Furthermore, for the finite element (FE) meshing in computational

fluid dynamics (CFD) and computational mechanics in general, this feature is par-

ticularly important where not only the geometries involved tend to be complex but

also the flows are characterized by the appearance of localized features such as shocks

and boundary layers. The location of these features is often unknown a priori and

adaptivity represents the only viable option for their effective resolution.

Identification of geometrically significant points of input surfaces as well as bound-

ary curves reflects important differential geometric properties of input geometry. It

is meaningful because first of all, such significant points provide the most important

geometric information of the exact input geometry and they play a role as the most

appropriate initial nodes in case fully automatic surface tessellation process is re-

quired. Moreover, they permit quite optimal coarse approximation especially when

the approximation tolerance is relatively loose or input geometry has an irregular

distribution of intrinsic features. For polynomial or rational parametric curves and

surfaces, those equations to compute geometrically significant points result in high

degree nonlinear polynomial equation systems and hence, a robust as well as efficient

solution methodology should be employed [46, 58, 59, 85].

Automatic mesh generators are designed so that they can be used as a black

box and hence can be integrated into larger systems. One of the most important

issues concerning existing generators is robustness and consistency. For complex three

dimensional geometries, the sources of failure fall into the following two categories:

* inaccuracies in the geometric definition/computation and
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* topological inconsistency between the input geometry and its triangulation.

All state-of-the-art CAD systems used to create and interrogate curved objects are

based on geometric solid modeling systems, operating in floating point arithmetic

(FPA), that frequently fail. The ultimate reason for this failure is the limited pre-

cision of the geometrically crucial computations [41]. In our approach, we employ

a new representation based on interval parametric curves and surfaces [46, 47, 48,

49, 59, 81, 82, 91] implemented in rounded interval arithmetic (RIA) [66] in order

to overcome the lack of robustness in FPA. Interval curves and surfaces differ from

classical ones in that the real numbers representing control point coordinates are re-

placed by intervals. Of course, our approximation methodology is directly applicable

to the conventional definition of parametric curves and surfaces operating in FPA.

In addition to the numerical robustness, the possible topological inconsistency be-

tween the input geometry and its approximation should be carefully checked since

such topological inconsistency immediately results in system failure during solution

of a computational mechanics problem. For those simple composite curves and sur-

faces which do not have any inappropriate intersection, corresponding approximations

should not have inappropriately intersecting linear or planar elements either to guar-

antee the existence of a homeomorphism [2] between the exact input geometry and

its approximation. Therefore, robust intersection test relying on RIA is necessitated

for each approximating element and, furthermore, such intersection test should be

performed efficiently with low time and space complexity.

Unstructured triangular meshes for free-form surfaces frequently suffer from badly

shaped triangles with high aspect ratio (AR) [73]. If such low quality elements are used

for further geometric computations or general analysis, they cause serious numerical

problems [7, 88] such as ill-conditioned matrices or unacceptable convergence. Most

existing triangulation algorithms for trimmed parametric surfaces perform triangula-

tion in the original parametric spaces and map each triangular element onto the 3D

space through surface equations. Even if quality of triangular elements is assumed

to be sufficiently high in the parametric space, it can easily deteriorate through the

mapping process due to highly irregular distribution of intrinsic properties or due to
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the actual relative size of different edges of the trimmed patch. Most current surface

triangulation algorithms do not present a method which explicitly controls the AR

of triangular elements. Our proposed triangulation algorithm constructs 2D trian-

gulation domain which sufficiently preserves the shape of triangular elements during

mapping process and furthermore, provides an efficient method explicitly controlling

the AR of triangular elements on the 2D triangulation domain. We note that our AR-

improving process can be immediately applied to not only trimmed surface meshing

but also another well-known computational geometry problem i.e., triangulation of a

multiply connected planar region.

Based on the motivations mentioned above, the objective of this thesis is the devel-

opment of a piecewise linear approximation method of edges and faces of complicated

B-rep models within a user specified geometric tolerance, which uses numerically

robust geometric definitions and computations and addresses the problems of:

* topological consistency between the exact geometry and its approximation;

* extraction of important differential geometric features of input geometry for use

in the approximation;

* efficient adaptive triangulation based on the unstructured mesh approach;

* well-shaped high quality triangulation in 3D space.

1.2 Thesis Organization

In chapter 2, we review recent curve and surface approximation methods and some

literature on topological issues in the context of the geometry approximation problem.

Chapter 3 begins with brief review of fundamental theory of differential and com-

putational geometry of curves. Equations to compute geometrically significant points

of curves are derived and a solution methodology is also presented. A piecewise linear

approximation method of interval as well as conventional composite Bezier curves is

presented. A robust and efficient intersection test algorithm is also described in or-

der to guarantee the existence of a homeomorphism between the exact input curves
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and their approximations. Complexity analysis for each approximation stage is per-

formed next. This is followed by several examples and numerical results illustrating

the method.

In Chapter 4, the fundamental theory of differential and computational geometry

of surfaces is briefly reviewed. A method of constructing a 2D triangulation domain

for trimmed composite Bdzier patches is next presented. This is a crucial step to

achieve a well-shaped high quality mesh in 3D space. A triangulation method is then

developed suitable for the approximation of interval as well as conventional trimmed

surface patches which are the faces of a complex 3D curved B-rep model. An efficient

method of extracting sub-triangular B6zier surfaces from a tensor product Bdzier sur-

face patch is developed, which significantly reduces time cost for evaluating a tight

upper bound of the approximation error of each triangular facet. Two types of node

insertion algorithms are discussed to refine the mesh in terms of the approximation

error and aspect ratio of triangular elements. A robust and efficient test is also

performed to identify possible inappropriate intersections between approximating tri-

angular facets. If such intersections exist, a method to execute local mesh refinement

to avoid inappropriate facet intersection is developed. We also analyze complexity of

each step of the triangulation process. Finally, the proposed triangulation algorithm

is implemented and demonstrated with several illustrative examples.

Chapter 5, the final chapter of this thesis, contains conclusions and a summary of

the main contributions of this work. Recommendations for future research are also

presented.
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Chapter 2

Literature Review

2.1 Introduction

In this Chapter, we review recent curve and surface approximation algorithms and

some literature on topological issues in the context of the geometry approximation

problem.

2.2 Curve Approximation

A number of low order approximation methods of high order and procedural curves

have been developed for example, [24, 69, 74, 96]. A piecewise linear approximation

of a planar or space curve is a special instance of the general approximation problem.

A multitude of methods have been developed in the last two decades to solve

various kinds of piecewise linear approximation problems. However, most literature

has been limited to digitized planar curves. Progress on efficient heuristic algorithms

concerning such a 2D approximation problem is well described in [26].

Farouki [31] described hierarchical segmentations of planar algebraic curves based

on identifying points of a curve where successive differential characteristics vanish.

Given a planar polynomial curve r(t) = (x(t), y(t)), [31] computes turning, inflec-

tion and curvature stationary points of r(t). By hierarchical segmentations based

on those characteristic points, three types of segments i.e., monotone, convex and



primitive segments are obtained. By utilizing the upper bound of an approximation

error derived by Filip et al. [32] and the characteristics of the primitive segment where

curvature is monotonously varying, subsequent segmentations are performed until the

approximation error is within the prescribed geometric tolerance. The method pre-

sented in [31] uses meaningful differential geometric features of input curves; however,

it does not describe how to solve those characteristic equations in a robust manner

and also it does not address the topological validity of the approximation. Moreover,

Farouki [31] does not extend the segmentation scheme to general space curves.

Hamann and Chen [39] proposed a 2D piecewise linear approximation technique,

which weighs the points on the input planar curve with respect to a local curva-

ture measure and the arc length of parametric segment. It then iteratively removes

points of smallest curvature weights until a piecewise linear approximation is obtained

within a specified geometric tolerance. Their method may result in near optimal ap-

proximation; however, it can be suitably applied to only digitized planar curves and

furthermore, it does not consider the topological problem possibly caused by the large

data reduction.

Among very few papers on 3D curve discretization, Kehtarnavaz and deFigueiredo

[51] presented a scheme for segmentation of a space curve which uses the norm of the

Darboux vector [53] as a criterion for segmentation. A quintic B-spline curve r(s) is

constructed for noisy data followed by the formulation of curvature, torsion and their

derivatives. Total curvature w(s) which is the norm of the Darboux vector is then

formulated. Among those solutions for w'(s) = 0, the points of maximum w(s) are

selected and placed as break points. This method utilizes one of the most appropriate

differential geometric features of a space curve; however, as described in Section 3.4.2

of this thesis, the degree of the polynomial equation w'(s) = 0 for a quintic space curve

is 63. Despite such high degree for w'(s), reference [51] does not seriously consider the

numerical robustness problem in solving high degree nonlinear polynomial equations,

such as w'(s) = 0, which is their only criterion equation providing segmentation nodes.

Ihm and Naylor [50] introduced an iterative heuristic algorithm for piecewise linear

approximations of digitized space curves based upon the notions of curve length and

Literature Review24
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spherical image. Given a digitized space curve and an approximation tolerance, they

recursively bisect the curve segment until the approximation error is less than the

tolerance. At each subdivision level i, they compute a bisecting point ci = f )d
fo' n(s) ds

by using forward difference approximation followed by discrete summation, where 1,

s, r(s) are total length of the digitized sub-curve at level (i - 1), arc length parameter

and curvature at s, respectively. This method appropriately utilizes a discrete version

of the differential geometric features of the input digitized space curve; however, the

application is restricted to the approximation of a digitized space curve and also it

does not consider the topological relation of the input geometry and the corresponding

approximation.

2.3 Surface Tessellation

Surface tessellation of a boundary representation (B-rep) model is an essential el-

ement of various algorithms for general graphic display, stereo-lithography applica-

tions, finite element (FE) mesh generation and reliable data exchange between various

geometric modelers.

Several tessellation algorithms are found which deal with implicit surfaces e.g.,

[3, 38, 92]. Main drawback of their algorithms is they are not directly applicable to

surface tessellation of B-rep models, where faces are represented by trimmed para-

metric surfaces in general.

Filip et al. [32] present theorems giving bounds on the maximum deviation be-

tween parametric surfaces and their triangular tessellations using the second partial

derivatives of C2 input parametric surfaces. We note that the theorem is frequently

utilized in other literature such as [73, 84]. Based on the theorem, Filip et al. [32]

construct uniform grids on the parametric space and consequently a set of right tri-

angles. Corresponding surface mesh satisfying the specified tolerance is obtained by

mapping each right triangle onto 3D space through the surface equations. For sur-

faces of degree less than 3, the method presented in the literature can obtain the

bound of the approximation error in a straightforward manner; however, it becomes
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much harder to determine the bound for surfaces of higher degree. The bound could

also be arbitrarily loose even for bi-quadratic surfaces, as demonstrated by Elber [25].

Furthermore, the presented method may generate unnecessarily many triangular ele-

ments, because their error bound is a global one. In other words, given a parametric

surface, the maximum norms of the second partial derivatives are computed for the

whole untrimmed surface. If an input surface is, for example, mostly flat except for

the very localized high curvature regions, it is obvious that the resulting mesh has

unnecessarily many elements. An even worse result would happen in case the locally

high curvature region is trimmed away. Even if the element shape on the parametric

space in [32] is a right triangle, the mesh quality could be unsatisfactory due to highly

irregular distribution of intrinsic properties or due to the actual relative size of differ-

ent edges of the surface patches. Furthermore, the algorithm is neither adaptive nor

incremental and it does not address topological consistency issues between the input

surface patches and their approximation.

In another paper, Filip [33] develops an adaptive triangulation algorithm. Given

a set of polynomial parametric surfaces, each surface from the set is converted into a

triangular Bezier surface. The original triangular Bezier surfaces are then recursively

subdivided until every triangular facet corresponding to each triangular sub-Bezier

surface passes a flatness test. Several different subdivisions are exploited in terms of

efficiency and triangulation quality. Similar to other triangulation algorithms, opti-

mizing the number of triangles causes low quality tessellation, and vice versa. The

paper suggested an efficient flatness test; however, it does not actually guarantee

that the absolute position difference between the exact surface and its approxima-

tion at isoparametric points is within a prescribed approximation tolerance, because

they consider the maximum distance between each control point of the exact curve

(surface) and its projection onto the corresponding linear approximating segment (tri-

angle), respectively. Moreover, in case a control polygon of an exact surface intersects

itself, the flatness test is not adequately applicable as reported in [33]. The algorithm

checks possible cracks between adjacent triangular facets and inserts additional nodes

to prevent them; however, possible inappropriate intersections between triangular
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facets are not considered. The surface tessellation algorithm is also applicable to only

untrimmed composite polynomial surfaces.

Sheng and Hirsch [84] present an algorithm for triangulating trimmed composite

polynomial surfaces. The basic strategy is to perform the triangulation completely in

parametric space as in [32]. They first split the parametric space along the common

boundaries of the corresponding surface and generate sub-polygons to be triangulated.

After completing boundary approximation for each sub-polygon within specified ap-

proximation tolerance, they merge polygonal boundary loops of two matching surfaces

to prevent possible cracks in the triangulation; however, possible inappropriate inter-

sections of triangular facets are not considered. Based on the theorem developed in

[32], uniform grids are generated and the corresponding triangulation is performed

on each sub-polygon. Although [84] utilizes the same theorem on the upper bound of

the approximation error as in [32], they evaluate the upper bound differently by us-

ing Chebyshev polynomials previously suggested in [23]. The authors convert Bezier

surfaces into Chebyshev polynomials and use the extremal properties of the Cheby-

shev polynomial to compute the maximum norms of the second partial derivatives

of the surface. Although they subdivide the original surface into sub-patches along

the common boundaries, their upper bound of the approximation error is still global

for each sub-patch. Therefore, it is expected that an unnecessarily large number of

triangular elements may be generated in case high curvature regions are very localized

or trimmed away. Furthermore, since the triangulation is entirely performed in the

original parametric space, triangulation quality can be unacceptably low after map-

ping each triangular facet onto 3D space. This algorithm also has the disadvantage

of not being adaptive.

Chew [16] extended his two-dimensional mesh generator [15] to meshing curved

surfaces defined by a single patch by generalizing planar Delaunay triangulation. In

his previous two-dimensional triangulation [15], he assumes that all boundary edges

have lengths between s and V/s, where s is a predefined feature size. This condition

can be enforced by subdividing edges. Chew starts with the constrained Delaunay

triangulation (CDT) of the input and then, while there is a triangle with circumcircle
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of radius greater than s, he adds an additional node at the center of the circle, and

re-computes the CDT. He also proved that the algorithm results in a triangulation in

which all angles of the elements are between 300 and 120' assuming the boundary loop

does not form a sharp angle. He modified the two-dimensional algorithm by extending

the circumcircle concept to three-dimensional space. He defines the circumcircle of a

triangular element whose vertices are on a free-form surface as: Given three vertices

on a curved surface, consider the infinite set of spheres through the three vertices. The

center of all the spheres lie on a single line. A sphere whose center is on the surface

is chosen and the circumcircle of the three vertices is defined by the set of points

where the sphere intersects the surface. The algorithm repeatedly inserts a node at

the center of the circumcircle defined above, until every triangular element satisfies

prescribed size and shape criteria. However, this definition of circumcircle has some

difficulties; in particular, the line on which the sphere centers lie may intersect the

surface more than once or it may not intersect the surface at all. Similar to the

two-dimensional case, his algorithm produces pretty high quality mesh in terms of

elements' shape for input surfaces with simple shape. However, there is need of a

starting triangulation in that the surface normals do vary by more than 5 in a region

about each triangle. Furthermore, there is no direct control of the approximation

error, which is a crucial factor in surface tessellation.

Given a set of parametric surfaces, Boender et al. [11] perform an incremental

boundary-conforming triangulation on the parametric spaces and map each triangle

into three-dimensional space. They adapt a texture-mapping procedure for use in

mapping a parametric space triangulation onto 3D space with minimal distortion. The

authors also state that the generated mesh should be topologically correct. However,

they do not explain their node insertion criteria and approximation error measure.

Piegl and Richard [73] present a piecewise planar approximation of a trimmed

NURBS surface. The overall their algorithm is similar to [32] explained earlier in

this Section except that [73] deals with the more general NURBS surface and the

estimation method of the maximum norms of the second partial derivatives of a

NURBS surface is novel. However, the method in [73] inherits most disadvantages

28
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of [32], e.g., it is neither incremental nor adaptive, and it also has the possibility of

generating an unnecessarily large number of triangular elements and may produce

low quality triangulation in case of surface patches with highly irregular distribution

of intrinsic properties or with different actual relative size of edges.

Klein and Strafer [52] develop a surface meshing algorithm for B-rep geometries.

They generate initial triangulation of the parametric domain which contains nodes on

the exterior and interior loops. These nodes on the boundary loops are found from a

discrete set of parametric points uniformly and densely distributed on each boundary

loop segment with the property that the corresponding point on the boundary of

the surface has the maximum distance to the approximating loop segment until the

maximum distance is smaller than a given tolerance. Similarly, a point is found from

a discrete grid of interior parametric points and inserted stepwise into the parametric

space with the property that the corresponding point on the surface has the maximum

distance to the triangulation until the maximum distance is smaller than a given tol-

erance. This method provides adaptivity and easily checks neighborhood information

by using B-rep data structure during triangulation. However, the algorithm is based

on a discrete measure of the approximation error which does not fully satisfy a true

approximation error bound. It does not consider differential geometric features of the

input geometry nor topological aspects such as inappropriate intersections between

the approximating triangles.

Elber [25] presents an incremental free-form surface triangulation algorithm utiliz-

ing an auxiliary bilinear surface in the computation of the approximation error bound.

Given an untrimmed parametric surface, two initial triangles are generated by simply

dividing the uv-parametric space along its diagonal. The distance bound between

an approximating triangle and a bilinear surface is measured. The bilinear surface

is the one corresponding to the four corner points of the parametric space. Another

distance bound is computed between the bilinear surface and the exact surface. He

defines the approximation error bound as the sum of two distance bounds. In case

the approximation error does not meet a given tolerance, the algorithm subdivides

the surface along the direction that minimizes the approximation error from the two
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subdivision possibilities, u or v and repeats the procedure. This algorithm is quite

efficient since both the error measure and the subdivision along isoparametric lines

are performed quickly. However, the algorithm easily creates cracks between adjacent

triangular facets; e.g., the original patch is subdivided into two along u = uo, and

assuming two triangles existing in the left sub-patch pass the error test, while the

other two triangles corresponding to the right sub-patch do not. If, at least one of

further subdivisions should be performed along v = vo, then it is obvious that there

exist cracks, as shown in Figure 3-(b) of [25]. The author does not discuss how to

remedy this problem.

Shimada and Gossard [86] generate adaptive 2D/3D meshes for a given bound-

ary representation of the geometry of a space region and a density distribution over

the region. This method uses a physically-based approach that simulates the attrac-

tion and repulsion forces between bubbles covering the region. An advantage of the

method is creation of a conformal triangulation with well-shaped triangles although

the method does not directly control the aspect ratio of triangular elements.

Giirsoy and Patrikalakis [35, 36, 37] develop a medial axis transform (MAT) based

method for surface tessellation. The strong points of such a method are that they can

perform feature recognition such as identification of symmetries and constrictions and

extraction of local length scales, which generally facilitates the automatic specification

of geometrically meaningful meshes. However, computation of the medial axis has

not been solved completely for a planar region with arbitrary curved boundaries such

as the parametric space of a trimmed surface. For example, Giirsoy and Patrikalakis

[68] compute the MAT of a region bounded by straight line segments and circular

arcs.

2.4 Topological Issues

For applications such as computational mechanics, it is natural to require that a

perturbed object (meshed domain) should have the same topological form as a given

original object (exact domain).
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In solid modeling field, Miintyldi [62] demonstrates that the validity criteria of a

boundary model should include the following conditions:

* The set of faces of the boundary model closes, i.e., forms the complete skin of

the solid with no missing parts.

* Faces of the model do not intersect each other except at the common vertices

or edges.

* The boundaries of faces do not intersect themselves.

Andersson et al. [4] use the precise mathematical condition that two objects have

the same topological form provided that there is a homeomorphism from R3 onto

R3 which carries one object onto the other with applications in the tolerancing and

metrology fields. For example, a cube might be transformed into a solid spherical

ball, but a torus can not become a torus with a knot in it. They also suggest that

as computer modules become completely autonomous, the verification of topological

correctness is a crucial problem.

Hoppe et al. [42] solve a surface reconstruction problem such that given a set of

data points scattered in three dimensions and an initial triangular mesh Mo, they

produce a mesh M of the same topological type as M0 that fits the data well and has

a small number of vertices. However, they indicate that the verification of correctness

of topological form may not be simple if an algorithm is producing a large number of

surface elements.

Surface tessellation is another example of generating perturbed objects and hence,

its topological correctness has to be taken into account. Peters et al. [72] describe

the topological requirements that should be satisfied in a surface tessellation: each

triangle should be correctly connected to other triangles through their common edges

and vertices. This means that no cracks are allowed between neighboring triangles

and no two triangles shall intersect each other at positions other than their explicitly

stored common edges or vertices. This ensures that the surface is not self-intersecting.
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2.5 Summary of Shortcomings in Existing Meth-

ods

In this Section, we summarize the conceptual shortcomings of all current state-of-the-

art approaches in surface tessellation as follows:

1. Meshing systems which address the topological aspects of the automated mesh-

ing problem do not invoke differential geometric properties.

2. Grid generation systems with considerable emphasis on local differential geo-

metric methods do not have a topological concept which is necessary to mesh

arbitrary domains automatically.

3. Most meshing systems (except those based on MAT) do not capitalize on global

feature recognition such as identification of symmetries, constrictions and local

length scales.

4. All meshing systems suffer from the lack of numerical robustness in geometric

modeling systems.

5. There are considerable difficulties in adaptive meshing problems e.g., in bound-

ary value problems with time dependent boundaries.

6. Unstructured triangular meshes for free-form surfaces frequently suffer from

badly shaped triangles with high aspect ratio.



Chapter 3

Topologically Reliable

Approximation of Composite

Curves

3.1 Introduction

Piecewise linear approximation of planar and space curves, a special instance of the

general approximation problem, plays a vital role in the successful discretization of

general solid models such as meshing applications. The piecewise linear approxima-

tion of an input curve should be completed within a certain user specified global

tolerance. To permit the formulation of valid idealizations of physical problems on

discretized geometric representations, the discrete representation of the exact curve

has to be topologically identical to the exact curve. This means that a homeomor-

phism [2] should exist between the exact curve and its approximation.

In this Chapter, we present an efficient method of approximating a set of mutu-

ally non-intersecting simple composite planar and space Bezier curves within a user

specified global tolerance and ensuring the existence of a homeomorphism between

the linear approximating segments and the actual nonlinear curves. A summary of

Chapter 3 of this thesis has been presented in a paper by Cho et al. [18]. Prior liter-
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ature had not addressed topological issues in the context of geometric approximation

problems.

Given a set of planar and space Bezier curves either open or closed, we compute

geometrically significant points using the projected polyhedron algorithm [46, 58, 59,

85] for solving systems of nonlinear polynomial equations implemented in floating

point arithmetic (FPA) or rounded interval arithmetic (RIA) [66]. By using these

significant points as well as the boundary points on a set of curves as nodes, we

can create a preliminary piecewise linear approximation of the input curves. The

preliminary approximation, reflecting the global differential properties of the input

curves, is valuable especially when a coarse approximation of good quality is required

such as in finite element meshing applications. Main approximation begins with

computing the error for each line segment by evaluating a tight upper bound for

the deviation between a piece of the exact Bezier curves and the corresponding line

segment. A convex hull method is effectively employed to compute such an upper

bound. We adaptively subdivide each segment until the error is within a specified

tolerance. Finally, for each pair of linear approximating segments, an intersection

check is performed to identify possible inappropriate intersections arising, for example,

from global distance function features of the curve such as constrictions. A brute force

approach takes O(n2) time for computation where n is the number of segments. A

superior alternative method is use of the bucket sort [5, 19] which runs in O(n) time

on the average. If those inappropriate intersections exist they necessitate further

refinement of the approximation to capture the global features of the curve relating

to minima of the self-distance function.

State-of-the-art CAD systems, operating in FPA, frequently fail. The ultimate

reason is the limited precision of geometric computations. To cope with this adver-

sity, we consider interval Bezier curves evaluated using RIA as our input and also

apply our approximation scheme to those interval Beizier curves. Such curves and the

corresponding interval Bezier surfaces are the basis of a robust interval solid modeling

technique described in Hu et al. [46, 47, 48, 49].
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3.2 Differential Geometry of a Curve

We summarize the essential differential geometric concepts of a curve well described

in the literature on classical differential geometry such as [22, 53].

3.2.1 Concept of a Curve

By a regular parametric representation we mean a vector function of t in an interval

I,

r = r(t), tel (3.1)

with the property that

* r(t) is of class Cm , m > 1 in I,

* r'(t) # 0, Vt in I.

A real valued function t = t(O) on an interval ol is an allowable change of parameter

* t(O) is of class Cm , m > 1 in Io,

* t'(0) :# 0, VO in Io.

A regular parametric representation r = r(t), t E It, is equivalent to a regular

parametric representation r* = r*(O), 0 E Io, if there exists an allowable change of

parameter t = t(O) such that

* t(le) = I,

* r(t(0)) = r*.

We define a regular parametric curve to be an equivalent class of regular parametric

representations. Unless otherwise stated, a curve r(t) in the following will denote a

regular parametric curve. Furthermore, a curve of class Cm is a collection of regular
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parametric representations of class Cm any two of which are related by an allowable

change of parameter of class Cm.

A curve r(t), t E I, is said to be simple if there are no multiple points; that is, if

tl 5 t2 implies x(tl) # x(t 2).

Given t e I the arc length s of a curve r(t) from to is defined by

s(t)= d idt. (3.2)

Since r'(t) : 0, the arc length s(t) has a continuous nonvanishing derivative given by

ds dr
dt = . (3.3)

Hence s = s(t) is an allowable change of parameter on I. Also s(t) is of class C m on

I if r(t) is of class Cm. Thus the arc length s can be introduced along the curve as a

parameter and such a representation r = r(s) on I, is called a natural representation.

3.2.2 Curvature and Torsion

Let r = r(s) be a natural representation of a curve C. The vector

dr
T(s) = = i(s) (3.4)ds

is called the unit tangent vector to the curve C at the point r(s). Introducing any

allowable parameter t, we have

drd t s r'(t)
T (t)= (3.4')

The straight line through a point r on a curve C parallel to the unit tangent vector

at r is called the tangent line to C at r.

The totality of all vectors bound at a point P of a curve C which are orthogonal

to the corresponding unit tangent vector T lie in a plane. This plane is called the

normal plane to C at P, as shown in Figure 3-1.
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Let Po, P1 and P2 be three noncollinear points on a curve r = r(t) of class m > 2.

Then we can uniquely define a plane E passing through those three points. The limit

position of the plane E as P1 and P2 both tend to Po is determined by two vectors

r'(t) and r"(t), if linearly independent. The plane spanned by r'(t) and r"(t) is called

the osculating plane of the curve at Po, see Figure 3-1.

Let r = r(s) be a natural representation of a curve C of class C" with m > 2.

The derivative of the unit tangent vector

dT
ds = T(s) = i;(s) (3.5)ds

is called the curvature vector k(s) of C at r(s) i.e., k(s) ri(s). Since the tangent

vector has unit length, the norm of the curvature vector measures the rate of change

of the angle which neighboring tangents make with the tangent at s and it is called

the curvature K(s) of C at r(s) i.e.,

(s) = k(s) = r(s (3.6)

Therefore, the curvature is a measure of how rapidly the curve pulls away from the

tangent line at s, in a neighborhood of s. Notice that under a change of orientation

of the curve, k and the curvature r remain invariant, and hence K is an intrinsic

property of the curve. For any allowable parameter t,

I(t) r'(t) x r"(t) (3.6)
(t = (t) 3(3.6')

If the curvature vector k(s) is not the null vector, it is orthogonal to the unit

tangent vector T(s) and consequently lies in the normal plane to the curve C at the

point under consideration; k also lies in the osculating plane. For nonvanishing k the

unit vector

Sk(s)
N(s) = k(s) (3.7)jk(s)I
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Binormal Line

Principal Normal Line

C
Tangent Line

Figure 3-1: Frenet frame

which has the direction and sense of k(s) is called the unit principal normal vector

to C at the point r(s). The straight line passing through this point and containing

N(s) is called the principal normal line to the curve C at r(s).

We again consider a curve of class m > 2. To every point of the curve at which

k = 0, we have associated two unit vectors, T(s) and N(s). These two vectors are

orthogonal. We now introduce a unit vector

B(s) = T(s) x N(s) (3.8)

which is orthogonal to both T(s) and N(s) and is called the unit binormal vector

of the curve at r(s). The straight line passing through a point r(s) of a curve C in

the direction of the corresponding B(s) is called the binormal line to C at r(s). The

plane spanned by B and T is called the rectifying plane, see Figure 3-1.

To every point of a curve at which k - 0 we have now associated three orthogonal

unit vectors. The triplet (T, N, B) is called the moving trihedron of the curve, see

Figure 3-1.

Rectifying

Plane

T 
Osculating 

Plane

TOsculating Plane

Normal Plane

B

N
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We now suppose that r = r(s) is a natural representation of a curve C of class

Cm with m > 3. For the nonvanishing curvature, we can differentiate the binormal

vector B(s), obtaining

B(s) = -T(s)N(s). (3.9)

The continuous function T(s) is called the torsion of C at r(s) and is determined by

()= (s)- (i(s) x i (s))
(s) = -B(s) N(s) = i(s)12  (3.10)

Since the binormal vector B is the normal vector to the osculating plane, the torsion

measures the magnitude and sense of deviation of a curve from the osculating plane in

the neighborhood of the corresponding point of the curve, or in other words, the rate

of change of the osculating plane. Imposing on r(s) an allowable change of parameter

of class C m with m > 3 we obtain from Eq. (3.10)

Tt r"'(t) - (r'(t) x r"(t))7(t)= (3.10')
Ir'(t) x r"(t)

2  
(3.10')

Note the sign of T is independent of the sense of N and the orientation of a curve,

and hence 7 is an intrinsic property of the curve. The sign has been chosen so that

right-handed curves have a positive torsion.

The first derivatives T(s), N(s) and B(s) of the unit tangent vector T, the unit

principal normal vector N and the unit binormal vector B can be represented as a

linear combination of these three linearly independent unit vectors; the corresponding

formulae are called Serret-Frenet formulae:

0 0 T

N = - 0 2 N (3.11)
\B 0 -T 0 B

We observe that the Serret-Frenet formulae form a system of three vector differential

equations of the first order in T, N and B with the coefficient matrix in terms of
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circle = c1 , TE - 0

circular helix Kc c1, T = c2
general helix K = K(s), = clK

Table 3.1: Intrinsic equations for special curves (cl, c2 = constant # 0)

the curvature K and the torsion 7. A little elaboration on the Serret-Frenet formulae

yields the following fundamental existence and uniqueness theorem for space curves

[22].

Theorem 3.2.1 Let t(s) > 0 and T(s) be arbitrary continuous functions on the in-

terval Is. Then there exists, except for position in space, one and only one space curve

C for which K(s) is the curvature, T(s) is the torsion and s is a natural parameter

along C.

Furthermore, the equations K = Kc(s), T = r(s) which give the curvature and torsion

of a curve as functions of s are called the intrinsic equations of a curve, since they

completely define the shape of the curve. Table 3.1 shows the intrinsic equations of

some special curves.

When a point moves along a curve C the corresponding trihedron defined by

T, N and B undergoes a rigid body motion. This consideration turns out to be a

kinematic interpretation of the Serret-Frenet formulae. We exclude the translation of

the moving trihedron from our investigation and consider only its rotation. Thus we

assume the trihedron undergoes a translation and is then bound at a fixed point, say

at the origin of the Cartesian coordinate system in space. We will now determine the

rotation vector Q of the trihedron, assuming that the curve C under consideration is

of class Cm with m > 3 and has nonvanishing curvature K. The position vector of

any point P of the trihedron is of the form

x = uT + vN + wB. (3.12)

Assuming that the point moving along the curve C has a constant speed equal to 1,
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we may equate the arc length s of C with the time t. The velocity vector v of P thus

is

v - ± = uT + vNý + wB. (3.13)

As follows from Eq. (3.11) the vectors T, N and B lie in the same plane (N, N).

Since the rotation vector Q is orthogonal to the velocity vector v, Q has the direction

of

Tx 1 = aN x (-rT + TB) = 2(T X N) + KT(N x B) = K(TT + nB), (3.14)

hence it is of the form

Q = c(7T + nB). (3.15)

From v = Q x x and by setting v = w = 0 in Eq.'s (3.12), (3.13), T = Q x T.

By inserting Eq. (3.15) in this expression, we find T = c(TT + nB) x T = c,.N.

Comparing this with Eq. (3.11) we have c = 1 and thus finally the following result;

The rotation vector of the moving trihedron of a curve C: r(s) of class Cm with m > 3

and with nonvanishing curvature, when a point moves along C with constant velocity

1, is given by the expression

Q(s) = TT(s) + KB(s). (3.15')

Here the rotation vector Q is often called the vector of Darboux and its norm I

indicates the angular speed w of the moving trihedron. The angular speed w is called

total curvature of a curve and defined by

w(s) = K2(s) + T2(S). (3.16)

If a curve is planar then w reduces to a and the binormal line becomes the axis of

rotation.
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3.3 Polynomials in Bernstein Form and Bezier Curves

We introduce some fundamental definitions and properties associated with polynomi-

als in Bernstein basis and Bezier curves which will be used in the following Sections

[28, 44].

The Bernstein polynomial basis of degree n on the unit interval u E [0, 1] are

defined by

Bi,n(U = () ui ( - (3.17)

where the binomial coefficients are given by

(n)n! if 0<i < n,S { else. (3.18)
0 else.

Any polynomial function f (t) of degree n on an arbitrary interval [ti, tu] can be defined

in the Bernstein basis on the unit interval [0, 1] by affine reparametrization [28],

t - tiu = - (3.19)
tu - ti

And the corresponding transformed polynomial function is

f(u) = - fBi,n (u), u E [0, 1]. (3.20)
i=O

In general, the use of Bernstein form has advantages over the familiar power basis

in that it possesses a natural geometric interpretation and is substantially less sen-

sitive to arithmetic round-off error or perturbations in initial data [30]. Some of the

important properties of the Bernstein basis functions for u e [0, 1] are as follows
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Figure 3-2: A quadratic Bezier curve and its control polygon

[28, 44].

0 < Bi,n(u) _ 1 : Positivity (3.21)
n

SBi,n,(u) = 1 Partition of unity (3.22)
i=0

SBi,n(u) = u : Linear precision (3.23)
i=O

Furthermore, the derivatives f(r)(u) of a Bernstein polynomial f(u) and arithmetic

operations between two Bernstein polynomials can be easily achieved in Bernstein

form, [30] i.e.,

n-r

f (r)(u) = giBi,n-r(u), (3.24)
i=O

where n is the degree of f(u) and gi is computed explicitly in terms of coefficients fi

of f(u) and also

m

fi (u) f 2 (u) = giBi,m(u), (3.25)
i=O

where 0 is an arithmetic operator +, - or x and m is the degree of the resulting

polynomial after 0 operation and gi is computed in terms of fii and f2i.

An integral Bezier curve r(u) is determined by repeated linear interpolation on the

successive vertices ri of a control polygon, called de Casteljau algorithm [28]. The

de Casteljau algorithm is compactly represented by the combination of ri and the

43



Topologically Reliable Approximation of Composite Curves

Bernstein basis function Bi,,(u) i.e.,

r(u) = riBi,n(u), u [0, 1], (3.26)
i=O

where each vertex ri of the control polygon is called a control point. Figure 3-2 shows

a quadratic Bezier curve and its control points.

Because the Bezier curve uses the Bernstein basis, several properties of Bezier

curves are immediately known [28, 44], such as convex hull property following from

Eq.'s (3.21), (3.22), linear precision in Eq. (3.23) and invariance under affine reparame-

trization, etc.

3.4 Significant Points of a Regular Curve

Curvature and torsion are the most meaningful intrinsic features of a curve. Cur-

vature measures turning of the tangent vector while torsion measures twist out of

the osculating plane, when moving along the curve. We base the first step of our

approximation scheme upon the differential characteristics of curvature and torsion.

3.4.1 Significant Points of a Planar Curve

Given an interval I = [tl, t,] C R, a planar curve r is defined by a map,

r I ý--+ R2

t -+ r(t) = (X(t), y(t)). (3.27)

We assume r(t) is regular so that Ir'(t)l $ 0 and of class Cm with m > 2 in I. Since

a planar curve lies in its osculating plane, its torsion vanishes identically. Therefore,

we consider only the curvature to determine the significant points on r(t). In general,

the curvature function n(t) is defined by Eq. (3.6'). However, for a planar curve a
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signed curvature function can be defined as, [22]

(t) = x'(t)y"(t) - x"(t)y'(t) (3.28)
( 2 (t) + ± , 2 3

by using relation (3.27).

A significant point on a planar curve r(t), where the curvature K(t) changes sign,

is called an inflection point, since the center of curvature moves from one side of the

curve to the other as we traverse them. Due to the regularity of r(t), a necessary

condition to determine inflection points is

x'y" - x"y' = 0, t e I. (3.29)

For a polynomial parametric curve of degree n, Eq. (3.29) is a polynomial equation of

degree 2n - 3. Figure 3-3 shows an inflection point, labeled by x, on a planar curve.

Another significant point on r(t) is defined to be a stationary point of curvature

function r,(t) i.e., the point of K'(t) = 0, where K(t) have a local maximum or mini-

mum. The stationary point of the curvature function satisfies the equation,

(xri2 + y'2 )(x'y"' - x"'y') - 3(x'x" + y'y")(x'y" - x"y') = 0, t E I. (3.30)

For a polynomial parametric curve of degree n, Eq. (3.30) is a polynomial equation

of degree 4n - 6. Figure 3-3 also shows the corresponding significant points on r(t),

labeled by o's. Furthermore, comparing Eq.'s (3.29) and (3.30) we see both r(t) and

s'(t) of a regular planar curve r(t) vanish for some t if and only if x'y" = x"y' and

x'y"' = x"'y', simultaneously.

Finally, for the exceptional cases where rn(t) is constant or vanishes identically -

r(t) being a part of a circle or a linear segment respectively, as described in Table 3.1

- no significant points need to be considered.
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Figure 3-3: Significant points on a planar Bezier curve of degree 5

3.4.2 Significant Points of a Space Curve

A space curve r is defined by a map,

r I ý --- R 3

t H r(t) = (x(t), y(t), z(t)). (3.31)

We now assume r(t) is regular and of class Cm with m > 3 in I = [tl, t,] C R.

As described in Section 3.2, a general space curve r(t) does not lie in its osculating

plane since its unit binormal vector B(t) has an angular velocity while moving along

the curve. The magnitude of this angular velocity is called torsion 7(t). Hence it

is necessary to consider the effects of both curvature and torsion in determining the

significant points of a space curve.

The curvature K(t) of a space curve is given by Eq. (3.6'). The formula can be

expressed as,

(t) (X'Y" - I"/y')2 + (y'z" - y"z')2 + (z'IX" - z" ')2 ]
( [(2 + 2 + 2 )(3.32)

by using relation (3.31). Since r(t) is regular, a condition to determine a significant
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point on r(t) where the curvature n(t) vanishes, is

Ko(t) = 0, t E I,

Ko(t) = (x'y" - z"y')2 + (y'z"I - y"z' )2 + (z'x" -_ zl 2

x y" - x y -= y z" -y"z = z',x - z" xI = 0,

(3.33)

(3.34)

tE I. (3.33')

For a polynomial parametric curve r(t) of degree n, Ko(t) is a polynomial function

of degree 4n - 6. Such significant points on r(t) are shown in Figure 3-4, marked by

x 'S.

We now consider a significant point on r(t) where the curvature K(t) is stationary

i.e., i'(t) = 0. Such a significant point satisfies the equation,

Ki(t) - G 1(t)G2 (t) - 3G 3(t)Ko(t) = 0,

where Ko(t) is defined in Eq. (3.34) and

Gl(t)

G2(t)

G3 (t)

t E I - I*, (3.35)

(3.36)x12  y12 + 12 2,

(X 'y" - x"y') (x'y" - x'y') + (y'z" - y"z') (y'z' - y"'z') +

(z'x" - z"xi')(z'x"' - z x'),

- xx" + y'y" + z'z",

and I* - {t I(t) = 0}) n I. For t E I*, K'(t) = 0 is equivalent to

x'y " - x"y1 = y z" - y"'z' = ztx tt - z"zx = 0), t E I*,

(3.37)

(3.38)

(3.35')

since the numerator of i'(t) for t E I* should vanish faster than the denominator.

where

473.4 Significant Points of a Regular Curve
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z Y

Y X
x

z z

Y X

Figure 3-4: Significant points on a space curve and its projections

Given a polynomial curve of degree n, K1 (t) is a polynomial function of degree 6n - 9.

Three points in Figure 3-4 satisfy Eq. (3.35). Two of them are marked by o's and

one is marked by E at the midpoint of the curve.

As mentioned in Theorem 3.2.1, two continuous functions rn = - (t) > 0 and

7 = T(t) define uniquely ( except for rigid body motions ) a curve that has curvature

n and torsion T. We have already assumed that a space curve r(t) under consideration

is regular and of class Cm with m > 3 in I. In addition to these, we assume t E I-I* in

the following differential geometry equations associated with a torsion T(t). A torsion

function T(t) of a space curve r(t) is defined in Eq. (3.10') and by components,

X'"(y'z" - y"z') + y'" (z'x" - z"x') + z'" (x'y" - x"y')
7(t) = (3.39)

(x'y" - x"Iy) 2 + (y z" - y'z') + (z'XI - z X•) 2

We now consider a significant point on r(t) where the torsion T(t) vanishes. From

·····.' ' ' ' i ' ' .···.
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Eq. (3.39), a condition for zero torsion is

To(t) = O, t E I- I*, (3.40)

where

TO(t) W =X"'(y'z" - y"z') + y"'(z'x" - z"x') + z"'(x'y" - z"y'), (3.41)

which is the polynomial function of degree 3n -6 for a polynomial parametric curve of

degree n. The sign of torsion has geometric significance as explained in Section 3.2. If

r(t) changes its sign from +(-) to -(+) when passing the significant point satisfying

Eq. (3.40), r(t) also changes its features from the right-handed (left-handed) curve to

the left-handed (right-handed) one, respectively. Figure 3-4 shows a significant point

of zero torsion, marked by e at the midpoint of the curve.

Another significant point on r(t) is the point where the twist out of its osculating

plane is stationary, namely T'(t) = 0. Such a significant point satisfies the equation,

Tl(t) _ G4 (t)Ko(t) - 2G 2(t)TO(t) = 0, t E I - I*, (3.42)

where

G4 (t) - xZ(yIZI - y"z') + y~(ZI'x - z"x') ± ZiV(xIyI - x"y'), (3.43)

and Ko(t), G2 (t) and To(t) are defined in Eq.'s (3.34), (3.37) and (3.41), respectively.

Given a polynomial parametric curve of degree n, T (t) is of degree 7n - 13. Figure

3-4 shows the corresponding significant points, marked by *'s. Moreover, comparing

Eq.'s (3.40) and (3.42), both T(t) and T'(t) of a regular r(t), t E I - I*, vanish if and

only if To(t) = G4 (t) = 0.

We have explained the geometric significance of a Darboux vector Q(t) and total

curvature w(t) defined in Eq.'s (3.15') and (3.16), respectively. The Darboux vector

turns out to be a rotation vector of the Frenet frame while moving along a space curve
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r(t) with a constant velocity 1 and therefore its Euclidean norm, total curvature w(t)

indicates the angular speed of the moving local frame. We notice the total curvature

captures the coupled effect of both intrinsic features of a space curve, and hence

we consider it as a criterion function for detecting a significant point on r(t). As

mentioned before, we only consider t E I - I*, where K(t) > 0 always. Therefore,

only positive w(t) needs to be considered. A significant point where the moving frame

has its locally highest or lowest angular speed satisfies the equation w'(t) = 0 i.e.,

1 (t) = K (t)K(t) + G 0(t)To(t)Tl(t) = 0, t E I - 1*, (3.44)

where Ko(t), Kl(t), Gi(t), To(t) and Ti(t) are defined in Eq.'s (3.34), (3.35), (3.36),

(3.41) and (3.42), respectively. For a polynomial parametric curve of degree n, Eq.

(3.44) is a polynomial equation of degree 18n - 27. Comparing each function we can

roughly see each contribution of n(t), h'(t), T(t) and T'(t) to Eq. (3.44). For a special

example, if ,.'(t) and one of T(t) or T'(t) vanish at some t, Eq. (3.44) is also satisfied

there. We note Ko(t) and Gi(t) are always positive for t E I - I*. Three points in

Figure 3-4 satisfy Eq. (3.44). Two points, marked by +'s, are located close to the

points of curvature extrema, marked by o's, and the other point, marked by e, is

located at the midpoint of the curve where sr'(t) and T(t) also vanish.

Finally, for the special case where r(t), T(t) and consequently w(t) are constant -

r(t) being a circular helix as mentioned in Table 3.1- no significant points need to be

considered.

3.4.3 Solution Methodology

If a given planar or space curve r(t) is a polynomial parametric curve, each equation

for obtaining significant points on r(t) derived in Sections 3.4.1, 3.4.2 is reduced to a

single univariate nonlinear polynomial equation. Such a polynomial equation f (t) = 0

of degree m over an interval I = [tl, tu] C R can be expressed as.

m

f(u) Z iBi,m(u) = 0, u E [0, 1], (3.45)
i=0
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by Eq.'s (3.19), (3.20). Using the linear precision property (3.23) and the B6zier

function f(u), we can create an explicit B6zier curve F(u) given by, [58]

F (u) = - -Y , Bi,m (u). (3.46)

Therefore, the problem of f(u) = 0 can be transformed into a geometric problem of

finding the intersections of the Bezier curve F(u) with the parameter u-axis. Further-

more, in case of r(t) being a Bezier curve, m and fi are computed explicitly in terms

of the degree and each component of the control points of the Bezier curve r(t), as

stated in Section 3.3.

For the solution of the transformed geometric intersection problem, we use the

interval projected polyhedron algorithm [46, 58, 59, 85]. The algorithm effectively

finds intervals containing all real roots of overconstrained, underconstrained and bal-

anced systems of nonlinear polynomial equations using the de Casteljau subdivision

method coupled with rounded interval arithmetic (RIA). A floating point version of

the algorithm is also available; however, we need to keep in mind that floating point

arithmetic (FPA) computations frequently miss ill-conditioned roots.

Before we start the root-solving process we need to decide if an input curve is a

planar or space curve and if the curve is planar we solve the equations described in

Section 3.4.1 and otherwise solve the equations in Section 3.4.2. We now illustrate

how to detect an input curve r(t), t e I is a planar or space curve. In case of a planar

curve, its torsion r(t) vanishes identically, and hence To(t) in Eq. (3.41) is identically

zero Vt E I. As stated above, any polynomial function can be transformed into a

Bezier form by Eq. (3.45). Thus we can express To(t), t E I as

m

To(u) = • Bi,m(u), u E [0, 1]. (3.47)
i=0

In order for To(u) to vanish Vu E [0, 1], each fi for i = 0,..., m should be identically
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zero. Therefore, in practical algorithms we compute each fi and if

(FPA) fi < < 1, (3.48)

(RIA) fi, < 0, f•, > 0 where fi - [fit, fij] (3.49)

for each i = 0,..., m then we decide the input curve r(t) is planar.

In a similar way, we can handle the exceptional cases that equations finding sig-

nificant points vanish identically for e.g., if an input curve is a circular helix, then

K,(t), Tl(t) and Q2l (t) in Eq.'s (3.35), (3.42) and (3.44) vanish identically. We first

formulate each equation in Bezier form and check whether every Bezier ordinate fi

vanishes identically by using decision criteria in (3.48), (3.49). If it does we do not

attempt to solve such equations in order for the algorithm not to be trapped in an

exhaustive root solving process.

3.5 Piecewise Linear Approximation of Composite

B6zier Curves

Our piecewise linear approximation technique comprises of three steps. The prelimi-

nary step reflects the differential geometric properties of the input Bezier curves and

the main approximation efficiently ensures that the approximation error is within a

user specified tolerance. The final step guarantees the existence of a homeomorphism

between a set of exact input curves and their approximation.

3.5.1 Preliminary Approximation

We compute the significant points for each input Bezier curve using the method

described in Section 3.4. By using these significant points as well as the boundary

points as nodes, we can create a preliminary piecewise linear approximation of the

set of composite B6zier curves.

In practical algorithms, we actually obtain a list Lpseg of parametric segments
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Figure 3-5: A preliminary approximation of a planar B6zier curve of degree 5

psegi through the preliminary approximation. By making data structure of the item

psegi have a pointer to its parent input curve, its corresponding linear segment in 3D

space is easily achieved by mapping end vertices of psegi through the parent Bezier

curve equation r(t). An example of the preliminary approximation corresponding to

the curve in Figure 3-3 is shown in Figure 3-5.

This preliminary approximation, providing the most significant geometric infor-

mation of input curves, is valuable especially when a coarse approximation of good

quality is required such as in finite element meshing applications. The algorithm for

the preliminary approximation would be as follows;

Preliminary-Approximation ( Lc )

In it ( Lpseg ) > initialize the list Lpseg that will store parametric segments psegi

c -- head [L ] > pick up the first curve from the input B6zier curve list Lc

while c 5 NIL > for each input curve

Solve ( c, Lpseg ) > compute the significant points and append corresponding
parametric segments psegi to Lpseg

c -- next [c] > get the next curve element from Lc

return Lpseg > return the list Lpseg of parametric segments psegi
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3.5.2 Main Approximation

The main approximation begins with computing the approximation error for each 3D

linear approximating segment by evaluating a tight upper bound for the deviation

between a piece of the exact Bezier curve and the corresponding approximating seg-

ment. In general, suppose r(t), s(t) are integral Bezier curves of degree n and ri, si

(i = 0, 1, 2,... , n) the corresponding control points. Using the convex hull property

as in Eq.'s (3.21) and (3.22), the absolute position difference 6(t) at isoparametric

points is given by, [69]

n

6(t) = I -(r - Si)Bi,n(t) < max Iri - si. (3.50)
i=O

This convex hull method can be effectively employed to compute an approximation

error bound under consideration. We first find an exact Bezier curve segment cor-

responding to a parametric segment psegj [tj, tj +1 ] obtained in preliminary ap-

proximation. The exact B6zier curve segment r(t) is easily achieved by subdividing

the parent input Bezier curve of psegj at tj, tj+l using the de Casteljau algorithm,

[28, 44]. Let ri, si be the control points of the exact Bezier curve segment and those

of an approximating linear segment, respectively. In fact, si can be chosen as n + 1

points uniformly distributed on the linear segment, as shown in Figure 3-6. Since

both end points so = ro and sn = rn, si are simply obtained by

s 1 i
i = ro- + -r, i = 0, 1,2,..., n. (3.51)

n n

The upper bound given in Eq. (3.50) is determined only by computing Iri - si I for each

i = 1, 2,..., n - 1. We consider this upper bound as a criterion of our approximation

error 6, see also Figure 3-6 i.e.,

6 max Iri - sil. (3.52)
1<i<n-1

If the approximation error 6 is not within a user specified tolerance E, a subdivision
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Figure 3-6: Construction of an upper bound 6 of the approximation error

Figure 3-7: Subdivision of a Bezier curve segment at t = 0.5

of the parametric segment psegj and corresponding Bezier curve segment r(t), is

performed at the midpoint, as shown in Figure 3-7. In practical algorithms, we

actually compute 62 and compare it with e2. Our preliminary approximation described

in Section 3.5.1 ensures that every subdivided curve segment is convex because the

magnitudes of i, 7 and w are monotonously increasing or decreasing along each piece

of curve segments. As we found experimentally, this convexity makes the midpoint to

be an appropriate breakpoint of the curve segmentation. Successive subdivisions are

performed until every linear approximating segment satisfies the specified tolerance E

and finally, an updated list Lpseg of the parametric segments psegj is obtained. The

algorithm may be given as follows:

Main-Approximation ( e, Lpseg )

c +- head [Lpseg] > pick up the first element from the list Lpseg of parametric

segments psegi

while c 4 NIL > for each psegi
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Figure 3-8: A main approximation of a planar B6zier curve of degree 5 with e = 10-2

Error ( c, 6 ) > compute the approximation error 6 by using parent B'zier
curve of c and Eq. (3.52)

if 62 > E2 > the error is not within a specified tolerance c

Subdivide ( c, Lpseg ) > subdivide c into two at the midpoint and
insert them next to c

c +- next [c] > get one of the subdivided segments

Delete ( prey [c], Lpseg ) > delete the old parametric segment which
failed in error test

else

c +- next [c] > get the next parametric segment from Lpseg

return Lpseg > return the updated Lpseg

For the preliminary approximation illustrated in Figure 3-5, corresponding main

approximation with f = 10-2 is shown in Figure 3-8.

3.6 Intersection Test and Final Approximation

Supposing the exact input curves constitute a set of mutually non-intersecting sim-

ple composite curves, the linear approximating segments should not have any inap-

propriate intersection in order to achieve a homeomorphism between the exact and

approximated curves [2, 10]. The term simple composite curve here denotes a com-
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Figure 3-9: A composite Bezier curve involving a constriction and the corresponding
linear approximating segments with e = 10-1

posite regular curve without self-intersections. Therefore, the intersection test should

be performed to identify possible inappropriate intersections of the linear segments

arising from, for example, global distance function features of the input curve such

as constrictions as depicted in Figure 3-9. If inappropriate intersections exist, they

necessitate further local refinement of the approximation until the linear approxi-

mating segments do not have any inappropriate intersection. A bucketing technique

[5, 19] is used to identify such inappropriate intersections, which runs in O(n) time

on the average, where n is the number of the linear approximating segments. The

idea of the bucketing technique is, first to divide the domain into equal-sized O(n)

subdomains, and next to perform the intersection check for linear segments within

the same bucket. Since the subdomains are uniformly distributed, we expect 0(1)

linear segments on the average to fall into each bucket.

3.6.1 Homeomorphism between the Exact and Approximat-

ing Curve

Before we proceed to the final approximation scheme, we prove the existence of a

homeomorphism between a set of mutually non-intersecting simple composite curves

and the corresponding linear approximating segments without any inappropriate in-

tersection. The homeomorphism under consideration is easily constructed by using

Definition 3.6.1 and Lemma 3.6.2 below.
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Definition 3.6.1 We say that topological spaces X and Y are homeomorphic, if there

exists a continuous one-to-one mapping f : X -+ Y which has a continuous inverse.

Such a map f is called a homeomorphism [2].

Lemma 3.6.2 Let X = Xi U X 2, Y = Y1 U Y2 be topological spaces such that X 1,

X2 are closed in X and Y1, Y2 are closed in Y. Let fi : Xi -+ Yi, f2 : X 2 -+ Y2 be

homeomorphic which restrict to the same homeomorphism fo : X 1 n X 2 -+ Y 1 n Y2.

Then the function

f : X-+Y{ fi(x), x EX1 ,
f2(x), x E X2

is well-defined and a homeomorphism [13].

Theorem 3.6.3 A simple composite curve X comprising of n curve segments is

homeomorphic to the corresponding heap Y of n linear approximating segments which

do not have any inappropriate intersection.

Proof. The proof is easily achieved by induction. Let the simple composite curve X

and the corresponding heap Y of linear segments without inappropriate intersections

be X = U= 1 Xi and Y = U., Yi, where Xi and Yi are the ith curve and its approxima-

tion, respectively. To prove a map f X(= U~, Xi) -+ Y(= Ul,1 Yi) is a homeomor-

phism, we first need to show that a curve segment X1 is homeomorphic to the corre-

sponding linear segment Y1, namely a map fi : X 1 - Yi is a homeomorphism. This is

clearly true because any non-self-intersecting arc described by the continuous motion

of a particle moving from an end point to the other end point is homeomorphic to a line

segment [17]. Assume now a map f* :X*(= Ui, Xi) _ Y*(= U, 1 Yi) is a homeo-

morphism for 1 < k < n and consider a map f** : X**(= U=e= x>) - Y**(= U• y).

Since X** = X* U Xk+1 and Y** = Y* U Yk+1, each subspace X*, Xk+l are closed

in X** and Y*, Yk+1 are also closed in Y**. Furthermore, the map f* : X* -+ Y* is

homeomorphic by the assumption and so is a map fk+l : Xk+1 -+ Yk+l as described in
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i

k

(a) 2 x 3 buckets (b) 1 x 3 x 2 buckets

Figure 3-10: 2D and 3D buckets

the proof of fl. Moreover, X* n Xk+l and Y* n Yk+l is a node, say Nk, connecting X*,

Xk+1 and Y*, Yk+1. We note the node Nk is the only possible X*nXk+l and Y*nYk+l

since X** is a simple composite curve and Y** does not have any inappropriate in-

tersection. Therefore, a map fo : X* n Xk+1 - Y* n Yk+l is equivalent to Nk -+ Nk,

which is obviously homeomorphic. By Lemma 3.6.2, a map f** : X** - Y** is ac-

cordingly a homeomorphism. Therefore, a map f is a homeomorphism from a simple

composite curve X comprising of n curve segments to the corresponding heap Y of

n linear approximating segments which do not have inappropriate intersections. O

3.6.2 Construction of Buckets

The main approximation described in Section 3.5.2 renders a list of linear approxi-

mating segments whose approximation error is within a user specified tolerance by

mapping the corresponding list Lpseg of parametric segments psegi. Suppose a set of

2D (3D) linear approximating segments falls into a rectangular (rectangular paral-

lelepiped) frame R with sides parallel to the xy (xyz) axes, respectively. The frame

R is partitioned into n, x n, (n, x x n x nz) rectangular (rectangular parallelepiped)

buckets of equal size. As shown in Figure 3-10, a 2D bucket which is the ith from

left and the jth from bottom is denoted by Bij. A 2D bucket coordinate system is the

J " ~

IN

f

--

------
----_

CZ __
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coordinate system obtained by rescaling the x and y axes such that the left-bottom

corner of bucket Bij has coordinates (i, j). In a similar manner, a 3D bucket Bijk

and the corresponding coordinates (i, j, k) can be defined. We note that a bucket to

which an end point of a linear approximating segment belongs is easily found by just

taking the integer parts of the bucket coordinates of the end point. Given the number

of linear approximating segments n, corresponding nx and n, of the 2D frame R are

determined by the formulas :

nx = laXv'nJ, ny = la (3.53)

with properly chosen weighting parameters ax and a,, where [eJ denotes the integer

part of .. Those parameters ax and ay can be appropriately obtained by the following

two equations:

ay xLy
ax LX axay = 1i, (3.54)

where Lx and Ly are the width and height of a rectangle which bounds the set of

linear approximating segments in xy coordinate system, as depicted in Figure 3-11.

By solving Eq. (3.54), ac and ay are determined as

a• = V,

Similarly, nx, ny and nz of the 3D frame 7 are determined by the formulas:

=nx = laxu], 1ny = layn ], znz = lazn3 1,

where n is the number of linear approximating segments and

12
a = Lzy ) 3

" L Z LX

ay =- •" (3.55)

(3.56)

1

ax L ,L )2 '
1

L2 2zaz = ( .) (3.57)
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Figure 3-11: A rectangle which bounds the linear segments in xy coordinate system

If nr, n, or nz in Eq.'s (3.53) and (3.56) happen to be zero, we reset them to be one.

The number of buckets constructed is obviously O(n) and consequently the number

of linear approximating segments to fall into each bucket will be ((1) on the average.

3.6.3 Preprocessing - Putting Linear Segments into Buckets

At the preprocessing stage, we associate each linear approximating segment with the

buckets constructed in Section 3.6.2. For each linear approximating segment 1, in xy

(xyz) coordinate system, we first perform a transformation with respect to bucket

coordinate system ij (ijk), respectively, i.e.,

1, - (1 - s)b , + se , -P (1-s)b, + s• 1,, sE [0, 1], p = 1, 2,..., n, (3.58)

where vectors bp, e, are end points of the linear segment 1p and the tilde - represents

the corresponding transformed version. Those transformed end points bp, ~p in 2D

case are obtained by the following relations:

b,= (b,i, bp, ),

bpi = (bpx - Xmin),

ýpi = (epx - Xmin),
2;

6 = (epi, pj),

7 ,3 LY_ ny (ebpy - Ymin),

nye e= py - Ymin),

and

(3.59)

(3.60)

(3.61)



62 Topologically Reliable Approximation of Composite Curves

3 ------ ---1-- ---
I

2

1

0 1 2 3

Figure 3-12: Putting a 2D linear segment l, into buckets Bij

where bp,, by,, epX, epy are x, y components of the end points bp, ep and (Xmin, Ymin)

are coordinates of the left-bottom corner of a bounding rectangle shown in Figure

3-11 and nx, ny, Lx, LY are described in Eq.'s (3.53) and (3.54). In a similar manner,

the transformed end points bp, ~p in 3D case are determined as:

bp = (bpi, bj, bpk), Zp = (pi, eipj, pk), (3.62)

where bpk = (bz - Zmin), pk = (epz - Zmin), (3.63)

and bpi, bpj, epi, epj are defined in Eq.'s (3.60) and (3.61).

We now put each 2D (3D) transformed linear approximating segment i, into buck-

ets Bij (Bijk), respectively. Buckets containing the end points bp and 6p are easily

determined by just taking the integer parts of the end points for example, buckets

B 0o and B2 0 in Figure 3-12. To determine intermediate buckets through which the

transformed linear segment ip passes, a line-type of ip, associated with the signs of

Ai, Aj and Ak, is identified, where

(3.64)

-- ---- -- ru-~--^-_;-~·c- ;---;ar~-c~a~iiC~YIPL~iasrY- ··---,,., ··irp-· -~'-~~~"~ ""CI-~u~i;;--;- ·---- ·----·----------· ·---·-- ----~---- --··-;c·

-----------

...........

Ai = epi -bpi, Aj = epj -bj, Ak= epk -bpk.
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Once the line-type is identified, we can easily trace the linear segment i,. As an

illustrative example, we consider a 2D linear segment l, shown in Figure 3-12. It

is obvious that 1, has positive Ai and negative Aj. Therefore, starting from the

bucket B 01 which contains the starting end point bp, we need to check whether l,

crosses the bottom edge or the right edge of each bucket it passes through. This

procedure is repeated until an intermediate bucket, adjacent to B 20 which contains

the other end point Zp, is determined. As illustrated in Figure 3-12, 1, crosses the

right edge of the bucket B01 . An intermediate bucket B 11 is thus simply determined.

Similarly, we next check if 1, crosses the bottom edge or the right edge of the bucket

B 11, and consequently we obtain another intermediate bucket B 10 . We can easily

extend the idea of this procedure to 3D transformed linear approximating segment 1,

and the corresponding intermediate buckets Bijk. The only difference is that we have

more possible line-types of ,p associated with Ak defined in Eq. (3.64) and we need

to consider face-crossing of 1, instead of edge-crossing in 2D case. We note that in

general, very few numbers of intermediate buckets exist due to the characteristics of

the bucketing technique - the number of uniformly distributed equally sized buckets

0(n), where n is the number of linear approximating segments.

Suppose the preprocessing step is completed for each 2D (3D) transformed linear

approximating segment ip, each bucket Bij (Bijk) is associated with the corresponding

linear segments. In practical algorithms, a bucket Bij (Bijk) is no other than a pointer

to the list of associated linear segments. For example, provided that a 2D bucket B 01

is associated with three 2D transformed linear approximating segments 13, 14 and 1100

as shown in Figure 3-13, then data for the bucket B01 can be represented as

B01 13 -- 14 -- 1100. (3.65)

These data for the buckets can be constructed in O(n) time and space on the av-

erage. Finally, 2 x 2 buckets and eight transformed linear approximating segments

corresponding to the linear segments shown in Figure 3-11 are depicted in Figure 3-14.
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1100

14

Figure 3-13: A 2D bucket associated with 3 transformed linear segments

Figure 3-14: 2 x 2 2D buckets containing 8 transformed linear approximating segments
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(a) overlapping (b) refined

Figure 3-15: Input curves and linear approximations involving overlapping intersec-
tion

3.6.4 Intersection Check and Final Approximation

For each bucket Bi (Bijk), an intersection check is performed to identify inappropriate

intersections of the linear approximating segments. The intersection test begins with

inquiring whether at least two linear segments exist in a bucket Bij (Bijk). If it is true,

an intersection check between each pair of transformed linear segments associated with

Bij (Bijk) is performed. If a pair transformed linear approximating segments lq(s)

and lr(t) inappropriately intersect at those parameter values s = so and t = to, i.e.,

lq(so) - (1 - so)bq + 8oeq (1 - t 0 )br + t0or - l(to), 0 < so, to K 1, (3.66)

further local refinement of the approximation is necessitated. We first pick up two

parametric segments psegq(s) and psegr(t) from the list Lp,eg corresponding to lq(s)

and I,(t). Subdivision of corresponding B6zier curve segments Rq(s) and Rr(t) at

s = so and t = to is performed. In case lq(s) and lr(t) overlap, the subdivision is

performed at s = t = 0.5, as illustrated in Figure 3-15. The bucketing procedure

described in Sections 3.6.2, 3.6.3 and the intersection test are then repeated for a

new list of parametric segments until every linear approximating segment does not

inappropriately intersect another linear segment. This procedure, called final approx-

imation, is described in Figures 3-16 and 3-17 corresponding to the example shown

in Figures 3-9 and 3-14.
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Figure 3-16: 3 x 3 2D buckets
ments

containing 10 transformed linear approximating seg-

Figure 3-17: A composite curve with constriction and its approximation guaranteeing
a prescribed tolerance and the existence of a homeomorphism between the exact and
approximating curves
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3.7 Linear Approximation of Interval B6zier Curves

3.7.1 Introduction

State-of-the-art CAD systems, operating in floating point arithmetic (FPA), fre-

quently fail. The ultimate reason for this failure is the limited precision of geometric

computations. For example, in the course of successive subdivisions of an exact curve,

subdividing points evaluated using FPA are close to but not precisely on the exact

curve. This gap increases as the subdivision progresses. Recalling our approximation

scheme, tighter approximation tolerance necessitates more subdivisions of the exact

curve and therefore, numerical errors associated with nodes of the linear segments are

increased as the tolerance becomes tighter. However, in many practical applications

of linear approximation, provided that an input curve is precisely defined and only a

moderate approximation tolerance e is required, the numerical error associated with

FPA is frequently negligible compared with e. On the other hand, suppose an input

curve already has a significant geometric uncertainty with an ill-posed configuration,

its approximation may result in more serious ambiguities propagating in the process

of approximation. To cope with this adversity, we use interval Bezier curves computed

in rounded interval arithmetic (RIA). RIA [66], which can be implemented effectively

in object-oriented language such as C++, leads to numerical robustness and provides

results with numerical certainty and verifiability.

Interval Bezier curves differ from classical Bezier curves in that the real numbers

representing control point coordinates are replaced by intervals. Such curves have

been used in [81, 82] for approximating parametric curves and their offsets, in [91] for

the representation of functions with uncertainty, in [46, 59] for solving shape inter-

rogation problems robustly. In these curves, the classical control points are replaced

by rectangular boxes. This implies that, in 3D space, interval Bezier curves repre-

sent slender tubes, if the intervals are chosen sufficiently small. Linear approximating

segments corresponding to such interval Bezier curves consequently have the form

of straight slender beams connected at each subdividing interval point. An interval

straight line is defined as the largest area (volume) obtained by connecting each ver-
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tex bi and ei of two interval points b and e where i = 1, 2, 3, 4 (i = 1, 2,..., 8) in

2D (3D) case, respectively. Figure 3-18 illustrates a 2D interval linear segment l(t)

which can be still represented by a vector formula :

l(t) = (1 - t)b + te, t E [0, 1], (3.67)

where b and e are interval end points of 1(t). In the following two Sections, we apply

b3 b4

(a) (b)

Figure 3-18: A 2D interval linear segment l(t)

the approximation scheme described in Sections 3.4, 3.5 and 3.6 to the interval Bezier

curves.

3.7.2 Preliminary and Main Approximation

Given a set of planar or space interval Bezier curves, we formulate the problem as

in Section 3.4 using RIA to determine significant points of the input interval Bezier

curves. The interval projected polyhedron algorithm mentioned in Section 3.4.3 is

next employed to solve robustly single univariate nonlinear polynomial equations.

This algorithm actually provides intervals containing tj's where tj = [tjl, tj ] con-

taining roots. Averaging is then performed for each root tj,

j = + t (3.68)2

--- I _ww Yl --
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Preliminary approximation is accordingly achieved by subdividing each interval B6zier

curve at tj's. For each preliminary linear approximating segment, an approximation

error 6 given in Eq. (3.52) is computed. We note here that the computed approxima-

tion error 6 is also an interval number such as 6 = [61, 6, ]. In order to guarantee a

prescribed tolerance e, we choose 6u as an approximation error. The approximation

error 6. is clearly overestimated compared with 6 obtained by FPA. Successive subdi-

visions are performed until every interval linear approximating segment satisfies the

prescribed tolerance e (as in the main approximation described in Section 3.5.2).

3.7.3 Intersection Test and Final Approximation

A bucketing technique described in Section 3.6 is now performed to identify inap-

propriate intersections of interval linear approximating segments. Supposing such

an intersection exists, Eq. (3.66) gives the corresponding interval parametric roots

so = [s01, sou] and to = [to0 , to n]. After averaging each interval root so and to, i. e.

o01 + Sou tol + tou
so = 2 = (3.69)

subdivisions of the corresponding interval Bezier curve segments are performed at -o

and to. This bucketing procedure and intersection test is repeated until every interval

linear approximating segment does not involve intersections, as described in Section

3.6.4. As an example, we artificially impose O(10 - 3) interval on each control point

coordinate of the curve shown in Figure 3-9. Figure 3-19 - see also Figure 3-18 (a) -

shows locally refined interval linear approximating segments near the constriction.

We now illustrate the importance of RIA in the fully robust intersection test

between the linear approximating segments. Even if our intersection problem is the

simplest line to line intersection problem, blind use of FPA always has a possibility

of missing root [41], which leads to a topological inconsistency between the exact and

approximating curves. Such topological inconsistency eventually results in system

failure provided that further geometric computations or analysis are performed on

those topologically inconsistent approximations. For instance, we consider two pieces
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Figure 3-19: Interval linear approximating segments near constriction

(-1, -1 + q)

Figure 3-20: Two pieces of input curve segments and their approximation, 0 < 171 << 1



3.8 Complexity Analysis

of exact curve segments and the corresponding linear approximating segments shown

in Figure 3-20. Each 2D approximating segment can be exactly described by the

following formulas,

11(s) = (1 - s)bi + sel, 12 (t) = (1 - t)b 2 + te 2, (3.70)

where bl = (0, 0), el = (1,1), b 2  (-1,-1 ), e2 = (, ) and 0 < s, t < 1

0 < 1r <« 1. Obviously, intersection test must identify the inappropriate intersection

at s = and t = 1. However, the order of r/ can make the problem highly ill-

conditioned and correspondingly, blind use of Eq. (3.66) operating in FPA may miss

the intersection root. For example, we set rj = 10-6 and apply single precision FPA

and the corresponding root is s = 0.625, t = 1.0625. Since t > 1 the intersection

module returns 11 n 12 = 0 while RIA reports the inappropriate intersection at s -

[0.5, 0.5] and t = [1.0, 1.0].

3.8 Complexity Analysis

In this Section, we perform complexity analysis for each approximation procedure,

i.e., preliminary, main and final approximation.

3.8.1 Preliminary Approximation

In the preliminary approximation stage, the dominant part is the computation of

significant points of input curves. For simplicity, we assume that each input curve

is of the same degree m in the following analysis. Given a univariate polynomial

equation of degree p, for example p = 18m-27 in Eq. (3.44), the projected polyhedron

algorithm takes O(p2) for each iteration [85] and therefore, time complexity of the

algorithm can be described as O(Niterp2 ) where Nit,, is the number of iterations to

get the solution. In fact Nite,, depends on the root tolerance and the characteristics

of the input curve, in other words as the root tolerance becomes tighter or the input

curve causes tangential roots, Niter is obviously increased. If the total number of
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input curves is Nc and if Niter is the average number of iterations for each input

curve, then preliminary approximation takes O(NcNiterm2 ) on the average.

3.8.2 Main Approximation

For each parametric segment psegi (i = 1, 2,..., Npre) obtained by the preliminary ap-

proximation, we perform (Ni - 1) number of binary subdivisions to get Ni parametric

segments which generate corresponding Ni linear approximating segments satisfying

the approximation tolerance e. For each subdivision, de Casteljau algorithm is em-

ployed to extract corresponding sub-Bezier curve segment, which runs in O(m2) and

the approximation error 6 is computed in O(m). Therefore, main approximation re-

quires O(NpreNavgm2 ) time complexity on the average, where Navg = 1 NPre Ni.

In fact, Ni depends on the approximation tolerance c and intrinsic features of the curve

segment ri(t) obtained by the preliminary approximation. Unfortunately, the exact

relationship between Ni and those parameters is not available for our main approxi-

mation scheme however, we can describe the average lower bound as Ni = Q( K) by

utilizing the theorem reported in [32] and assuming the curve segment is parametrized

along the arc length s, where -- is the average curvature for s E [sil, sSi] - psegi.

Here we note -i is bounded within [min(ni(sil), i(Siu)), max(Ki (sil), Ki (siu))] since

our preliminary approximation produces sub-Bezier curve segment ri(s) whose cur-

vature Ki(s) is monotonously varying along sit < s < siu.

3.8.3 Intersection Test and Final Approximation

Main approximation results in Nmain(4 NpreNag) number of parametric segments

psegi. We next construct corresponding buckets in O(Nmain) as described in Section

3.6.2. Since 0(1) linear approximating segments are associated in each bucket, time

complexity for the intersection test is also O(Nmain). In case that an inappropriate

intersection between a pair of linear approximating segments is detected, we bisect

such segments - the number of linear segments is increased by 2 - and immediately

update the buckets for the further intersection test. Therefore, total complexity is
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described as O(f) where

Ninter

f = (Nmain + 2i) = (Ninter + 1)Nmain + (Ninter + 1)(Ninter + 2), (3.71)
i=O

where Ninter is the total number of pairs of intersecting segments detected during

the test. By taking the leading terms in Eq. (3.71), the total complexity will be

O(NinterNmain + Ni2nter) for Ninter > 0 and O((Nmain) in case Ninter = 0.

3.9 Examples

We have implemented our method on a graphics workstation running at 150 MHz.

For each exact input Bezier curve, we perform the approximation with rounded in-

terval arithmetic (RIA) as well as floating point arithmetic (FPA). In the following

examples, we fix the root tolerance of the projected polyhedron algorithm to be 10-6

during the process of determining significant points of input curves, regardless of the

approximation tolerance e. A 10- 6 root tolerance is sufficiently tight compared with

the typical approximation tolerance E such as in finite element meshing. Notations

used in Tables 3.2 - 3.7 are summarized as follows:

* e : User specified approximation tolerance (normalized)

* n : Number of linear approximating segments

* FPA: Floating point arithmetic

* RIA : Rounded interval arithmetic

* Preliminary: Preliminary approximation

* Main: Main approximation

* Final: Intersection test and final approximation

* Total: Sum of CPU-times in Preliminary, Main and Final
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Tables 3.2 - 3.7 together with Figures 3-21 - 3-26 illustrate the performance for test

curves. Overall time cost of FPA is very low for both 2D and 3D cases. However,

there are two problems associated with FPA. The first one is the possibility of miss-

ing significant points due to numerical errors in the projected polyhedron algorithm.

Such a situation is typically encountered when an input curve has locally flat con-

figuration. For example, given a planar curve y = (x - a)m of high degree m, the

projected polyhedron algorithm - like other existing polynomial solvers - operating

in FPA with too tight a tolerance, say 10-8, fails to find a significant point x = a

corresponding to the equations r = 0, r,' = 0, while RIA finds it with a relatively high

time cost. This unsatisfactory result comes from the ill-conditioned root x = a of high

multiplicity. This fact could be also applied to the equations associated with torsion

in 3D case. Nevertheless, as far as our linear approximation problem is concerned,

this is not a serious adversity. Because, in general, too tight a root tolerance is not

necessary in the preliminary approximation step, and moreover, in a practical sense, a

locally flat region is not problematic for linear approximation. However, as discussed

in Section 3.7.3, RIA is inevitably necessitated for the fully robust intersection test

between the linear approximating segments. Otherwise, there is always a possibility

of topological inconsistency between the exact input curves and their approximations.

Another problem associated with FPA arises when a floating point linear approxi-

mation, corresponding to an input curve which inherently has a significant geometric

uncertainty, results in serious ambiguities propagating in the approximation proce-

dure. This is an apparent adversity of FPA. Operations in RIA for interval input

curves are consequently necessitated to capture the propagation of ambiguities dur-

ing the process of main and final approximations. Some conclusions drawn from our

investigation associated with FPA and RIA are as follows : suppose an input curve

is precisely defined and a user specified approximation tolerance is moderate, FPA

is recommended for the whole process of approximation except for the final approxi-

mation stage in order to guarantee a robust intersection test. On the other hand, in

case an input curve has a significant geometric uncertainty with an ill-posed configu-

ration, FPA with moderate root tolerance may still be used in the root-finding stage



but RIA should be used for the rest of the approximation algorithms - subdivision in

preliminary approximation, main and final approximations.

Figure 3-23 together with Table 3.4 demonstrate the importance of the final ap-

proximation stage. Were it not for the intersection test, a homeomorphism between

the exact and approximating curves could not be guaranteed for f = 10-1.

In general, provided that a prescribed approximation tolerance 6 is loose enough,

say 10- 1 , the preliminary approximation satisfies the e-tolerance with a satisfactorily

small number of linear approximating segments. According to our numerical ex-

periments, a blind uniform binary subdivision algorithm produces about 40 % more

number of linear approximating segments, if the approximation tolerance is loose

enough and the input curves are of high degree with irregular distribution of intrinsic

features. However, sometimes in 3D case, the preliminary approximation produces

unnecessarily many linear approximating segments despite the loose e being required,

as shown in Table 3.6 and Figure 3-25. The reason for this problem is that the

number of local extrema points of curvature r, torsion 7 and total curvature w is

large. In such a case, some of the significant points obeying r' = 0, w' = 0 or those

of T' = 0, w' = 0 are located quite close to each other due to the characteristics of

those equations described in Section 3.4.2. This feature results in a large number

of unnecessary subdivisions of an input curve in a small region. To overcome this,

we may actually omit solving r,' = 0 and 7' = 0 in our preliminary approximation

scheme, still capturing the effect of both intrinsic features of a space curve. This

alternative preliminary approximation scheme, denoted by Preliminary* in Table 3.7,

may be described as follows: in 3D case, if our conventional preliminary approxi-

mation scheme attempts large number of unnecessary subdivisions in a small region

of an input curve, despite only a very loose e being required, we determine those

significant points corresponding to r = 0, 7 = 0 and w' = 0 with FPA and perform

the subdivisions with FPA or RIA. Table 3.7 and Figure 3-26 show the satisfactory

results based on the modified preliminary approximation scheme - see also Table 3.6

and Figure 3-25 for the comparison. In Table 3.7, (FPA/RIA) represents that the

root-solving is performed in FPA and the corresponding subdivision of input curves

3.9 Examples 75
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is executed in RIA.
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CPU-time (sec)
Tolerance (e) Preliminary Main Final Total n

FPA RIA FPA RIA FPA RIA FPA RIA
10-1 0.05 1.49 0.00 0.12 0.00 0.07 0.05 1.68 8
10-2 0.05 1.49 0.02 0.43 0.01 0.20 0.08 2.12 24
10- 3 0.05 1.49 0.11 1.63 0.04 0.69 0.20 3.81 81

Table 3.2: Result for Figure 3-21

CPU-time (sec)
Tolerance (E) Preliminary Main Final Total n

FPA RIA FPA RIA FPA RIA FPA RIA
10- 1 0.16 2.50 0.02 0.24 0.01 0.21 0.19 2.95 37
10- 2  0.16 2.50 0.03 0.28 0.02 0.25 0.21 3.03 44
10- 3  0.16 2.50 0.08 0.85 0.04 0.59 0.28 3.94 102

Table 3.3: Result for Figure 3-22

CPU-time (sec)
Tolerance (E) Preliminary Main Final Total n

FPA RIA FPA RIA FPA RIA FPA RIA
10-1 0.04 0.65 0.01 0.09 0.02 0.33 0.07 1.07 16
10- 2 0.04 0.65 0.02 0.30 0.01 0.19 0.07 1.14 32
10- 3 0.04 0.65 0.09 1.03 0.04 0.68 0.17 2.36 112

Table 3.4: Result for Figure 3-23
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Tolerance (E) Preliminary
FPA I RIA
0.29 8.23
0.29 8.23
0.29 8.23

CPU-time (sec)
Main

FPA RIA
0.02 0.19
0.03 0.58
0.10 1.56

Final
FPA RIA
0.01 0.09
0.02 0.32
0.04 0.84

Total
FPA I RIA
0.32 8.51
0.34 9.13
0.43 10.63

Table 3.5: Result for Figure 3-24

Tolerance (E) Preliminary
FPA RIA
0.65 15.65
0.65 15.65
0.65 15.65

CPU-time (sec)
Main

FPA RIA
0.04 0.38
0.04 0.54
0.11 1.37

Final
FPA RIA
0.01 0.29
0.02 0.37
0.05 0.94

Total
FPA RIA
0.70 16.32
0.71 16.56
0.81 17.96

Table 3.6: Result for Figure 3-25

CPU-time (sec)
Tolerance (E) Preliminary* Main Final n

(FPA/RIA) (RIA) (RIA) Total*
10-1 0.59 0.19 0.13 0.91 18
10-2 0.59 0.47 0.26 1.32 37
10- 3 0.59 1.33 0.85 2.77 98

Table 3.7: Result for Figure 3-26

10
26
74

38
49
106



(a) exact (b) E = 10-1

(c) e = 10 - 2 (d) =10- 3

Figure 3-21: A planar Bezier curve of degree 5

3.9 Examples



80 Topologically Reliable Approximation of Composite Curves

(a) exact

(c) C = 10-2

(b) = 10-1

(d) c = 10-

Figure 3-22: Profile of a human face: 12 planar cubic B6zier curves
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(a) exact (b) E = 10- 1

(c) E = 10- 2  (d) E = 10- 3

Figure 3-23: Quartic and parabolic planar B6zier curves
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kd) tILatLU

ýC) • IU - SU) - -IV

Figure 3-24: A simple space Bezier curve of degree 5

ýD) E•= IU -
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(a) surface net

(c) e = 10- 2

(b) E= 10-1

(d) = 10- 3

Figure 3-25: Boundary curves of a biquartic surface
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(a) surface net

(c) E = 10-2

(b) E = 10-1

(d) = 10-3

Figure 3-26: Boundary curves of a biquartic surface
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Chapter 4

Topologically Reliable

Approximation of Composite

Surfaces

4.1 Introduction

Trimmed parametric surfaces play a fundamental role in boundary representation

(B-rep) of solids [14, 29, 65] since they represent faces of complicated 3D curved

objects. Tessellation of trimmed parametric surfaces is an essential part of various

areas such as graphical display, stereo-lithography applications, finite element (FE)

mesh generation and reliable data exchange between various geometric modelers.

One of the most appropriate ways to accomplish a piecewise planar approximation

of trimmed parametric surface patches is a triangular tessellation within a specified

geometric tolerance.

The use of unstructured triangular mesh provides a very powerful tool for discretiz-

ing domains of complex shape. In addition, the unstructured triangular tessellation

naturally offers the possibility of adapting the mesh to the geometry of rapidly chang-

ing intrinsic characteristics by locally modifying the mesh topology. This feature is

particularly important for applications such as computational fluid dynamics (CFD),
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where not only the geometries involved tend to be complex but also the solution

variables are characterized by the appearance of localized features [8, 55, 90].

In this Chapter, we develop a method which approximates a set of trimmed para-

metric surface patches into a homeomorphic [2] set of unstructured planar triangular

facets within a user specified geometric tolerance. Without loss of generality, we use

integral Bezier patches for the illustration of our methodology. Our surface tessella-

tion algorithm also addresses numerical robustness in the triangulation, differential

geometric features of input geometries and high quality meshing in three-dimensional

space.

Given a composite parametric surface, we first approximately develop each input

trimmed surface patch onto two-dimensional space by employing the isometric map-

ping concept. This preliminary step is crucial to reduce distortion of triangles' shape

when mapped into three-dimensional space. If the isometric mapping error is not

satisfactory or the developed surface net self-intersects, we bisect the corresponding

surface and repeat the surface developing process. Topologically reliable boundary

loop approximation is next performed and consequently, initial nodes are obtained on

the exterior and interior boundary loops of each trimmed surface. By locating those

boundary nodes on the approximately developed surface, we obtain a planar domain

of triangulation for each input surface. We also compute all the stationary points of

root mean square curvature ,rms of the input surfaces. Nodes are placed on the do-

main of triangulation corresponding to those stationary points of rms,. Once all the

nodes are placed, boundary conforming Delaunay triangulation is employed to link

those boundary and internal nodes to form an initial triangular mesh. Furthermore,

robust decision criteria are introduced to prevent possible failures in the conventional

Delaunay triangulation.

After performing the initial triangulation described above, we compute a tight

upper bound of the deviation between a triangular facet and the corresponding tri-

angular surface patch. In order to achieve the upper bound, we develop an efficient

method to extract sub-triangular patches [28] from a tensor product patch. If the

deviation is larger than the prescribed tolerance, a new node is placed on the Voronoi
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vertex [78] of the approximating triangle and the triangulation is updated. We repeat

this Voronoi vertex point insertion algorithm until every approximating triangle has

an approximation error less than the prescribed tolerance.

We next improve the aspect ratio (AR) of the approximating triangles. Unstruc-

tured triangular mesh for free-form surfaces frequently suffers from badly shaped tri-

angles with high AR [731. If such low quality elements are used for further geometric

computations or general analysis, they cause serious numerical problems [7, 881 such

as ill-conditioned matrices or unacceptable convergence. We sort the approximating

triangles whose AR's are greater than a given threshold T. The worst triangle is cho-

sen and a new node is inserted on the Voronoi segment [78] between the worst and the

neighboring triangle to generate a new isosceles triangle having AR less than r. We

repeat this Voronoi segment point insertion algorithm until AR of the approximating

triangles can not be improved any more.

Finally, we map each approximating triangle into three-dimensional space and

check possible inappropriate intersections to achieve topological consistency between

the exact input geometry and its approximation. A bucketing technique is employed

again which offers efficiency in both time and space requirements [5, 19]. If such

inappropriate intersections exist, we perform further local refinement until a homeo-

morphism between the exact and approximating surfaces is guaranteed. To overcome

the lack of numerical robustness of floating point arithmetic (FPA) in geometric def-

initions and computations, our surface tessellation scheme is also applied to interval

trimmed parametric surfaces evaluated with rounded interval arithmetic (RIA) [66].

4.2 Differential Geometry of a Surface

We summarize the fundamental theory of differential geometry of surfaces employed

in our work. The following are well described in the classical literature on differential

geometry [22, 40, 53, 89].
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4.2.1 Concept of a Surface

A regular parametric representation of class Cm (m > 1) for a surface S in Euclidean

space E3 is a mapping r = r(u, v) of an open set U in the uv-plane onto S such that

1. r is of class Cm in U.

2. If (el, e2 , e 3) is a basis in E3 and r(u, v) = rl(u, v)el + r 2(u, v)e 2 + r3(u, v)e 3 ,

then V(u, v) in U rank of J(r) is 2, where J(r) is the Jacobian matrix of r i.e.,

(or, or1
Ou 8v

J(r)= ar2 ar2 (4.1)
au av

ar3 ar3\ u Ov /

Condition 2 states du - (du, dv) is mapped onto dr lying on a plane for all possible

infinitesimal du at a fixed (u, v) and the plane is called tangent plane, which will be

discussed soon. Furthermore, condition 2 can be compactly described as r, x r, $
0, where subscripts denote partial derivatives. Unless otherwise stated, a surface

represented by r(u, v) in the following will be a regular parametric surface of class C m

with m > 1.

A coordinate patch of class Cm (m > 1) in S is a mapping r = r(u, v) of an open

set U into S such that

1. r is a regular parametric representation of S of class Cm ,

2. r is 1-1 and bi-continuous on U.

Thus a coordinate patch is a regular parametric representation of a part of S, which

is 1-1 and bi-continuous.

Let S be a set of points in E3 for which there exists a collection B of coordinate

patches of class C m (m > 1) on S satisfying

1. B covers S i.e., for every point P in S there exists a coordinate patch r = r(u, v)

in B containing P.
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2. Every coordinate patch r = r(u, v) in B is the intersection of an open set O in

E3 with S.

Then S together with the totality of coordinate patches of class Cm in S is a simple

surface of class Cm in E3 . It follows from the definition that a simple surface does

not intersect itself.

A plane, through a point P on a surface S represented by r = r(u, v), parallel to

r, and rv at P is called tangent plane to S at P.

A vector N defined by

N = x r (4.2)
|ru x rvi

is called unit normal vector to the surface at a point P. Clearly N is of unit length,

perpendicular to the tangent plane at P, since it is perpendicular to both ru and r,

and varies continuously through the patch since r is at least of class C' and ru x r, # 0.

4.2.2 First and Second Fundamental Forms

As described in Section 3.2, a curve in E 3 is uniquely defined by two local invariant

quantities, curvature and torsion. Similarly, a surface in E3 is uniquely determined

by certain local invariant quantities called the first and second fundamental forms.

We now consider the quantity

I dr -dr = (rdu + rdv) -(rdu + rdv)

= Edu2 + 2Fdudv + Gdv2, (4.3)

where

E = r,,- r, F = r-, r , G = r, -rv. (4.4)

I defined in Eq. (4.3) is called the first fundamental form of r = r(u, v), which is a

homogeneous function of second degree in du and dv with coefficients E, F and G,
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called the first fundamental coefficients. The first fundamental form I is invariant

under an allowable parametric transformation and plays a basic role in calculating

metric properties such as arc length, surface area and angles between two curves on

a surface.

We now suppose r = r(u, v) is a patch on a surface of class Cm with m > 2. Then,

the unit normal vector N defined in Eq. (4.2) is a function of u and v of class C'

with differential dN = Nudu + Ndv. Since dN is orthogonal to N, dN lies on the

tangent plane at r. We consider the quantity

II - -dr -dN = -(rudu + rdv) . (Ndu + Ndv)

= Ldu2 + 2Mdudv + Ndv2, (4.5)

where

L = r,-N, M = rv-N, N = r,, -N. (4.6)

II defined in Eq. (4.5) is called the second fundamental form of r = r(u, v). Here again

II is a homogeneous function of second degree in du and dv with second fundamental

coefficients L, M and N. It is easily seen that II is invariant in the same sense

that I is invariant under an allowable parametric transformation, which preserves

the direction of N; otherwise II at most changes its sign. Furthermore, the second

fundamental form II is a basic tool for analyzing local differential geometric properties

of a surface.

Let P a point on a surface S of class Cm with m > 2, r = r(u, v) a patch

containing P, and r = r(u(t), v(t)) a regular curve C of class C2 through P. The

normal curvature vector to C at P, denoted by k,, is the vector projection of the

curvature vector k - see Eq. (3.6') - of C at P onto the unit normal vector N at P

i.e.,

k, = (k . N)N. (4.7)

90
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Note that k, is independent of the sense of N. It is also independent of the sense of

C since k is independent of the sense of C. The component of k, in the direction of

N is called normal curvature of C at P and is denoted by rn i.e.,

k, = k - N, (4.8)

where the sign of 1, depends upon the sense of N; but it is independent of the sense

of C. The normal curvature , can be expressed in terms of I and II,

Ldu2 + 2Mdudv + Ndv2  (4.8
Edu2 + 2Fdudv + Gdv2  I

Two perpendicular directions for which the values of in take on the maximum

and minimum values are called the principal directions, and the corresponding normal

curvatures Kmax and Kmin are called the principal curvatures. A real number i is a

principal curvature at P in the direction du : dv if and only if rz, du and dv satisfy

(L - KE)du + (M -rF)dv = 0,
(M - KF)du + (N - KG)dv = 0, (4.9)

where du 2 + dv 2 z 0. In order for Eq. (4.9) to have a nontrivial solution du, dv

L - E M - KF
= 0, (4.10)

M - F N- KG

and the corresponding roots are

Kmax = H + VH 2 - K, (4.11)

Kmin = H- vH 2 - K, (4.12)

where H, K are called mean curvature and Gaussian curvature respectively, defined



Topologically Reliable Approximation of Composite Surfaces

by

H = max + Kmin EN + GL - 2FM
2 2(EG - F 2) (4.13)

LN - M 2

K = K-maxKmin EG -F 2  (4.14)EG - F2

Provided that rmax and Kmin have the same sign at a point P on a surface, K is

positive at P and the point P is called elliptic point. In case either of smax or rmin

vanishes at P, K also vanishes there and the point P is called parabolic point. If the

signs of max, and 'min are different at P, K is negative at P and the point P is called

hyperbolic point. If Kmax = ,min = constant $ 0 at an elliptic point P, then the point

P is called an elliptic umbilical point. In case rmax = 'min = 0 at a parabolic point

P, then the point is called parabolic umbilical or planar point, where K and H also

vanish.

4.3 Tensor Product and Triangular Bezier Surfaces

Two common sets of basis functions for representing surfaces in computer-aided geo-

metric design are tensor products of univariate Bernstein polynomials and the bivari-

ate Bernstein polynomials in terms of barycentric parametric coordinates. A tensor

product B6zier surface is one of the earliest surface representation methods in the

CAD community. Linear combinations of the latter basis functions allow represen-

tation of triangular Bezier surfaces which provide a simpler topology and are bet-

ter suited in describing complex overall surface geometries. We review fundamental

definitions and properties associated with the tensor product and triangular Bezier

surfaces.

4.3.1 Tensor Product Polynomial Bezier Surfaces

A tensor product polynomial Bezier surface of degree m, n in u, v parametric direc-

tions is obtained by repeated bilinear and possibly subsequent repeated linear interpo-

lation on the m by n rectangular array of points called vertices of a control polygon
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Figure 4-1: A bicubic tensor product Bezier surface together with its control polygon
net

net [28]. It can be represented by the following well-known form [28, 80, 44],

m n

r(u, v) = E E ri,Bi,m(u)Bj,n(v), 0 _< U, v < 1, (4.15)
i=0 j=0

where Bi,m(u), Bj,n(v) are the Bernstein basis functions defined in Eq. (3.17) and rij

are the vertices of a control polygon net - see also Figure 4-1. The tensor product poly-

nomial Bezier surface (4.15) can be interpreted as sweeping out the u-isoparametric

Bdzier curve along the v parametric direction and vice versa.

Most properties of Bezier patches follow in a straightforward way from those of

Bezier curves - see also Section 3.3.

* Affine invariance: Since all those operations of repeated bilinear and linear

interpolation are affinely invariant, tensor product polynomial Bezier surface has

the property of affine invariance. We can also verify this property by considering

m n

E E Bi,m(u)B,n(v) = 1, (4.16)
i=o j=0

in other words, Eq. (4.15) is a barycentric combination of ri,j.
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* Convex hull property: For 0 < u, v < 1, the terms Bi,m(u)Bj,n(v) > 0. Then,

taking Eq. (4.16) into account, r(u, v) in Eq. (4.15) is a convex combination of

ri,3j.

* Boundary curves: The boundary curves of the patch r(u, v) are polynomial

Bezier curves. Their Bezier polygons are given by the boundary polygons of the

control net.

A partial derivative of a tensor product polynomial Bezier surface r(u, v) with

respect to u or v is accomplished by differencing the control points and the partial

derivative is the tangent vector of each u or v isoparametric curve and furthermore,

it is again represented in the form of a tensor product polynomial Bezier surface i.e.,

m-1 n

ru(u, v) = 1 Z pi,jBi,m-1(U)Bj,n(v), (4.17)
i=o j=0
m n-1

rv(u, v) = E E qi,jBi,m(u)Bj,n-l(v), (4.18)
i=0 j=o

where pij = m(ri+l,j - rij), qi,j = n(ri,j+l - ri,j) and m, n are the degrees of r(u, v)

in u, v parametric directions. Higher order partial derivatives can also be described

in a similar manner.

4.3.2 Triangular Polynomial Bezier Surfaces

As described in [27, 28] the de Casteljau algorithm for triangular polynomial Bezier

surface patches is a direct generalization of the corresponding algorithm for the poly-

nomial Bezier curves mentioned in Section 3.3. The triangular de Casteljau algorithm

is completely analogous to the univariate one, the main difference being notation.

For a degree n triangular Bezier surface, the control polygon net consists of (n+l)(n+2)
2

vertices. The number (n+1)(n+2) is referred to as a triangle number. A triangular poly-2

nomial Bezier surface r(u, v, w) of degree n is written in terms of bivariate Bernstein
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Figure 4-2: A triangular Bezier surface of degree 3 together with its control polygon
net

polynomials Bj,k (u, v, w) i.e.,

r(u, v, w)= rij,k7 jk (u, v, w), (4.19)
i+j+k=n

where i, j, k are non-negative integers and barycentric coordinates (u, v, w) satisfy

u + v + w = 1 and moreover, u, v, w > 0. The bivariate Bernstein polynomials

Binj,k(u, v, w) in Eq. (4.19) are defined as

! Uvjwk if i,j,k>0 and i+j+k=n,
B{,j,k (v u, W)e(

(0 
else.

A triangular Bezier surface of degree 3 together with its control polygon net is shown

in Figure 4-2.

Based on the above descriptions, we can state some properties of the triangular

Bezier surfaces as follows:

* Affine invariance: This follows since linear interpolation is an affine map and

the de Casteljau algorithm is just a repeated linear interpolation. We can also
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verify this property by considering

(4.21)S B•j,k(U,v, w) 1,
i+j+k=n

in other words, Eq. (4.19) is a barycentric combination of ri,j,k.

* Convex hull property: Guaranteed since for u + v + w = 1 and u, v, w > 0, the

terms

Bj ,k (u, v,) > 0. (4.22)

Then, taking Eq. (4.21) into account, r(u, v, w) in Eq. (4.19) is a convex com-

bination of ri,j,k.

* Boundary curves: The boundary curves of a triangular polynomial Bezier patch

r(u, v, w) of degree n are polynomial Bezier curves of the same degree n. Their

BIzier polygons are given by the boundary polygons of the control net.

4.3.3 Extraction of Triangular Sub-Bezier Surfaces from a

Tensor Product Bezier Surface

Similar to the case of Bezier curves discussed in Section 3.5.2, suppose r(u, v w),

s(u, v, w) are triangular polynomial Bezier surfaces of degree p and ri,j,k, i,j,k (i, j, k >

0, i + j + k = p) the corresponding control points. Using the convex hull property in

(4.21) and (4.22), the absolute position difference 6(u, v, w) at isoparametric points

is given by,

S(ri,j,k - Sij,k) Bij,k(UV, w) < max ri, - i,j,k
i+j+k-=p

(4.23)

Similar upper bounds can be found in [69, 9, 18] for B-spline curves and surfaces and

Bezier curves, respectively.

In a surface triangulation algorithm, this convex hull method can be effectively

96
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= V1 = r3, 0,0

o0,0,3 = V3 = o0,0o,3

Figure 4-3: Approximating triangular element s(u, v, w) together with its control
points si,j,k and control points ri,j,k of exact triangular B'zier surface patch r(u, v, w)
of degree 3

employed to compute a tight upper bound of the approximation error, if the control

points ri,j,k of an exact triangular surface patch r(u, v, w) and the control points

Si,j,k of an approximating planar triangular patch s(u, v, w) are available. In fact,

the control points si,j,k are easily computed by using the three vertices vl, v 2 and

v 3 of the approximating triangular element. In other words, we set sp,O,O = Vl,

SO,p,O = V 2 , SO,O,p = V3 and distribute other Si,j,k on the approximating triangular

element s(u, v, w) uniformly for each parametric direction, where p is the degree of the

corresponding exact triangular surface patch r(u, v, w). This procedure corresponds

to the degree elevation of a triangular planar B6zier surface patch of degree 1 up to

p [27, 28]. Figure 4-3 shows each si,j,k together with the corresponding control point

ri,j,k of exact triangular B'zier surface patch of degree 3.

We now illustrate how to determine the control points ri,j,k of the triangular B~zier

surface patch r(u, v, w) corresponding to the approximating planar triangular patch

s(u, v, w). Suppose that the given surface has the form of a tensor product polynomial

Bezier surface, this problem can be stated as follows - see also Figure 4-4.

I~il6~SYIIYIUr~·' ~~.~~"I"IF~~i -··~·~~,--;- ----- · ~~;---·-- -- -·--Y·-·~ ~-ll·-u~
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1

t

TP2

P,

V V

0 1

Figure 4-4: A sub-triangle P 1P 2P 3 on the unit st-parametric space

Given : a degree m by n tensor product polynomial Bezier surface R = R(s, t) and

three points Pi(s1 , tl), P 2 (8 2, t2 ), P 3 (83, t3) on the unit st-parametric space.

Find : control points ri,j,k of the corresponding triangular sub-B'zier surface patch

r = r(u, v, w) of degree p = m + n.

To solve this problem, we use N = (p+l)(p+2) points on r(u, v, w) evaluated from

the original Bezier surface patch R(s, t). Let •,p,, be N points on r(u, v, w) with

parametric point (u, v, w) = (, , 2), where integers a, 0, 7 > 0 and a + + 7y = p.

Those N points , p,y are easily obtained by computing the corresponding points on

the original tensor product Bezier surface R(s, t) i.e.,

aY,,y = R(s*, t*), (4.24)

where each parametric point

(s*, t*) = (S2, t 2) + -(s 3, t 3) + -(s, tl), (4.25)
p p p

- I I~hl
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4.3 Tensor Product and Triangular B6zier Surfaces

by setting three vertices P 1, P 2, P 3 of the triangle on the st-parametric space to be

P 1 = Pl(s8, tl) = Pi(0, 0, 1), (4.26)

P 2 = P2 (s 2, t2) = P2 (1, 0, 0), (4.27)

P 3 = P 3 (s3, t3) = P 3(0, 1, 0), (4.28)

where the coordinates of P 1, P 2, P 3 in the last column are with respect to the local

barycentric coordinates (u, v, w). Those ,,p,# in Eq. (4.24) are described in terms of

the triangular sub-Bezier surface patch r(u, v, w) in Eq. (4.19) i.e.,

-Ba (s,, C' -), (4.29)r,,3,l = r( p, ) = ri,),Pjk,k( p ) (4.2p)
i+j+k=p

After rearranging Eq. (4.29), we obtain

a _ a _ - a•ri,,- ip,O,OBpo(-, , - ro,p,oBop,0 (-, 7, ) ri,o,pBO,o(,p ,
ppp ppp ppp

= ri,j,k Bjk ( , ,), (4.29')

where E* denotes the summation over all (i, j, k) except for (i, j, k) being (p, 0, 0),

(O,p, 0) and (0, 0,p). We also use rp,o,o = rp,o,0, ro,p,o = fo,p,o and ro0 ,,p = fO,O,p in

the derivation of Eq. (4.29'). Each component in the left hand side of Eq. (4.29') is

determined by Eq. (4.24) and bivariate Bernstein polynomial Eq. (4.20). Therefore,

our problem reduces to solving a N - 3 by N - 3 system of linear equations for each

x, y and z component of the unknown control points ri,j,k of the triangular sub-Bezier

surface patch r(u, v, w) of degree p, where N is the triangle number (p+l)(+2). Notice2

that the solutions of our system of linear equations exist and are unique since, for any

tensor product B6zier surface R(s, t), a triangular sub-piece of R(s, t) can always be

described in terms of a triangular Bezier patch r(u, v, w) and furthermore, r(u, v, w)

is unique if the degree of r(u, v, w) is fixed. To solve the system of linear equations,

we employ the LU-decomposition method [75], which is especially appropriate for our

problem because the same coeficient matrix is used for the solution of each x, y and
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z component of the unknowns ri,j,k.

As a matter of fact, there is an alternative way to determine the control points

ri,j,k. The alternative method can be achieved by using the coordinates-free formula

for polar forms f described by [76, 83],

1 1
f(ul2,u2,... , Up) = -) P r( ( + 1 2U 2 +' + pUp) ), (4.30)

IIklI=i

where pk is 0 or 1 and the summation E is taken over a set of p indices p;, A2, . ,

p, and I|k -1 1 +2 + ''" + p and uj is the jth parametric point (uj, vj, wj) on the

domain triangle. Using Eq. (4.30), the control points ri,j,k in Eq. (4.29) are obtained

by

ri,j,k = f( 1, P1,..., P 1, P P2, .. , P2, P3, P3, P . ,P 3), (4.31)

i j k

where P 1, P 2 and P 3 are the vertices of a sub-triangle on the parametric space in terms

of barycentric coordinates - see also Figure 4-4. The polar forms defined in Eq. (4.30)

are a classical and useful mathematical tool for study of general polynomial based

curves and surfaces; however, the polar forms are seriously inefficient for our specific

problem because of cycling through 2p possible summation index combinations.

The following analysis shows the comparison of time complexity C between the

two alternative methods.

Our proposed method

C w N(N - 3 )C1(p) + NC 2(m, n) + C3(N), (4.32)

where

* N = 2(p+p2) p = m + n and m, n are degrees of the original tensor product

Bezier surface R(s, t) in u, v directions,

SC (p) oc p(p+l) which is the time cost for one evaluation of a bivariate Bernstein

polynomial,
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4.3 Tensor Product and Triangular B4zier Surfaces

* C2(m, n) cc min( (ll)(m+l) +± m(m+) m(m+l)(n+l) + n(n+l ), which is the time

cost for one evaluation of a given Bdzier surface R(s, t) of degree m, n,

* C 3(N) oc (N - 3)3, time cost for solving N - 3 by N - 3 system of linear

equations.

Polar form based method

C - N2PC2(m, n) (4.33)

where N, p and C2 (m, n) are defined above. In Eq. (4.32), the first and second terms

are comparable and the third term is relatively smaller. Eq. (4.33) shows that the

time cost of the polar form based method is approximately 2P times higher than

the cost of our proposed method, because Eq. (4.33) is equal to the second term of

Eq. (4.32) multiplied by 2p. Therefore, as the degrees of the given surface become

higher, the time cost of the polar form based method increases unacceptably due to

the exponential dependency.

We tested both methods and the results are summarized in Table 4.1. First,

extraction of a triangular sub-Bezier patch is performed from a bi-cubic Bezier surface.

In order to see the dependency of the time complexity upon the degrees m, n of an

input tensor product Bezier surface, we elevate degrees of the bi-cubic (m = n = 3,

p = m+n = 6) B6zier surface by 1, 2 and 3 in both s, t directions. The results clearly

show 2P times higher time complexity of the polar form based method compared with

our proposed method. We perform the test operating in both floating point (FPA)

and rounded interval arithmetic (RIA) and the corresponding results are also shown

in Table 4.1.
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CPU-time (sec) cost ratio
Degree (m, n) (a) our method (b) polar form (b)/(a) 2p

FPA RIA FPA RIA FPA RIA
(3, 3) 0.01 0.35 0.82 25.57 82 73 64
(4, 4) 0.04 1.19 10.96 350.0 274 294 256
(5, 5) 0.09 3.06 115.0 3757 1277 1228 1024
(6, 6) 0.22 7.47 1040 34052 4728 4559 4096

Table 4.1: Complexity comparison between our proposed method and polar form
based method

4.4 Stationary Points of a Root Mean Square Cur-

vature

We have discussed four different measures of surface curvature, the maximum and

minimum principal curvatures imax, '•min, Gaussian curvature K and mean curvature

H in Section 4.2.2. It is worthwhile to include identification of highly curved regions

as a preliminary step in the surface approximation procedure, since it provides geo-

metrically meaningful information and it also increases the efficiency of the following

triangulation procedures in terms of the number of approximating triangles. For this

purpose, we define an appropriate intrinsic property of a surface and illustrate how to

compute its stationary points as we did in the curve approximation algorithm. Those

stationary points provide important differential geometric information of the input

surfaces and play a role as the initial seed points of our triangulation algorithm.

4.4.1 Root Mean Square Curvature ,rms of a Surface

The absolute curvature Iabs [28] at a point of a regular surface of class Cm (m > 2)

is defined as

Kabs - ImaxI + IKmin, (
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where Kmax, Kmin are the maximum and minimum principal curvatures defined in

Eq. (4.12). The absolute curvature may be one of the most appropriate curvature

measures for the identification of highly curved regions of a surface. However by

definition, it is not differentiable, which makes computation of its stationary points

difficult in practice.

As an alternative curvature measure we use the root mean square curvature Krms,

first proposed in [57]:

irms 2ax min =~ 4H 2 - 2K, (4.35)

where H and K are the mean and Gaussian curvatures. We note the root mean

square curvature ,rms is an intrinsic property since /imax and Kmin at most change

their signs under an allowable parametric transformation, as stated in Section 4.2.2.

4.4.2 Solution Methodology

For a regular parametric surface r(u, v) of class Cm (m > 2), the governing equations

for computing the stationary points of Krm, are formulated as [57]

9cKrms (BB, - AuS 2)S 2 + (4AS 2 - 3B 2)S . S=

0u SS/B 2 - 2AS 2  =

Krms (BBv - A S 2)S 2 + (4AS 2 - 3B 2)s (4.37)
= 0, (4.37)dv S5/B 2 - 2AS 2

where

s = ru x rv,

S = IsI = JEG- F2,

A =LN-_ 1 2,

B = 2FM - EN - GL,

L = s-r u, M= s-r,,v N=s.rVV,,
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and the first fundamental coefficients E, F, G are defined in Eq. (4.4) and subscripts

denote the corresponding partial derivatives. Notice that for a regular surface r(u, v),

S does not vanish Vu, v and furthermore, vB 2 - 2AS 2 vanishes if and only if Kmax =

Kmin = 0 i.e., only at planar points [60]. Therefore, for a regular parametric surface

r(u, v) defined in a square domain U such that 0 < u, v < 1, we only need to solve

f (u, v) - (BBu - AuS 2)S 2 + (4AS 2 - 3B 2)s -s, = 0, (u, v) EU - U*, (4.38)

g(u, v) - (BBv - AvS 2)S 2 + (4AS 2 - 3B 2)s .s, = 0, (u, v) E C -U *, (4.39)

where U* denotes the set of parametric points corresponding to the planar points.

If a polynomial surface r(u, v) is of degree m, n in u, v parametric directions, Eq.'s

(4.38), (4.39) are of degrees (14m - 9, 14n - 8), (14m - 8, 14n - 9) respectively in the

u, v directions. In order to solve the 2 x 2 system of nonlinear polynomial equations of

high degree, we first formulate f (u, v), g(u, v) in terms of tensor products of univariate

Bernstein polynomials and next utilize the projected polyhedron algorithm described

in Section 3.4.3.

In case that either Eq. (4.38) or Eq. (4.39) vanishes identically i.e., f(u, v) = 0

or g(u, v) = 0 V(u, v) E U - U*, the roots of the system of two polynomial equations

usually form implicit curves in the uv-parametric domain, which forces the solution

algorithm to be trapped in an exhaustive root solving process. In order to prevent

this, we check if f(u, v) or g(u, v) vanishes identically. Since f(u, v) and g(u, v) are

expressed in terms of tensor product of univariate Bernstein polynomials i.e.,

14m-9 14n-8

f(u, V) = E E fijBi,14m- 9(U, V)Bj,14n-8(u, v), (4.40)
i=0 j=0

14m-8 14n-9

g(u, v) = E gijBi,14m-8(U v)Bj,14n- 9(u, v), (4.41)
i=0 j=0
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we need to check if

(FPA) If<jl < c <1 or I9ij < E < 1, (4.42)

(RIA) flj < 0, f >_ 0 or g < 0, gijO, (4.43)

where fij =l[fL, f ] and gij [g'i, gi],

for all possible i, j. Based on the above decision criteria, we do not attempt to solve

the system of equations if f (u, v) or g(u, v) vanishes identically.

4.5 Approximate Locally Isometric Mapping

Most existing free-form surface meshing algorithms perform triangulation in the two-

dimensional parametric space, typically the unit square, and map each triangular ele-

ment into the three-dimensional space through the surface equation. It is well-known

that such a mapping will inevitably produce distortion or stretching in general. To

overcome this adverse effect, we introduce an auxiliary planar domain of triangulation

by using an approximate locally isometric mapping.

4.5.1 Isometric Mapping

An isometric mapping is defined as [89]:

Definition 4.5.1 A 1-1 mapping f of a surface S onto a surface S* is called an

isometric mapping or isometry if the length of an arbitrary regular arc r(t) on S

is identical to the length of its image r* = r*(t) = f(r(t)) on S*.

As also stated in [89]:

Theorem 4.5.2 A surface is developable if there exists an isometric mapping f of

a surface S onto a plane D.

It should be pointed out that the conditions for the isometric mapping are too strong

and hence, only very special surfaces are developable. We then employ a locally

isometric mapping defined as [22]:

1054.5 Approximate Locally Isometric Mapping
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8 neighboring points of 0 5 neighboring points of 0 3 neighboring points of 0

(a) point inside the (b) point on the (c) point at the cor-
domain boundary edge ner of boundary

Figure 4-5: Neighboring points

Definition 4.5.3 A map f : V ý S* of a neighborhood V of a point p on a surface

S is a local isometry at p if there exists a neighborhood V* of f(p) E S* such that

f : V ý V* is an isometry. If there exists a local isometry into S* at every p E S,

the surface S is said to be locally isometric to S*.

Based on the above Definitions 4.5.1, 4.5.3 and Theorem 4.5.2, a locally devel-

opable surface is defined as [56]:

Definition 4.5.4 A surface is locally developable if there exists a local isometry

f of a neighborhood V of each point p on a surface S onto a plane D.

However in general cases, it is very difficult to find the locally isometric mapping

either. Thus we define a global criterion to measure the mapping error in the following

Section.

4.5.2 Mapping Error Function

A surface net S can be approximately developed onto a plane D by finding an ap-

proximate locally isometric mapping f : S ý-+ D while minimizing the mapping error
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function E defined as:

E = E(vlx, y, 2x, v 2y,. . ., i, V ,. . ., Vpqxi, pqy)

= [d D - dD(v l, Vly, 2, V2y, V V . Vi3 i iy. x ., Vpqx, Vpqy) 2, (4.44)
k=1

where

* p, q : number of distributed points on the surface net S in the u, v parametric

directions,

* vix, vix : unknowns, x and y coordinates of points on the approximately

developed surface net D corresponding to p by q points on S

* d3 D : length of a straight line segment connecting each neighboring point on S,

* d2D : length of a straight line segment connecting each neighboring point on D.

* l=4pq-3(p+q)+2,*

where the neighboring points are pictorially classified in Figure 4-5. Notice that E

can not be minimized to zero unless S is developable.

As an example, we consider a bi-cubic Bezier surface and the corresponding surface

net S, setting p = q = 4 as shown in Figure 4-6.

4.5.3 Minimization of Mapping Error Function

By minimizing the mapping error function E in Eq. (4.44), we determine the un-

knowns (vix, viy) and the corresponding approximately developed surface net D, as

shown in Figure 4-7-(d). We use an existing minimization algorithm based on the

modified Powell's quadratically convergent method, Chapter 10 of [75].

The minimization algorithm requires initial starting points. We now illustrate how

to determine those initial starting points ( v9y) for the minimization algorithm,

*For p x q array of points, there are (p - 1)q + (q - 1)p + 2(p - 1)(q - 1) = 4pq - 3(p + q) + 2
number of neighboring line segments.
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(a) bi-cubic B6zier surface (b) surface net S

Figure 4-6: Given bi-cubic surface and the corresponding surface net

where i = 1, 2,... .,pq and p, q are defined in Eq. (4.44). We determine the initial

starting points by using the length of surface net (S) edges and the angle between

the neighboring edges of S, as detailed in step a - step i.

step a. Set (v,, v"y) = (0, 0).

step b. Set (vX, vy) -- (v•qx + Iri - riq, 0) for i = qa + 1 where a = 1,2,...,p-1

and ri is a point on S corresponding to (vIX, v).

step c. Set (vx, vus) = (dcos -+ vi_1x, d sin + i) for i = + 1 where o =

1,2, ... , q - 1, d = ri - ri- 1 and ~ is the angle between ri+q-1 - ri-1 and

ri - ri- 1 with 0 < y < -t.

step d. Set (v'x,Vv) (Iri - ri-q + Vi-_qx VO+ly) for i = qo + 0 + 1 where a

1,2,...,p-1 and p= 1,2,...,q-1.

For a surface net S shown in Figure 4-6-(b), step a step d results in Figure 4-7-(a).

step e. Set (vi), "') = (0, 0).

step f. Set (v', ',) = (0,v_ + ri - ri- 1 ) for i = + 1 where / = 1, 2,. .,q- 1.

step g. Set (v$', ,v'y) = (dsin 7 + vi'-x, dcos + Viqy) for i = qa + 1 where a -

1, 2, ... , p-1, d = ri-r-_, and 7 is the angle between ri -riq, and ri-q+1 -ri-_
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(a) step a. - step d.

(c) step i: initial starting
points by averaging (a), (b)

(b) step e. - step h.

(d) developed surface net D

Figure 4-7: Procedure to get approximately developed surface net D
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with 0 < y < 7r.

step h. Set (vM'x,vl'y) = (q+lx, Iri - ri-l + for i = q + + 1 where =

1,2,...,p-l and O= 1,2,...,q-1.

Figure 4-7-(b) shows the result of step e - step h.

step i. Determine those initial starting points ( v9y) by averaging 9(v vy) and
vo  X 7 2 Y) by averaging (v'l 7 NY) and

(v 'if '0) i.e., ( ,vxv) = 2 ( ,+V ) for i = qa + , + 1 where a =

0,...,p-1 and 0 = 0,...,q- 1.

Figure 4-7-(c) together with Figure 4-7-(d) shows the initial starting points obtained

by step i and the corresponding result of minimization, respectively.

In case that minimized mapping error min(E) is unsatisfactory or the developed

surface net D self-intersects, we bisect the input surface and repeat the developing

procedure until min(E) is within a certain threshold Tio,, and D does not intersect

itself. The bisections are performed along the isoparametric lines u = 1 and v =

in turns. We define Tiso as follows; we assume IdD - d kDI should be less than a

certain tolerance E, then E -=(dD- d 2D)2 in Eq. (4.44) should be less than 621.

Therefore,

7iso - ,21, (4.45)

where 1 is defined in Eq. (4.44). For a surface net S shown in Figure 4-6-(b), Tiso . 0.12

and the corresponding D shown in Figure 4-7-(d) has min(E) - 0.61, if we set

E = 0.01. Therefore min(E) > Tio and further subdivision is required. We subdivide

the input surface along an iso-parametric line v = 0.5 and the corresponding results

are shown in Figure 4-8. After one subdivision, min(E) • 0.01 < Tsio 0.12 for each

sub-surface net and hence, no further subdivisions are required.

We now consider the latter case of subdivision being required i.e., the case of self-

intersecting developed surface net D, as shown in Figure 4-9-(a,b). In such a case,

there exist at least one pair of intersecting net edges and the 1-1 mapping between

uv-parametric space and the developed surface net D is not achieved. Therefore, after
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(a) sub-surface net 1

(c) developed surface net 1

(b) sub-surface net 2

(d) developed surface net 2

Figure 4-8: Bisected surface nets and their developed surface nets
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(a) original surface net

(c) sub-surface net 1

(e) developed surface net 1

(b) developed surface net

(d) sub-surface net 2

(f) developed surface net 2

Figure 4-9: Self-intersecting developed surface net
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approximately developing the original surface net S we should perform line to line

intersection test for each pair of net edges of D and if such intersection is detected,

we bisect input surface and follow the same procedure described in the former case

until each developed sub-surface net does not intersect itself as illustrated in Figure

4-9-(c,d,e,f).

We finally illustrate how to define each mapping among the developed surface net,

parametric space and the corresponding input parametric surface. Since a mapping

r from the unit uv-parametric space onto three-dimensional surface is defined by the

surface equation r(u, v), we only need to determine the mapping f from the parametric

space onto the developed surface net and its inverse f- 1 as shown in Figure 4-10. The

mappings f and f- 1 are no other than the mappings between each sub-quadrilateral

ij on the unit uv-parametric space defined by ui < u < ui+l, vj < v < vj+l and

the corresponding sub-quadrilateral V2,j on the developed surface net as illustrated in

Figure 4-11 i.e.,

1 1

f = f(u, v) -- Vi+p,j+qBp, (u*)Bq,l(*) (u, v) Ui,j (4.46)
p=O q=O

where u* = m(u - ui), v* = n(v - vj), (4.47)

m, n are the number of net segments in u, v parametric directions, Bp,,(u*), Bq,l(v*)

are the Bernstein basis functions of degree 1 defined in Eq. (3.17) and Vi+p,j+q are the

vertices of Vi,j corresponding to the vertices (Ui+p, vj+q) of Ui,j. For any V = (V1, Vy),

V E Vj, the mapping f- = f- (V) = f-1(V , V,) can be achieved by solving the

following system of equations for 0 < u*, v* < 1;

3 E[VpJ; q - Vx]Bp,I(u*)Bq,I(v*) = 0, (4.48)
p=O q=O

E -[i+-p,j+q - V]Bp,i (u*)Bq,1 (v*) = 0, (4.49)
p=O q=O

where Vp,+q, V'p,jq are the x, y components of the vertices Vi+p,j+q of Vi,j. Eq.'s

(4.48), (4.49) can be combined and reduced to a quadratic equation for u* or v*. After
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f

f-

r

(a) developed
surface net

(b) unit para-
metric space

(c) input bi-
cubic surface

Figure 4-10: Mappings f, f-1 and r

i+l,j

f

f-i

(a) developed surface net (b) parametric space

Figure 4-11: Mappings f and f- 1

computing u*, v*, we finally determine the corresponding u, v by Eq. (4.47) i.e.,

U

U = Ui + -,
m

*v=vj+
v = vj + n

4.6 Delaunay Triangulation based on Interval De-

launay Test (IDT)

In this Section, we recall the well-known Delaunay triangulation in E2 and associated

Dirichlet tessellation. The Bowyer-Watson algorithm which is widely employed to

construct an incremental Delaunay triangulation is also described. Furthermore, ro-

+ u i+11iVj+1)

(Ui 7 j) (Ui+i 7 Vj

(4.50)
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-- Delaunay triangle

region

Voronoi edge

Voronoi vertex

Figure 4-12: Dirichlet tessellation (dotted) and Delaunay triangulation (solid)

bustness problems in Delaunay triangulation are discussed and finally robust interval

Delaunay Test (IDT) is introduced.

4.6.1 Dirichlet Tessellation and Delaunay Triangulation

The concept of Dirichlet tessellation is more than a century old, first introduced by

Dirichlet [21] in 1850 and extensively discussed by Voronoi [93] in 1908. Surveys on

Dirichlet tessellation are well performed in [6, 34].

Given a set of points {pi} in E 2 , we can define a convex polygon Vi which con-

sists of all the points closer to pi than any other site pj. These convex regions are

called Voronoi regions and their union Uj Vi is called Dirichlet tessellation D. Each

vertex and edge of the Dirichlet tessellation are called Voronoi vertex and Voronoi

edge, respectively. Delaunay triangulation T [20], a dual structure of the Dirich-

let tessellation A7, is obtained by connecting only those sites whose Voronoi regions

have a common edge. Figure 4-12 shows a Dirichlet tessellation with the associated

Delaunay triangulation for a small set of sites.

Some of the important properties of Dirichlet tessellation 7D and Delaunay trian-
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gulation T are summarized as follows [67];

Properties of Dirichlet tessellation D

D1. Each Voronoi region Vi is convex.

D2. Vi is unbounded if and only if the site pi is on the convex hull of the point set.

D3. If v is a Voronoi vertex at the junction of Vi, Vj and Vk, then v is the center of

the circle C(v) determined by pi, pj and Pk*

D4. C(v) is the circumcircle of the Delaunay triangle corresponding to v.

D5. The interior of C(v) contains no sites.

D6. If pj is a nearest neighbor to Pi, then (pi, pj) is an edge of T.

D7. If there is some circle through pi and pj which contains no other sites, then

(pi, p) is an edge of T. The reverse also holds; for every Delaunay edge, there

is some empty circle.

Properties of Delaunay triangulation T

T1. T is a triangulation if no four sites in the point set are cocircular; every face is

a triangle, which is Delaunay's theorem. The faces of T are called Delaunay

triangles.

T2. T is the straight-line dual of D.

T3. The boundary of T7- is the convex hull of the sites.

T4. Interior of each Delaunay triangle contains no sites.

T5. A triangulation is 7- if it maximizes the minimum angle of triangles.

Among those interesting properties, D5 and T5 are especially notable for the incre-

mental and adaptive finite element meshing application. The property D5 is called

circumcircle property and it provides an efficient incremental way to construct 'T by
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r

A

(a) existing T (b) cavity ABCD (c) new T

Figure 4-13: Bowyer-Watson algorithm

locally updating the existing T structure. The Bowyer-Watson algorithm, which will

be discussed in the following Section, is based on this property. The property T5 is

one of the most attractive features of T for the finite element meshing application

since, as mentioned in Sections 1.1 and 4.1, skinny triangular elements cause serious

numerical problems in finite element analysis.

4.6.2 Bowyer-Watson Algorithm

Among the various Delaunay triangulation algorithms, the Bowyer [12] and/or Wat-

son [94] algorithm is very convenient in a mesh generation procedure. The algorithm

is based on the circumcircle property D5 which guarantees that no point of a Delau-

nay triangulation T can lie within the circle circumscribed to any Delaunay triangle.

The process is incremental; each new point is introduced into the existing structure

which is broken and then reconnected to form a new T. The incremental procedure

together with local reconnection provides a powerful tool especially for the adaptive

unstructured meshing application. Figure 4-13-(a,b,c) illustrates the sequence of the

algorithm. A new point P is found to lie inside the circumcircle of two existing De-

launay triangles ABD and BCD. These two triangles are therefore removed and a

connected cavity ABCD surrounding P is formed. By joining the vertices of ABCD

and P, a new Delaunay triangulation T is always obtained as stated in [12, 94]. As

a consequence, the Delaunay triangulation of an arbitrary set of points can be con-

structed in a purely sequential manner starting from a very simple initial Delaunay

triangulation enclosing all points to be triangulated.

A
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A A

C C
(a) old T and a new P (b) incorrect T

Figure 4-14: Incorrect Delaunay triangulation T

4.6.3 Robustness Problems in Delaunay Triangulation

Apart from computing the radius of a circumcircle, the Delaunay algorithm in E 2

involves one of the few floating point operations, called Delaunay test;

d2 =( - Xi) 2 + (yp - yi)2  2 (4.51)

where (xP, yp) is the coordinates of a newly inserted point P and ri is the radius of a

circumcircle centered at the Voronoi vertex Vi with coordinates (xi, Yi). For example,

as shown in Figure 4-14-(a), suppose that two triangles ABD and BCD are part of a

Delaunay triangulation T in E 2 and that a new point P is introduced which lies on

the edge BD. Since edge BD lies inside both circumcircle ABD and BCD, it will

be removed by the Delaunay test and P will be joined to A, B, C and D to form a

new T.

Suppose, however, that owing to floating point imprecision the Delaunay test may

not recognize P as falling inside circumcircle ABD, as reported by Baker [8] and

Weatherill [95]. This could occur if the radius r, of circumcircle ABD is extremely

large and the distance d, from P to the center Vi is only slightly less than ri i.e.,

if (r2 - d') is the order of the round-off error of the computer. In such a case, the
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C

Figure 4-15: Incorrect Delaunay test

reconnections will be as shown in Figure 4-14-(b), which causes the following two types

of failures. The three collinear points B, P and D will be regarded as forming one of

the new Delaunay triangles. The algorithm will clearly fail when trying to compute

the circumcenter of the degenerate triangle BDP because this calculation involves the

solution of 2 x 2 system of linear equations, which is singular for degenerate triangles

[8, 95]. The other failure, obviously seen in Figure 4-14-(b), is a non-conforming

triangulation. In case of free-form surface meshing, triangles ABD, BCP and PCD

will generate inappropriate gaps when they are mapped onto three-dimensional space

through the surface equation.

Figure 4-15 shows a similar type of robustness problem, arising if a new point P

that lies outside circumcircle ABC is incorrectly regarded as lying inside the circle,

which happens if (d~ - r?) is the order of the round-off error of the computer [8).

Point P will be connected to A, B and C and in particular, the three collinear points

A, B and P will be regarded as forming one of the new Delaunay triangles. This

incorrect Delaunay test causes the same degeneracy failure explained before. Notice

here that this incorrect inclusion alone does not cause a failure in practice unless it

is coupled with the degeneracy.

A..'
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Figure 4-16: Interval Delaunay test (IDT)

4.6.4 Interval Delaunay Test (IDT)

As we discussed in the previous Section, floating point arithmetic (FPA) in Delau-

nay test - like other geometric computations - may cause serious failures such as

degeneracies and non-conforming triangulations. To prevent those possible failures,

we define new decision criteria, named interval Delaunay test (IDT) - see also Figure

4-16.

Definition 4.6.1 Given a newly inserted point P(xp, yp), a Voronoi vertex Vi(xi, yi)

and the corresponding Delaunay triangle Ti(ABC), we compute d2 and r? defined in

Eq. (4.51) using rounded interval arithmetic (RIA) and if the following two conditions

a, b are satisfied, then we decide P is within the circumcircle of T :

a. (d'), < (ri)u,

b. 1. all the triangles ABP, BCP and CAP will not degenerate, or

2. if a triangle degenerates e.g., ABP, then P should be within the edge AB.
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where (d )l, (r ), are the lower and upper value of interval numbers d 2 r2 and as-

suming that the newly inserted point P does not coincide with any other point in the

existing point set in order to prevent a degenerate triangulation.

Condition a obviously removes the possibility of incorrect exclusion, while still pos-

sessing the possibility of incorrect inclusion. As stated in the previous Section, the

incorrect inclusion results in a failure if it is coupled with the problem of degeneracy,

discussed in the example of Figure 4-15. Condition b detects such failure. When

performing the degeneracy test in condition b, we compute S using RIA defined by

S - V1xV2y - v2xvly, (4.52)

which is equal to twice the signed area of a triangle defined by two vectors vl -

(Vlx, Vly), V2 - (V2x, v2y) where vl = AB, v2 = AP for a triangle ABP. If S satisfies

the following condition,

Sj < 0 and S, > 0 where S [S,, S,], (4.53)

then, we decide the corresponding triangle degenerates. Furthermore, in condition

b-2, we decide P is within AB if

min(Ax, Bx) < Px < max(Ax, Bx),

min(Ay, B,) < P, < max(Ay, B,), (4.54)

where subscripts denote the corresponding coordinates of a point.

For example, a new point P in Figure 4-14 is included in the circumcircle ABD

since conditions a and b-2 are satisfied. Considering the example shown in Figure

4-15, P is excluded since condition b-2 is violated.
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4.7 Piecewise Planar Approximation of Composite

B zier Surfaces

We present a surface tessellation algorithm which consists of four major steps. In the

first step, we approximately develop each input surface patch onto two-dimensional

space by employing the isometric mapping concept discussed in Section 4.5, followed

by linear approximation of boundary curves within a prescribed approximation tol-

erance as described in Chapter 3. By locating those boundary nodes on the approxi-

mately developed surface, we obtain a planar domain of triangulation for each input

surface. We also identify stationary points of root mean square curvature ,rms of

input surfaces, as described in Section 4.4. Using those boundary and internal nodes,

we achieve an initial triangulation.

We next refine the mesh by repeatedly inserting a node on the Voronoi vertex of

each Delaunay triangle until every approximating triangle satisfies the approximation

tolerance, called 6-improving triangulation.

In the third step, we improve the aspect ration (AR) of each triangular element

until such AR is within the given threshold TAR Or it is not improvable, and this is

called the AR-improving triangulation.

Finally, for each approximating triangular element in E3 , an intersection test is

performed to identify and remove possible inappropriate intersections and to achieve

a homeomorphism between the exact and approximating surfaces.

Without loss of generality, we use trimmed composite integral Bezier surfaces

for the illustration of our methodology. We assume that each trimmed sub-patch is

simple and of class Cm with m > 2. We also assume that it does not intersect other

sub-patches except at the explicitly known common boundaries.

4.7.1 Construction of Triangulation Domain

For each input surface, we first perform approximate locally isometric mapping de-

scribed in Section 4.5 and consequently obtain an approximately developed surface.
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(a) a composite surface

(b) trimmed surface 1

(d) parametric space 1

(c) trimmed surface 2

(e) parametric space 2

Figure 4-17: A composite surface composed of 2 trimmed bi-cubic Bezier patches
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(a) developed surface 1 (b) developed surface 2

Figure 4-18: Developed surfaces together with trimming curves mapped on them

(a) triangulation domain 1 (b) triangulation domain 2

Figure 4-19: Triangulation domains with e = 10-2

As an example, we consider a composite surface which consists of two trimmed

bi-cubic B6zier surfaces, as shown in Figure 4-17. Each approximately developed

surface together with mapped trimming curves are also shown in Figure 4-18. For

this example, we set p = q = 4 in Eq. (4.44) and E = 10-2 in Eq. (4.45).

We next perform the topologically reliable linear approximation of exterior and

interior boundary loops of each input surface patch within a prescribed approximation

tolerance e, extensively discussed in Chapter 3. Notice that for a common boundary

curve segment between the adjacent patches, we perform the linear approximation

once and transfer the corresponding boundary data to the mate boundary segment

· I I
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by utilizing half-edge data structure [62] coupled with input boundary representation

(B-rep).

By mapping those boundary nodes onto each approximately developed surface,

we obtain a domain of triangulation, as depicted in Figure 4-19 with e = 10-2.

4.7.2 Initial Triangulation

As illustrated in Section 4.4, we compute stationary points of root mean square

curvature Krms of input surfaces and use them as internal seed points in our surface

tessellation algorithm.

If a stationary point of Krms exists outside the exact domain of triangulation,

it should not be included in the triangulation. This has to be carefully checked in

case of trimmed patches. Boundary loops of our triangulation domain are obtained by

mapping each linear approximating boundary segment onto the triangulation domain.

Therefore, for a trimmed patch, those polygonal boundary loops of our triangulation

domain do not correspond to the exact boundary loops which are defined by mapping

exact boundary curve segments onto the triangulation domain, as shown in Figure

4-20. For this reason, it is possible for a node to exist outside the exact domain of

triangulation although it is inside our polygonal domain of triangulation e.g., node A

in Figure 4-20.

To exclude the possibility of incorrect node insertion, we first check if the node is

inside the polygonal domain of triangulation. This test can be done by inquiring if

the node exists inside the exterior polygonal loop and outside the interior polygonal

loops. This is well-known vertex-loop containment problem, which can be solved by

a ray-firing technique [62, 45]. If those nodes associated with Krms stationary points

are found to exist outside the polygonal domain of triangulation e.g., nodes B, C in

Figure 4-20, we do not include such nodes in the triangulation. This decision may

exclude a node which is inside the exact triangulation domain e.g., point B in Figure

4-20; however, it does not cause any serious problem in practice. Now, if we decide

that a node exists inside the polygonal domain of triangulation, we further test if the

node is
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-----------.............. : exact boundary

: polygonal approximating boundary

: untrimmed part

Figure 4-20: Triangulation domain for a trimmed patch

case a. close to the boundary or,

case b. far enough from the boundary.

Suppose we decide that a node is close to the boundary (case a); in such a case,

we reposition such node to the appropriate place on the exact boundary segment

and update boundary information of the triangulation domain. This procedure will

prevent the possible incorrect node insertion explained before i.e., insertion of a node

which exists outside the exact triangulation domain and inside our polygonal domain

of triangulation e.g., node A in Figure 4-20. On the other hand, if we decide that a

node is far enough from the boundary (case b), we insert the node where it is.

We now illustrate how to decide if a node is close to or far enough from the

boundary. Consider a linear boundary segment I on the uv-parametric space and the

corresponding exact trimming curve segment r, shown in Figure 4-21. We construct a

control polygon for r together with local xy-coordinates. We let the base x-coordinate

correspond to the linear boundary segment 1. A bounding box (BCDE) for the control

polygon of r with respect to the local xy-coordinates is then determined. If a node

P falls into the bounding box BCDE, then we decide P is close to the boundary
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Figure 4-21: Closeness test

Figure 4-22: Repositioning a node
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loop. Otherwise, we regard P is far enough from the boundary. Suppose that P is

close to the boundary; P is now repositioned at the midpoint of the exact trimming

curve segment i.e., at P' = r(0.5) and the corresponding boundary information is

updated, as shown in Figure 4-22. We finally map all updated boundary data onto

the triangulation domain.

Based on the node insertion criteria discussed so far, we place each node associated

with Krms stationary point on the triangulation domain. With those internal as well

as boundary nodes, we achieve an initial triangulation by performing a boundary

conforming Delaunay triangulation coupled with Bowyer-Watson algorithm described

in Section 4.6.2.

The initial triangulation should be boundary conforming [95] i.e., all boundary

edges should be included in the triangulation. Since the Delaunay triangulation of a

given point set is unique, there is no guarantee that the resulting triangulation will

be boundary conforming for an arbitrary distribution of boundary nodes. Therefore,

after the initial triangulation, we must check if each segment of the input polygonal

boundary loops is included in the triangulation. It is proved in [95] that, by repeated

insertions of new boundary nodes at the midpoint of the missing boundary edges, a

boundary conforming triangulation is always achieved. Our node insertion method

shown in Figure 4-22 is also employed when inserting a new boundary node at the

midpoint of a missing boundary edge.

Two different types of triangles can be identified after the initial triangulation

- the triangles internal to the domain of triangulation and the triangles external to

it. Those external triangles belong to the trimmed part of the triangulation domain

or in the background region outside the exterior polygonal boundary loop. We will

keep track of the external triangles as well as the internal ones in order to check the

necessity of boundary refinement, which will be discussed in the next Section. By

simply removing the external triangles, we can achieve a true approximation of the

exact trimmed surface patches.

Figure 4-23 shows an initial triangulation after removing the external triangles for

our example discussed in Figures 4-17, 4-18 and 4-19.
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(a) triangulation domain 1 (b) triangulation domain 2

(c) 3D space

Figure 4-23: Initial triangulation
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4.7.3 6-Improving Triangulation

For each triangular approximating element obtained by the initial triangulation, we

compute an approximation error. Using the method discussed in Section 4.3.3, we ex-

tract a triangular sub-B6zier surface patch r(u, v, w) corresponding to the triangular

approximating element s(u, v, w). Then, the approximation error 6 is easily deter-

mined by evaluating an upper bound of the absolute position difference at isopara-

metric points by Eq. (4.23) i.e.,

-- max Iri,j,k - Si,j,k, (4.55)
i,j,k

where integers i, j, k > 0, i + j + k = m + n for an input tensor product Bezier

surface patch R(s, t) of degrees m, n in the st-parametric directions and Si,j,k, ri,j,k

are control points of s(u, v, w) and r(u, v, w), respectively.

After computing 62 for each triangular element, a triangular element is chosen

whose 62 is the largest. If the maximum 62 is not within the square of a given approx-

imation tolerance c2, a new node is placed on the Voronoi vertex - see also Figure

4-12 - of the corresponding triangle on the triangulation domain and the triangu-

lation is updated using Bowyer-Watson algorithm. We then compute 62 for each

newly generated triangle and repeat the same procedure until every approximating

element satisfies e-tolerance. We call this procedure 6-improving triangulation. A

similar Voronoi-vertex point insertion algorithm was introduced by Rebay [78] in his

planar mesh generation algorithm, whose triangular elements satisfy the prescribed

circumcircle radius limit.

As shown in Figure 4-24, a Voronoi vertex V of a triangle ABC can exist inside

the circumcircle of an external triangle DBA. This usually happens if the longest

edge of an optuse triangle is on the boundary loop. In such a case, instead of Voronoi

vertex V, we insert a node P at the midpoint of the corresponding exact boundary

segment AB and update the triangulation, which is similar to the node repositioning

step described in Section 4.7.2. Figure 4-25 together with Figure 4-24 illustrates the

procedure. Note that if the updated boundary segment has a mate segment i.e., it
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exact b

internal

Figure 4-24: An internal ABC and external DBA triangle together with a boundary
edge AB and center V of circumcircle ABC

is a part of common boundaries between two neighboring surface patches, the mate

segment should be updated, too.

Figure 4-26 shows the result of 6-improving triangulation with e = 10-2 corre-

sponding to the initial triangulation shown in Figures 4-23. Total number of trian-

gular elements is 118 and the worst and average approximation error are 0.96 x 10-2

and 0.55 x 10- 2 , respectively.

4.7.4 AR-Improving Triangulation

As stated before, unstructured triangular meshes for free-form surfaces frequently

suffer from badly shaped triangles with high aspect ratio (AR) [73]. If such low quality

elements are used for further geometric computations or general analysis, they cause

serious numerical problems [7, 88]. The aspect ratio (AR) of a triangle is defined

by the ratio of the length of the longest side to the height, where the height is the

minimum distance from a vertex to the opposite side i.e., in Figure 4-27 for a triangle
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exact

internal

Figure 4-25: Node (P) insertion at the midpoint of the exact boundary segment and
the resulting triangulation

ABC,

__ _ p1 2
AR

d Iq x pi" (4.56)

It is obvious that the equilateral triangle has the least AR =- 1.155.

Our free-form surface triangulation algorithm constructs planar domain of trian-

gulation which sufficiently preserves the shape of triangular elements when mapped

into three-dimensional space. This feature enables us to achieve a well-shaped trian-

gulation in three-dimensional space by improving AR of each triangle on the planar

triangulation domain. The improvement of AR is performed in the triangulation

domain until

condition a. AR of every triangle is below a given threshold TAR or,

condition b. for those triangles having AR > TAR, their AR's can not be improved

any more.
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(a) triangulation domain 1 (b) triangulation domain 2

(c) 3D space

Figure 4-26: 6-improving triangulation

Figure 4-27: A triangle ABC
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In condition a, given TAR should satisfy

2
TAR 2 (4.57)

since no triangles can have the aspect ratio less than that of an equilateral triangle.

The condition b may appear vague but it will be explained later in detail. We note

that our AR-improving process can be immediately applied to not only trimmed

surface meshing but also another well-known computational geometry problem i.e.,

triangulation of a multiply connected planar region.

Our algorithm utilizes the concept of Voronoi-segment point insertion algorithm

[78], where the author repeatedly inserts a new node on the Voronoi edge to generate

a new triangle whose circumcircle radius is identical to the prescribed limit, where

the Voronoi edge is an edge of a Voronoi region, as shown in Figure 4-12.

We now illustrate the procedure of AR-improving triangulation in detail. After

the 6-improving triangulation, the internal triangles on the triangulation domain

are further classified into two types of triangles depending on their AR - triangles

already satisfying and not yet satisfying the threshold (TAR) of an aspect ratio. These

two types of internal triangles are called done and undone triangles, respectively.

Since we will insert a node by considering an undone triangle whose neighbors are

done or external triangles, we need to introduce a further classification of the undone

triangles namely, active and waiting triangles. An active triangle is an undone triangle

having at least one done or external triangle among its neighbors. Finally, all the

undone triangles which are not active are called waiting triangles. Therefore, a waiting

triangle is surrounded by active or other waiting triangles.

Before we start the AR-improving triangulation for each triangle obtained from

the previous 6-improving procedure, a feasibility test must be done for those triangles

two of whose edges correspond to the boundary loop segments, as depicted in Figure

4-28. We first check if an angle 0 made by two boundary loop segments AB and BC

is the minimum angle of triangle ABC - this can be done by just checking if the

opposite edge CA to the angle 0 is the shortest one among three edges AB, BC and

134



4.7 Piecewise Planar Approximation of Composite Bezier Surfaces

Figure 4-28: A boundary triangle ABC

CA. This being true, a further test is performed. For a triangle whose least angle

0 << 1,

1 1
AR (4.58)

sin 0 0

and thus, we compute 0 and if

S< (4.59)
TAR

then, we regard AR of the triangle ABC as not improvable and mark ABC to be a

done triangle, in other words we do not attempt to improve AR of such triangle.

After classifying each internal triangle obtained from the 6-improving triangula-

tion, we pick up a triangle whose AR is the largest among the active triangles on the

triangulation domain. A new node is inserted by considering the Voronoi edge shared

by the chosen active triangle and one of its done or external neighboring triangles,

as depicted in Figure 4-29. If more than one done or external neighbors exist, the

Voronoi edge associated with the shortest edge of the active triangle is chosen. As
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Voronoi vertex of CDA Voronoi vertex of ABC

Voronoi edge

Figure 4-29: Node insertion in AR-improving triangulation

Figure 4-30: An isosceles triangle ABC
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shown in Figure 4-29, the position of a new node P along the Voronoi edge VIV 2 is

chosen in an attempt to generate an isosceles triangle APC whose AR is equal to the

prescribed threshold TAR (> 2). Furthermore, we assume the edge CA to be the

shortest edge of the newly generated isosceles triangle APC, which means an angle

between two edges AP and PC should not be greater than 600. Hence, with reference

to Figure 4-30, we need to solve the following problem.

Given : an edge CA and a local axis x which is perpendicular to CA with its origin

equal to the midpoint M of the edge CA.

Find : a point P which makes an isosceles triangle APC having AR equal to the

prescribed TAR (> 2).

Constraint : angle a between two edges AP and PC is not greater than 600.

Two given points C : (Cx, Cv), A : (Ax, Av) in terms of global XY-coordinates

system can be expressed as C : (0, c), A : (0, -c) with respect to the local xy-

coordinates system, where

c -  and the vector q = C - A = (Cx - Ax, Cy - Ay). (4.60)
2

Furthermore, the point P can be represented by P : (p, 0) with respect to the local

xy-coordinates system. We now determine p. By Eq. (4.56), the aspect ratio (AR)

of triangle ABC is

pA2 C2 - p2
AR q- =p - 2 (4.61)

q x p 2cp

By setting AR = TAR in Eq. (4.61), we obtain the following quadratic equation with

respect to p.

p2 - 2TARcp + C2 = 0,
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whose roots are

P = (TAR - 1 )C, (4.63)

where Ta > 1 always since TAR > .3 Notice that we have to choose the bigger one

as a true root in Eq. (4.63) i.e.,

p = (TAR + •r- 1 ) c. (4.63')

The reason why the other root should be discarded is easily proved as follows; assume

the other root p = (TAR - V/R - 1 )C is a true root. For an equilateral triangle,

p = /vFc. Therefore, by the Constraint stated before,

p = (TAR - VTR- 1)c > V3c. (4.64)

By solving the inequality (4.64), we obtain

2
TAR < 2 (4.65)

However, this is impossible because no triangles can have AR less than that of equi-

lateral triangle. Therefore, p = (TAR - TA2R - 1)c can not be a true root. O

Finally, we express P : (p, 0) with respect to the given global XY-coordinates system

i.e.,

P : (Px, PY) = (Mx + p cos 3, My + p sin 3), (4.66)

where

Cx + Ax Cy + Ay
(MxMy) ( ), (4.67)2 2

Cy - Ay Ax - Cx
cos = sin = q , (4.68)

q = V(Cx - Ax) 2 + (Cy - Ay) 2, (4.69)
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Voronoi vertex of CDA Voronoi vertex of ABC

D

do

Voronoi edge

Figure 4-31: A new node P not on the Voronoi edge V1V2 : case 1

and p is defined in Eq. (4.63').

Notice that the new node P computed by Eq. (4.66) may not be within the Voronoi

edge between the chosen active triangle and the neighboring done or external triangle,

as shown in Figures 4-31 and 4-32. In other words, the Voronoi edge V2V1 is too short

with respect to V2P. This happens if

case 1 : the given TAR is large compared with the length of the Voronoi edge, as

depicted in Figure 4-31 or

case 2 : the shortest edge of the chosen active triangle is much shorter than the

other two edges and furthermore, the neighbor of the shortest edge is neither

done nor external i.e., it is a waiting or another active triangle, as illustrated in

Figure 4-32.

The case 2 may cause an undesirable result, since the node P very likely does not

delete the chosen active triangle ABC. This means that P is prone to exist outside

the circumcircle of ABC. If such a case is encountered, we insert a new node at the

Voronoi vertex V1 of ABC instead of P. This is an appropriate alternative because the

new node at Voronoi vertex V1 will clearly delete the currently worst active triangle

ABC by Bowyer-Watson algorithm. Furthermore, this alternative will be also applied

to the case 1 in an attempt to generate a new triangle AVIC having a better AR

than a triangle APC, as shown in Figure 4-31.

Another exceptional case occurs if an inserted new node is within the circumcircle

of an external triangle, which was already seen in S-improving triangulation of Section

4.7.3 - see also Figures 4-24 and 4-25. In AR-improving triangulation, this typically
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done or external

of CDA

edge

Voronoi vertex

active
waiting or active B

Figure 4-32: A new node P not on the Voronoi edge V1V2 : case 2
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happens when the above treatment for case 2 is performed for an optuse triangle

whose longest edge is a boundary loop segment. In other words, this is a case that a

Voronoi vertex of the boundary active triangle is inserted in the triangulation instead

of a point computed by Eq. (4.66) and moreover, the Voronoi vertex is within the

circumcircle of an external triangle. In such a case, we apply the same treatment as

described in Figures 4-24 and 4-25 of Section 4.7.3. Notice here that a triangle having

better AR, is usually generated by inserting a node at the midpoint of the longest edge

of an optuse triangle.

Now, we need to consider the trade-off between the 6-improving and AR-improving

triangulations. In order to make the algorithm as optimal as possible in terms of

the approximation tolerance and the number of approximating elements, we have

to achieve a surface triangulation satisfying the approximation tolerance C with as

small a number of approximating elements as possible. However, regardless of e, the

AR-improving procedure can generate a number of triangles in addition to the nearly

optimal number of triangles obtained through the 6-improving triangulation. This

drawback is further aggravated as TAR becomes more ideal. To remedy this problem, it

is desirable to introduce a threshold Tr which bounds the smallest size of a triangle on

the triangulation domain in AR-improving procedure. The most appropriate quantity

which measures the size of a triangle is the square r 2 of a circumcircle radius of

the triangle. Apart from its close geometric relation to the size of a triangle, it is

introduced for the efficiency of the algorithm - r 2 is already computed in Bowyer-

Watson algorithm and hence, no additional computations are required to determine

r 2. We may input the lower bound Tr arbitrarily and modify it interactively by trial

and error. However, for the fully automatic surface meshing procedure, we need to

define an appropriate formula governing Tr. Furthermore, •, should be expressed

in terms of the prescribed approximation tolerance e to achieve a dynamic relation

between e and Tr. In other words, we automatically assign smaller (bigger) •r as E

becomes tighter (looser) respectively, by the formula Tr = Tr(e). Note here again that

all the approximating triangles already satisfy the approximation tolerance C when

entering AR-improving triangulation, and hence the AR-improving procedure should
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Figure 4-33: A uniform triangulation on the unit uv-parametric space

not unreasonably increase the number of approximating triangles with respect to C.

In order to keep AR-improving procedure from possibly generating a number of

triangles, we propose an appropriate formula for Tr as follows.

Tr -- (pro)2, (4.70)

where

p Eo
ro =-

2
(4.71)

e, co are the approximation tolerances on a real and normalized scale, respectively

and

32(D1 + 2D2 + D3)
(4.72)
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where

D max r2,| (4.73)2,0

D2 - max Iri , (4.74)
2,3

D3 max Ir,9'i. (4.75)

In Eq.'s (4.73) - (4.75), the r,'l denote the control points of a partial derivative ouk+r

of the exact Bezier surface patch r(u, v) under triangulation. Therefore, D 1 is the

maximum of the norms Ir,9l for all possible 0 < i < m - 2 and 0 < j < n, where m,

n are the degrees of r(u, v) in the u, v parametric directions, respectively. In a similar

way, D 2 and D3 can be described. We now need to illustrate the meaning of A in Eq.

(4.72). For an untrimmed Bezier surface patch r, if the longest edge (hypotenuse) size

of the right-angled isosceles triangles, uniformly distributed on the unit uv-parametric

space, does not exceed A defined in Eq. (4.72), then all the corresponding approximat-

ing triangles in the three-dimensional space guarantee the approximation tolerance C,

as stated in [73] which utilized a theorem by Filip et al. [32] - see also Figure 4-33.

This is a really strong condition globally bounding the allowable size of the triangles

in terms of E and thus, the corresponding triangulation usually results in unneces-

sarily large number N* of approximating elements, as mentioned in Section 2.3. We

base the lower bound -r of the square r2 of circumcircle radius in our AR-improving

triangulation upon the size limit A, expecting the number of triangles even after the

AR-improving triangulation does not exceed O(N*). For an isosceles right-angled

triangle ABC in Figure 4-33, its circumcircle radius is A, which is ro in Eq. (4.71).

Furthermore, the size of our triangulation domain is comparable to the input surface

patch and hence, we have to rescale ro with respect to the real scale, which is achieved

by p in Eq. (4.71). Based on the above descriptions, the lower bound Tr is defined as

Eq. (4.70).

In AR-improving triangulation, if the currently chosen worst active triangle T has

r2 > Tr, then T is regarded as not improvable and is marked as done and we choose

the second worst active triangle T' and repeat the AR-improving procedure. This
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(a) triangulation domain 1 (b) triangulation domain 2

(c) 3D space

Figure 4-34: AR-improving triangulation

is an appropriate strategy which balances the number and AR of the approximating

triangles.

Based on the node insertion strategy described so far, we repeatedly place a node

on the triangulation domain and update the triangulation by Bowyer-Watson algo-

rithm until every internal triangle becomes done i.e., condition a or condition b,

mentioned earlier in this Section, is satisfied.

Figure 4-34 shows the result of AR-improving procedure corresponding to the

6-improving triangulation with c = 10-2 shown in Figures 4-26. We set TAR to be

3, which guarantees that any angle 0 of a triangle in the triangulation domain is

200 < 0 < 1130. Furthermore, Tr 0.02 and 0.015 for the first and second surface

patch, respectively. Total number of approximating triangles is 181 and the worst
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and average AR is 3.64, 1.99 in the triangulation domain, and 3.60, 2.00 in the three-

dimensional space, respectively. The number of triangles whose AR's are greater than

TAR = 3 is 10 (13) in the triangulation domain (three-dimensional-space), respectively.

In other words, approximately only 6% of the total number of triangles are regarded

as not improvable in the AR-improving triangulation and furthermore, only 7% of the

approximating triangles in the three-dimensional space do not satisfy the threshold

TAR.

More importantly, we can verify the excellent average AR of the approximating

triangles in the three-dimensional space. This is due to the coupled effects of the fea-

tures of Delaunay based triangulation, AR-improving procedure in the planar domain

of triangulation and preservation of triangles' shape during the mapping process from

the triangulation domain into the three-dimensional space.

4.8 Intersection Test and Final Triangulation

Suppose that the exact input trimmed surfaces constitute a set of mutually non-

intersecting simple composite surfaces, the approximating triangular elements should

not have any inappropriate gap nor have any inappropriate intersection in order to

achieve a homeomorphism between the exact composite surface and its approximation

[2, 10, 62, 72]. The term simple composite surface here denotes a composite surface

without self-intersections, whose trimmed sub-patches r(u, v) of class Cm with m > 2

are simple (non-self-intersecting) as well as regular (ru x r,, 0).

During the surface triangulation procedure based on the robust interval Delaunay

test, the inappropriate gap is prevented by utilizing the half edge data structure

coupled with interval boundary representations. In other words, whenever a node

is inserted on the triangulation domain, a conforming triangulation is achieved with

the help of the interval Delaunay test and in particular, if the newly inserted node

exists on the boundary loop segment, its corresponding mate boundary can be also

updated in a consistent manner. However, inappropriate intersections may exist

between the approximating triangles in E3 e.g., global distance function features of the
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input surface such as constrictions as depicted in Figure 4-35. If such inappropriate

intersections exist, they necessitate further local refinement of the approximation

until every approximating triangle does not have any inappropriate intersection -

final triangulation. Similar to the case of linear approximation described in Section

3.6, a bucketing technique [5, 19) is used to identify such an inappropriate intersection.

4.8.1 Homeomorphism between the Exact and Approximat-

ing Surface

Before we proceed to the final triangulation scheme, we prove the existence of a home-

omorphism between a set of mutually non-intersecting simple composite surfaces and

the corresponding triangular approximation without any inappropriate intersection

nor gap. The homeomorphism under consideration is constructed by using Defi-

nition 3.6.1 and Lemma 3.6.2 in Section 3.6.1. Furthermore, based on the fact

that any trimmed simple parametric surface patch can be decomposed into a set of

conforming triangular surface patches, we only need to prove the following Theorem.

Theorem 4.8.1 A simple composite surface X comprising of n conforming trian-

gular surface patches is homeomorphic to the corresponding heap Y of n planar ap-

proximating triangles which do not have any inappropriate intersection nor have any

inappropriate gap.

Proof. The proof is easily achieved by induction. Let the simple composite surface

be X and the corresponding heap Y of approximating triangles without inappropriate

intersections nor gaps be X = Un, Xi and Y = U>, Y, where Xi and Y are the ith

triangular surface patch and the corresponding approximating triangle, respectively.

To prove a map f : X(= Ui, 1 X,) -+ Y(= U- 1l Yj) is a homeomorphism, we first need

to show that a triangular surface patch X 1 is homeomorphic to the corresponding

approximating triangle Y1, namely a map fi : X 1 --+ Y is a homeomorphism. This

is clearly true because any non-self-intersecting triangular surface is homeomorphic

to a planar triangle. Assume now a map f* : X*(= UL Xi) - Y*(= Ui Yi) is

a homeomorphism for 1 < k < n and consider a map f** : X**(= Uk+l X) -
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(a) exact composite surface

(b) invalid approximation

Figure 4-35: A composite Bezier surface and its topologically inconsistent approxi-
mation with c = 10-1 and TAR = 3
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Y**(= U~1 Yi). Since X** = X* U X+1 and Y** = Y* U Yk+1, each subspace X*,

Xk+1 are closed in X** and Y*, Yk+1 are also closed in Y**. Furthermore, the map

f* : X* 4 Y* is homeomorphic by the assumption and so is a map fk+l : Xk+1 --+ Y1+I

as described in the homeomorphism of fl. Moreover, a possible X* n Xk+1 is a null

set 0, a common vertex Vk or a common curved edge Ck between X* and Xk+1.

Then, the corresponding possible Y* n Yk+1 is a null set 0, a common vertex Vk or

a common linear edge Lk between Y* and Yk+1, respectively. This is because X** is

a simple composite surface composed of conforming triangular surface patches and

the corresponding Y** does not have any inappropriate intersection nor have any

inappropriate gap. Therefore, a map fo : X* n Xk+l -- Y* f Yk+l is equivalent to

0 -+ 0, Vk -+ Vk or Ck -+ Lk, which is obviously homeomorphic. By Lemma 3.6.2,

a map f** : X** 4 Y** is accordingly a homeomorphism. Therefore, a map f is

a homeomorphism from a simple composite surface X comprising of n conforming

triangular surface patches to the corresponding heap Y of n planar approximating

triangles which do not have inappropriate intersections nor gaps. O

4.8.2 Preprocessing-Putting Triangles into Buckets

To perform an intersection test based on the bucketing technique, we first construct

O(n) uniform buckets Bijk which will contain n approximating triangles. The proce-

dure of constructing buckets is analogous to what was described in Section 3.6.2.

Once the buckets are constructed, we associate each approximating triangle with

the buckets. For each approximating triangle s, in xyz-coordinate system, we perform

a transformation with respect to the bucket coordinates ijk i.e.,

sp uv + , + wvy -+ + v2, + w3 _ -p, p = 1, 2, ... , n, (4.76)

where n is the number of approximating triangles and 0 < u, v, w < 1, u + v + w = 1

and v1, v, v2 are vertices of an approximating triangle s and the tilde - repre-

sents the corresponding transformed version. Each ijk-component of the transformed

vertices v-, 1-2 and -3 is determined in an analogous way to Eq.'s (3.58) - (3.63).
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Figure 4-36: A 10 x 6 x 1 bucket set (front view)

We now illustrate how to put each transformed triangle 9p into buckets Bijk. As an

example, we consider a 10 x 6 x 1 bucket set together with an approximating triangle

9p, whose front view is shown in Figure 4-36. We first determine buckets which contain

a bounding box of a triangle 9p. This is quickly achieved by just taking the integer

part of each coordinate of the transformed vertices v, v-2, v- and finding min/max

coordinate value for each ijk-direction. For a transformed triangle 9, and the bucket

set in Figure 4-36, those nine candidate buckets Bijk, (i = 3, 4, 5, j = 2, 3, 4, k = 0)

are thus determined. In case the bounding box is completely within a bucket, we skip

the following further considerations. We next remove the false candidate buckets

which are not really associated with ,P e.g., B420, B 520 and B530 in Figure 4-36. An

efficient and robust method to test for intersection between a plane and a bucket is

given by Ratschek and Rokne [77]. Based on their method, our current problem can

be stated and partly solved as follows.

Given : three vertices -I(vli, Vlj,Vl1k), (V 2i, V2, V2 ), -•(3V3 i, V 3 V3k) of a trans-

formed triangle I, and a bucket Bij k( [i, i + 1], [j, j + 1], [k, k + 1]).

.... .. ... .. ....... ..... ....... .. ... ..... ... I .... .. ......
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Compute :

-3 -2 -3 3S=V - v, Q = V - v R = Bijk - p, (4.77)

Pi P3 Pk
det(P, Q, R) = Qj Qk, (4.78)

Ri Rj Rk

where notice that each ijk-component Ri, Rj, Rk of R is an interval number

and hence, so is det(P, Q, R).

Solution : if det(P, Q, R) in Eq. (4.78) does not contain zero in its interval, then

we decide the bucket Bijk and the transformed triangle ,p do not intersect

each other i.e., Bijk f lp = 0 and thus, we do not associate the corresponding

candidate bucket Bijk with 9p.

However, the above procedure does not completely remove the false candidate buckets.

This happens if a point in a false candidate bucket Bijk exists on the infinite plane

defined by three vertices of 9p e.g., in case of the transformed triangle 9P in Figure

4-36 being parallel to ij-plane. Such a false candidate bucket Bijk can be further

detected by naively checking if Bijk and 9p intersect each other i.e., checking if at

least one of 3 edges of ,p intersects at least one of 6 faces of Bijk or if at least one of

12 edges of Bijk intersects 9p. In other words, to find and remove a false bucket out

of currently remaining candidate buckets, we need to solve the problem of bounded

face to line segment intersection 30 times (= 3 edges x 6 faces + 12 edges x 1 face)

in the worst case - the case of a false candidate bucket, otherwise the intersection

is detected in a small number of tests. In most practical examples, the number of

buckets associated with a triangle is really 0(1) and also, very few false candidate

buckets exist in general.

By repeating the procedure described so far for each transformed triangle 9p (p =

1, 2,..., n), we can associate every 9p with the corresponding buckets Bijk.

I·
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4.8.3 Intersection Check and Final Triangulation

For each bucket Bijk, an intersection test is performed to identify possible inappropri-

ate intersections between the approximating triangles. The intersection test begins

with inquiring if at least two triangles are associated with Bijk. If it is true, an

intersection check between each pair of transformed triangles in Bijk is performed.

If a pair of transformed approximating triangles ,P and §q inappropriately intersect

each other, further local refinement of the approximation is necessitated. Such an

intersection is detected by checking if at least one edge 1,(t) of 9p intersects ,(u, v)

or if at least one edge i1(t) of §q intersects §p(u, v) at t = to, (u, v) = (uo, v0) i.e.,

(to) to)b + to = o + vo + (1 - Uo - o) -- (, Vo), (4.79)l (to) -(UV

or

lq(to) (1 - to) + to& = uoi + VoV- + (1 - Uo - vo) v- (uo, vo), (4.80)

where 0 < to, uo, v o • 1, i = 1, 2, or 3 and furthermore, b, , i , -2 and 3 are

the beginning and ending points of the edge 1Z and three vertices of the triangle 9p,
respectively. Similarly, bI , ~ , 1r , and -0 are defined.

If a pair of intersecting triangles ,P and ~q are found, we pick up the corresponding

triangles Tp and Tq in the triangulation domains. Additional nodes are inserted on the

midpoint of the longest edge of each Tp, Tq and a local refinement of the approximation

is performed by bisecting Tp and Tq together with their neighboring triangles. Note

again that if the longest edge is a boundary loop segment, we update the triangulation

as described in Figure 4-25.

The bucketing procedure described in Section 4.8.2 and the intersection test are

then repeated until every approximating triangle does not inappropriately intersect

each other. This procedure, called final triangulation, provides a topologically con-

sistent approximation to the exact input composite surface, as shown in Figure 4-37

corresponding to the example shown in Figure 4-35.
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Figure 4-37: A topologically consistent approximation to the surface of Figure 4-35-
(a)

4.9 Approximation of Interval B zier Surfaces

A solid object bordered by free-form surface patches is generally described with a

boundary representation (B-rep). The topological information defining how the var-

ious patches are glued together is described in an adjacency graph. Assembling a

collection of surface patches of limited precision frequently yields gaps in the bound-

ary parts. These gaps will yield ambiguities in the definition of point sets contained in

the interior of the solid. Therefore, we may get vaguely defined solids which produce

more vaguely defined objects when they are used in Boolean operations, involving

intersections of solid volumes.

To achieve robustness in B-rep solid modelers, interval geometric entities (points,

curves, surfaces, etc) computed in rounded interval arithmetic (RIA) should be intro-

duced, as detailed in Hu et al. [45, 46, 47, 48, 49]. The interval B-rep prevents the

inappropriate gaps mentioned above by the robust interval geometric definitions and

computations together with consistent incidence criteria of points on the neighboring
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geometric entities, [47, 48].

Interval Bezier surfaces differ from classical Bezier surfaces in that the real num-

bers representing control point coordinates are replaced by intervals. This implies

that, in three-dimensional space, interval Bezier surfaces represent thin shells, if the

intervals are chosen sufficiently small. Approximating triangles to such interval B6zier

surfaces consequently have the form of thin triangular plates. The interval approxi-

mating triangles can be still described by the conventional vector formula,

S(U, v, W) v1 + v 2 + WV3, (4.81)

where u + v + w = 1, 0 < u, v, w < 1 and vl, v2 and v3 are the vertices of s(u, v, w)

represented by interval points in E 3 , i.e., vi ([xil, Xi.] y, [Yi], [zil, zi]), i = 1, 2, 3.

Given a set of trimmed interval Bezier surfaces, the interval boundary loop ap-

proximation discussed in Section 3.7 together with identification of Krms stationary

points using the interval projected polyhedron algorithm is performed to obtain an

initial triangulation based on the interval Delaunay test. Although there is no special

motivation to minimize the isometric mapping error function in RIA, the intersection

test between each edge of the developed surface net should be robustly performed in

RIA to guarantee the existence of a homeomorphism between the uv-parametric space

and the corresponding triangulation domain. We also need to note that the mapping

of mesh from the triangulation domain into the three-dimensional space results in a

set of interval triangular elements, s(u, v, w) described in Eq. (4.81).

For each initial approximating triangle, an approximation error 6 - [61, 6u] defined

in Eq. (4.55) is computed. In order to conservatively satisfy the prescribed tolerance

C, we choose 6, as an approximation error. Repeated node insertion followed by

Bowyer-Watson algorithm is performed until every interval approximating triangle

satisfies the prescribed tolerance e.

In AR-improving triangulation, RIA is not necessarily required to compute the

aspect ratio (AR) of triangles in the triangulation domain since AR defined in Eq.

(4.56) does not cause any numerical nor conceptual failure unless a triangle is degen-
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erate. As discussed in Section 4.6.4, the proposed interval Delaunay test guarantees

non-degenerate triangulation in the course of Bowyer-Watson algorithm. Further-

more, a conservative measure of AR does not provide any special meaningfulness for

a triangle in the triangulation domain since it is not a real AR of the corresponding

triangle in the three-dimensional space.

A robust intersection test operating in RIA coupled with an efficient bucketing

technique is next performed to identify inappropriate intersections between interval

approximating triangles. As discussed in Section 3.7.3, an interval intersection test

should be employed to solve the plane to plane intersection problem defined in Eq.'s

(4.79) and (4.80) robustly. If such intersections exist, as described in Section 4.8.3,

further local refinement of the approximation is performed until every interval ap-

proximating triangle does not involve such an inappropriate intersection.

Finally, we note again that the mapping of each approximating triangle from a

triangulation domain into the three-dimensional space should be performed in RIA to

prevent gaps between the approximating triangles whose common edges correspond

to the boundary loop segments of different input surface patches.

4.10 Robustness Issues

In this Section, we summarize robustness issues of our surface tessellation algorithm.

Operations in FPA may :

- not find all the significant points,

- incorrectly decide 6 < e,

- result in incorrect Delaunay triangulation,

- not correctly map a node from the triangulation domain onto the para-

metric space,

- fail to identify inappropriate intersections of the approximating elements

or developed net edges.
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* Operations in RIA will :

- not miss significant points due to the use of the Interval Projected Poly-

hedron Algorithm,

- guarantee 6 < e ---+ 6, < e where 6 - [St, 6,],

- guarantee correct Delaunay triangulation,

- not fail in the mapping process,

- not miss inappropriate intersections of the approximating elements or de-

veloped net edges.

4.11 Complexity Analysis

In this Section, we perform complexity analysis for each surface approximation pro-

cedure, i.e., initial, 6-improving, AR-improving and final triangulation.

4.11.1 Initial Triangulation

In the initial triangulation procedures, time cost is dominated by the three steps,

namely topologically reliable boundary loop approximation, determination of trian-

gulation domains and the computation of Krms stationary points. For simplicity,

we assume that each input surface patch is of the same degrees bi-m-ic in the uv-

parametric directions.

Complexity analysis for the boundary loop approximation has already been dis-

cussed in Section 3.8. The only thing we need to note is that a trimming loop

segment has a degree 2mn if it is defined with a polynomial curve of degree n on the

uv-parametric space of a bi-m-ic input surface patch. Therefore, we substitute 2mn,

as the degree of an input curve, into each complexity formula in Section 3.8.

We next analyze the time complexity of the determination of triangulation do-

mains i.e., the minimization of the mapping error function E defined in Eq. (4.44).

We further assume here that each surface net has the same number p x p of distributed
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points in the uv-parametric directions, respectively. The number p is arbitrary, but

we usually set p = m. The minimization of E requires Nvar times evaluation of

E for each iteration, where Nar (- 2p2) is the number of independent variables of

E. Furthermore, one evaluation of E takes O(Nvar) i.e., 0(p 2) cost. Suppose that

N, is the total number of input surfaces and Niter is the average number of itera-

tions to achieve the minimum of E for each input surface, then the construction of

triangulation domains costs O(NNfip 4) on the average.

We now consider the time cost required in the computation of K,,rm stationary

points. Given a 2 x 2 system of nonlinear polynomial equations of degree 1 in each vari-

able, the projected polyhedron algorithm takes O(l3) for each iteration [85] and there-

fore, solving the system of polynomial equations (4.38) and (4.39) costs O(NtY m3),

where Nioly is the number of iterations to get the solution and m is the degree of the

bi-m-ic surface patch. Assume that N~ptY is the average number of iterations for all

input surfaces, then the computation of ,rmsn stationary points takes O(N,N itP m3)

on the average.

Based on the analysis described so far, the average time complexity of the initial

triangulation is described by O(Cbound + Ns(Nite 4 + NYm3)), where bound is the

time cost spent in the boundary loop approximation, given in Section 3.8.

4.11.2 6-Improving Triangulation

For each input tensor product B6zier surface patch, in order to achieve NT approxi-

mating triangles satisfying the prescribed tolerance E, we need to perform extraction

of a triangular sub-Bezier patch NT(Ž> Ný) times to measure the approximation er-

ror 6. Notice that NJT includes not only NT but also the number of all the deleted

triangles during each application of Bowyer-Watson algorithm. By Eq. (4.32), ex-

traction of one triangular sub-Bezier patch from a bi-m-ic tensor product Bdzier

surface patch runs in O(m6 ) and the approximation error 6 is then computed in just

O(m2). If we assume the above N#T to be the average number of all input surface

patches ri (i = 1, 2, ... , N,), then total time cost spent in measuring 6 is described

by O(NNTm') on the average.
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The 6-improving algorithm chooses the position of the (N + 1)th mesh node on the

basis of the mesh connecting the already existing N nodes. The position is chosen

to be the Voronoi vertex of a triangle with the largest approximation error 6 and

therefore, an efficient heap list [19] is used to store pointers to the approximating

triangles ordered according to the value of 6. Any removal or insertion of a new

element in the heap list can be achieved in O(log N) operations and furthermore,

all other triangles to be deleted at each node insertion can be found by means of

0(1) search looking at only neighboring triangles. Therefore, the incremental node

insertion algorithm can be achieved within O(Np log N,), where NRp is the total

number of nodes on a triangulation domain after 6-improving triangulation. If we

assume each triangulation domain has the number of final nodes Np on the average,

then the total time cost associated with the current consideration is O(N,NJ log Np)

on the average, where N, is the total number of input surface patches. By the above

two kinds of complexity analyses, we can conclude that the 6-improving triangulation

runs in O(N,(NTm6 + Ný log Np")) on the average. In fact, Np, depends on the

approximation tolerance e and its relation is described by N, -, [32].

4.11.3 AR-Improving Triangulation

Time cost of AR-improving triangulation is dominated by the repetition of choosing a

triangle with the largest AR in the heap list followed by a Bowyer-Watson algorithm.

As we discussed in the previous Section, this procedure runs in O(N,(N A R log NAR))

on the average, where N, is the total number of input surface patches and NA R is the

average number of nodes inserted in AR-improving triangulation for all input surface

patches.

4.11.4 Intersection Test and Final Triangulation

Suppose that AR-improving triangulation results in NjR number of approximating

triangles, then we construct corresponding buckets in O(NAR). Since 0(1) approx-

imating triangles are associated with each bucket, time complexity for the intersec-
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tion test is also O(NTAR). In case that an inappropriate intersection between a pair

of approximating triangles is detected, we bisect such triangles together with their

neighboring triangles (if they exist) - the number of triangles is increased by 4 at

most - and immediately update the buckets for the further intersection test.

Therefore, the total complexity is described as O(f) where

Winter

f = (NT + 4i) = (nter + 1)NTA R + 2(Ninter + 1)(Ninter + 2), (4.82)
i=O

where Ninter is the total number of pairs of intersecting triangles detected during

the test. By taking the leading terms in Eq. (4.82), the total complexity will be

O(Ninter +A R  N2nter) for Ninter > 0 and O(NA R ) in case Ninter = 0.

4.12 Examples

We have implemented the proposed surface tessellation method with a bi-cubic wave-

like Bezier surface patch, a high degree Bezier surface patch and four realistic composite

Bezier surfaces on a graphics workstation running at 150 MHz. Notations used in

Tables 4.2 - 4.20 are summarized as follows.

* e : User specified approximation tolerance (normalized by the patch length scale

defined as the cubic root of the volume of the rectangular bounding box of the

patch in the given coordinate system and using the control vertices).

* Init-A : Initial triangulation including construction of triangulation domains,

boundary loop approximation and computation of Krms stationary points - see

also Sections 4.7.1 and 4.7.2.

* 6-A : 6-improving triangulation described in Section 4.7.3.

* AR-A : AR-improving triangulation described in Section 4.7.4.

* Fin-A : Intersection test of the approximating triangles described in Section

4.8.
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* Total : Total procedure i.e., Init-A, 6-A, AR-A and Fin-A.

* N : Total number of approximating triangles.

* TAR : User specified AR-threshold.

* Nfail : Number of the approximating triangles with AR > TAR.

* ARavg : Average AR of N approximating triangles.

* ARmax : The maximum AR of N approximating triangles.

* N6 : Number of triangles generated up to 6-A.

* NAR : Number of triangles generated in AR-A process.

4.12.1 Wave-Like Surface

Our first example is a bi-cubic Bezier surface patch [57]. The boundary 12 control

points are coplanar so that the boundary curves form a square. The remaining four

interior control points make the surface patch wave-like. The control points are given

as follows:

Poo Po01 P0 2 P0 3

P10 P 11 P 12 P 13

P 20 P 2 1 P 22 P 23

P 30 P3 1 P 32 P33

(0, 0, 0)
(1, 0, 0)

(R, 0, 0)

(1, 0, 0)

(0, , 0) (0, , 0) (0, 1, 0)312 1

( 1,  1, - 1) ( 1, q, 1) (1, 1, 0)

31 3, 3) 3( 3)
(1, 1 0) (1, 2  O) (1 1, 0)

(1, 5,

The surface is anti-symmetric with respect to u = 0.5. Although the surface looks

simple, it is rich in its variety of differential geometric properties [57]. Tables 4.2 4.5

together with Figures 4-38 - 4-48 illustrate the performance for the wave-like surface.

There are 11 stationary points of the root mean square curvature 'Crms 2 local

maxima at (u, v) = (0.805, 0.5), (0.195, 0.5), 5 saddle points at (u, v) = (0.667, 0.838),

(0.667, 0.162), (0.333, 0.838), (0.5, 0.5), (0.333,0.162) and 4 local minima at (u, v) =

(0.893, 0.822), (0.893, 0.178), (0.107, 0.822), (0.107, 0.178). Our algorithm - Case 1 in

Table 4.2 - uses those krms stationary points as well as nodes on the boundary loops

as initial nodes. We also implemented the initial and 6-improving triangulations
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without those hrm, stationary points (Case 2 in Table 4.2), and furthermore, we

used only points of rm., local maximum as initial interior nodes (Case 3 in Table

4.2). Obviously, Case 1 and Case 3 are more expensive than Case 2 in the initial

triangulation process, since they require solving a system of high degree nonlinear

polynomial equations. The difference in CPU-time of initial triangulation between

Case 1 and Case 3 mainly results from the time cost spent in classifying the types of

rms, stationary points i.e., local maxima, saddle points or local minima. As far as

space cost or conciseness of the approximation i.e., number of triangles is concerned,

Case 3 shows the most optimal result for a loose approximation tolerance such as

10-1, which is not a surprising result, since Case 3 starts 6-improving triangulation

with those nodes at points of ,rms, local maxima. For tighter approximation tolerances

such as 10- 2, 10-3, our algorithm (Case 1) shows only slightly better results in terms

of the space cost.

Table 4.3 and Figures 4-39, 4-42 - 4-46 show the result of meshing corresponding

to the approximation tolerance e = 10- 1, 10- 2, 10- 3 and given AR-threshold TAR = 4

including computation of all the stationary points of Krms. If the approximation tol-

erance e is not sufficiently tight, most of time cost is spent on the initial triangulation

which includes construction of triangulation domains, boundary loop approximation

and computation of rms, stationary points. Time cost Cinit of the initial triangulation

is not sensitive to the change of e since the dominant procedures of Cint are the con-

struction of triangulation domains and computation of Irrms stationary points, which

are not affected by E. In general, as E becomes tighter, the time cost of 6-improving

triangulation becomes comparable and dominant with respect to Cinit. The other

procedures are relatively quick compared with the initial and 6-improving triangula-

tions.

Table 4.3 also shows the AR of the approximating triangles after AR-improving

triangulation. For a given AR-threshold TAR = 4, the number Nfail of approximating

triangles with AR > TAR is not more than than 1% of total number N of the approx-

imating triangles for each e. The Nfail triangles are regarded as not improvable, in

other words, those triangles meet a certain condition described in Eq. (4.70) which
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terminates the AR-improving process for such triangles. It is worthwhile to mention

again that the satisfactory average AR results from the coupled effects of the features

of Delaunay based Voronoi vertex point insertion algorithm, AR-improving procedure

in the planar domain of triangulation and preservation of triangles' shape during the

mapping process from the triangulation domain into the three-dimensional space.

Table 4.4 shows the dependency of AR-improving procedure upon the AR-threshold

TAR for a fixed approximation tolerance e = 10-2. As TAR becomes more ideal, Nfail

increases because, for a fixed e, the value of Tr described in Eq. (4.70) is invariant with

respect to TAR. Even if a smaller TAR slightly reduces the average aspect ratio ARavg,

it does not tend to reduce ARmax of the approximating triangles. Other examples also

have the similar tendency and for some examples, as TAR becomes more ideal, ARmax

even increases. From this empirical result, we can deduce that an AR-improving pro-

cedure with too ideal a TAR possibly causes a triangle of very unsatisfactory ARmax,

if the termination criterion value Tr is fixed. Furthermore, if an input surface patch

does not involve a high curvature region, then Tr evaluated by Eq. (4.70) has quite a

large value. This means that the termination condition becomes so strong that the

algorithm easily stops improving AR of badly-shaped triangles with r 2 > rr, where

r is a circumcircle radius of such badly-shaped triangles. A lot of surface patches

of our realistic engineering examples have such a curvature characteristic. Further

research is required on the termination condition of our AR-improving algorithm e.g.,

intelligently weakening the termination condition by introducing a weighting factor

to Eq. (4.70) as a function of AR of currently chosen worst triangle and number of

triangles, in order to balance the quality of triangles and the space cost. Table 4.4

also shows how many triangles NAR are generated in AR-improving procedures for

TAR = 3, 4 and 5.

We have performed the triangulation in rounded interval arithmetic (RIA) as well

as floating point arithmetic (FPA) - see Table 4.5. As far as the time cost is concerned,

RIA is 0(10) times more expensive than FPA. However, we need to keep in mind that

extremely important computations such as intersection test between the edges of an

approximately developed surface net, mappings between the triangulation domain and
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the parametric space, Delaunay test and self-intersection test of the approximating

triangles may result in system failure if the algorithm is operating purely in FPA,

even if the input surface patches are precisely defined. Such failures have not been

encountered in this example; however, we have experienced system failures in FPA

execution during the algorithm development for example, when mapping a node from

a triangulation domain onto the corresponding parametric space - this process is

executed extremely many times e.g., when computing the approximation errors. Due

to the imprecision of FPA, a node on the triangulation domain is mapped outside

the corresponding parametric space, if the system of equations (4.48), (4.49) is ill-

conditioned.

We also applied a uniform grid generation scheme based on the computation of

the maximum allowable edge length of a triangle on the parametric space, using the

maximum norms of the second partial derivatives of an input surface patch [32, 73, 84]

- see also Eq. (4.72). Since D 1, D2 and D 3 in Eq.'s (4.72) - (4.75) are 18, 18 and 6,

respectively, space cost for each e = 10-1, 10- 2 and 10- 3 is approximately 20 times

higher than our method - see also Table 4.3.

4.12.2 High Degree Surface

Our second example involves a Bezier surface patch of very high degrees - 9 by 9 in the

u, v parametric directions. The testing surface patch was supplied by Prof. J. Hoschek

of Technische Hochschule Darmstadt. The control points are given as follows:

( Moo Mol
M1 0 M1l
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where

(-0.1, 0, 0)
(-0.05, 0, 2)

Moo = (0, 0, 3.5)

(1, 0, 4.5)
(2.5, 0, 4.5)

(-0.1, 10, 0)

(-0.05, 10, 1.8)

Mo0 = (0, 10, 3)

(1, 10, 4)

(2.5, 10, 4)

(7.5, 0, 4.5)

(9, 0, 4.5)

M10 = (10, 0, 3.5)

(10, 0, 2)

(10, 0, 0)

(7.5, 10, 4)

(9, 10, 4)

M11= (10, 10, 3)

(10, 10, 1.8)

(10, 10, 0)

(-0.1, 3, 0)

(-0.05, 3, 2)

(0, 3, 3.5)

(1, 3, 4.5)

(2.5, 3, 4.5)

(-0.1, 11, 0)

(-0.05, 11, 1.5)

(0, 11, 2.5)

(1, 11, 3)

(2.5, 11, 3)

(7.5, 3, 4.5)

(9, 3, 4.5)

(10, 3, 3.5)

(10, 3, 2)

(10, 3, 0)

(7.5, 11, 3)

(9, 11, 3)

(10, 11, 2.5)

(10, 11, 1.5)

(10, 11, 0)

(-0.1, 5.5, 0)
(-0.05, 5.5, 2)
(0, 5.5, 3.5)
(1, 5.5, 4.5)

(2.5, 5.5, 4.5)

(-0.1, 12, 0)

(-0.05, 13, 0.8)

(0, 13, 1.4)

(1, 13, 1.6)

(2.5, 13, 1.6)

(7.5, 5.5, 4.5)

(9, 5.5, 4.5)

(10, 5.5, 3.5)

(10, 5.5, 2)

(10, 5.5, 0)

(7.5, 13, 1.6)

(9, 13, 1.6)

(10, 13, 1.4)

(10, 13, 0.8)

(10, 12, 0)

(-0.1, 7.5, 0)
(-0.05, 7.5, 2)
(0, 7.5, 3.5)
(1, 7.5, 4.5)

(2.5, 7.5, 4.5)

(-0.1, 13, 0)

(-0.05, 13, 0.4)

(0, 14, 0.7)

(1, 14, 0.8)

(2.5, 14, 0.8)

(7.5, 7.5, 4.5)

(9, 7.5, 4.5)

(10, 7.5, 3.5)

(10, 7.5, 2)

(10, 7.5, 0)

(7.5, 14, 0.8)

(9, 14, 0.8)

(10, 14, 0.7)

(10, 13, 0.4)

(10, 13, 0)

(-0.1, 8.5, 0)

(-0.05, 8.5, 2)

(0, 8.5, 3.5)

(1, 8.5, 4.5)

(2.5, 8.5, 4.5)

(-0.1, 14, 0)

(-0.05, 15, 0)

(0, 15, 0)

(1, 15, 0)

(2.5, 15, 0) /

(7.5, 8.5, 4.5)
(9, 8.5, 4.5)

(10, 8.5, 3.5)

(10, 8.5, 2)

(10, 8.5, 0)

(7.5, 15, 0)

(9, 15, 0)

(10, 15, 0)

(10, 15, 0)

(10, 14, 0)/

Tables 4.6 - 4.8 together with Figures 4-49 4-56 illustrate the performance

for the algorithm in this example. The present example as well as all subsequent

examples include the use of all the stationary points of K,,ms. Its global behavior is

consistent with the previous example except that the time cost spent in the initial

and 6-improving triangulations is relatively high. This is a natural result because the

time cost of the initial and 6-improving procedures highly depends on the degrees of
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input surface patches, as described in Sections 4.11.1 and 4.11.2 in detail.

We need to notice here that, for a degree 9 by 9 Bezier surface patch, the ap-

proximation error measure based on the polar forms is 218(= 262144) times more

expensive than our method as described in Section 4.3.3. Therefore, the time cost

-of 6-improving procedure is increased by about 218 times if the polar form based

method is used. In other words, the 6-improving triangulation operating in floating

point arithmetic (FPA) takes CPU-time on the order of years and tens of years for

E = 10-1, 10-2 and 10- 3 while our method requires CPU-time on the order of minutes

and hours, respectively. Time cost of the other procedures does not depend on the

degrees of input surface patches and hence, it is very low compared with the initial

and 6-improving triangulations.

4.12.3 Ship Hull

The next example is bottom and side panels of a ship hull which consists of 12 bi-

quartic (m = n = 4) Bdzier surface patches. Figure 4-57 shows the input composite

surface. This example was provided by Mr. D. Danmeier, a graduate student of the

Computational Hydrodynamics Group at the MIT Ocean Engineering Department.

We note that each input surface patch is noticeably stretched in the u-parametric

direction. This geometric feature motivates constructing a p x 1 surface net with

p = 7 for each surface patch to achieve our triangulation domain. If a surface patch of

degrees m, n has a length ratio in the uv-parametric directions not very different from

m : n, then we usually construct an m x n surface net to determine its triangulation

domain. This means we inevitably insert 2(m + n) nodes on the boundary of the

input surface patch, if it is not trimmed. Therefore, to construct a p x 1 surface net

of a noticeably stretched surface patch, an appropriate value for p is m + n- 1, which

is 7 for a bi-quartic surface patch.

Tables 4.9 - 4.11 together with Figures 4-57 - 4-67 illustrate the performance for

the ship hull example. Global behavior of the results is quite similar to the previous

examples.

Figures 4-61 and 4-62 illustrate the local adaptivity of the algorithm for a tight c.
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Figure 4-61 shows the absolute curvature distribution over the ship hull produced using

the Praxiteles system [1]. Relatively very high curvature region is marked by a red

color (dark color in this thesis printout). We can clearly see the dense triangulation

near the high curvature region in Figures 4-60 and 4-62.

4.12.4 Airfoil

We next consider an airfoil composed of 220 bi-cubic Bezier surface patches - 200

sub-patches forming the upper and lower planform surfaces and 20 sub-patches near

the trailing edge which connect the upper and lower surface patches. Prof. J. Peraire

of MIT provided the airfoil surface patches. Figure 4-68 shows the input composite

surface.

The ratio of length scales in the uv-parametric directions of each sub-patch forming

the main upper and lower surfaces is similar to the ratio of the span and cord length

of the foil. On the other hand, the sub-patches near the trailing edge are highly

stretched in the u-parametric direction. We applied the same technique as in the case

of ship hull example in the construction of triangulation domains for such noticeably

stretched sub-patches.

Tables 4.12 - 4.14 and Figures 4-68 - 4-80 show the results for the performance

of our algorithm. Comparing Tables 4.12 - 4.14 with Tables 4.9 - 4.11 respectively,

we can see a similar behavior in this example to the previous ones, except that N

is less sensitive to the approximation tolerance c, if it does not become sufficiently

tight e.g., e = 10- 3 . This is essentially caused by the fact that the number of input

sub-patches is large compared with the whole dimension of the foil and furthermore,

most sub-patches are very smooth in terms of curvature distribution.

Figures 4-74 and 4-75 show the meshes near the trailing edge for c = 10- 2, 10- 3

respectively. Those small triangles adjacent to the trailing edge in Figure 4-74 illus-

trates the procedure of node repositioning to the mid-point of the longest edge of a

currently chosen worst boundary triangle in 6-improving (AR-improving) procedure,

as described in Section 4.7.3 (4.7.4), respectively. When the node repositioning pro-

cedure reaches at some level, the algorithm can find an appropriate node inside the
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triangulation domain and perform the usual 6-improving (AR-improving) procedure,

as shown in Figure 4-75.

4.12.5 Utah Teapot

We have also implemented the method with a well-known example, the Utah teapot,

which consists of 32 bi-cubic Bezier surface patches. This example was originally

produced by Prof. M. Newell of University of Utah.

There are 4 main groups;

Group 1: body (12 sub-patches including 3 trimmed patches) and lip (4 sub-patches)

Group 2: knob (4 sub-patches) and lid (4 sub-patches)

Group 3: handle (4 sub-patches)

Group 4: spout (4 sub-patches)

The input geometry is shown in Figure 4-81.

We note that each group is completely defined in terms of the topological relation

between each sub-patch in a group; however, Group 1 and two other groups Group

3, Group 4 do not form a complete solid model because the trimming curves of

Group 3 and Group 4 corresponding to the three trimmed patches of Group 1 are

not explicitly available with the data - see also Figure 4-85. Furthermore, the lip and

lid touch each other and they are not connected, which is natural, considering the

utility of the lid; however, gaps between the lip and lid are unavoidable if the approxi-

mation tolerance is loose, as shown in Figure 4-86. For those reasons explained so far,

we perform the final triangulation i.e., the test of possible inappropriate intersections

for each group, separately.

Tables 4.15 - 4.17 together with Figures 4-81 - 4-90 show the results for the per-

formance of our algorithm. Its global behavior is consistent with the other examples,

described in the previous Sections.
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4.12.6 Stem with a Bulbous Bow

Figure 4-91 shows a part of a ship hull with a bulbous bow, which is composed of

294 bi-cubic Bezier surface patches, originally produced by Dr. Steffan Schalck of

Technical University of Denmark. The example has two main groups i.e., the part of

a bulbous bow (196 sub-patches) and the neighboring hull (98 sub-patches).

Tables 4.18 - 4.20 and the corresponding Figures 4-91 - 4-99 illustrate the perfor-

mance of our algorithm for this example. Since the number of input sub-patches is

sufficiently large - especially, near the relatively high curvature region - with respect

to the whole dimension of the input geometry, the number of approximating triangles

N is not so sensitive to the approximation tolerance E. Similar behavior was found

when approximating the airfoil example. Other than that, the global behavior of the

triangulation according to the changing of parameters follows what is explained in

Section 4.12.1 in detail.
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CPU (sec)
Init-A 6-A N

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
10- 1  20 2 26 0.7 1.1 1.4 32 26 21
10- 2  34 8 41 11 14 15 229 254 254
10-  1 38 12 48 204 222 223 2325 2364 2364

Table 4.2: Wave-like surface; dependency of time and space cost upon Krms stationary
points and f (see also Figures 4-38, 4-39 - 4-41)

CPU (sec)
e Init-A 6-A AR-A Fin-A Total N N x 100 (%) ARavg ARmax

10- 1  20 0.7 0 0.05 20.75 32 0 1.8 2.4
10- 2  34 11 0.33 0.73 46.06 239 1 2.0 4.8
10- 3 38 204 7 10 259 2356 0.1 1.8 4.4

Table 4.3: Wave-like surface; TAR = 4 (see also Figures 4-38, 4-39, 4-42 4-46)

TAR CPU (sec) NAR 1 x 100(%) ARavg ARmax
3 0.58 21 2 1.9 4.9
4 0.33 10 1 2.0 4.8
5 0.14 4 0 2.1 4.8

Table 4.4: Wave-like surface; AR-A, E = 10- 2 , N5 = 229 (see also Figures 4-42, 4-47,
4-48)

Table 4.5: Wave-like surface; e = 10-2, TAR = 4

CPU (sec)
Init-A 6-A AR-A Fin-A Total N

FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA
34 1076 11 251 0.33 3.11 0.73 14.2 46.06 1344.31 239 242

168



4.12 Examples

Figure 4-38: Wave-like surface; exact
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Figure 4-39: Wave-like surface; mesh with arms stationary points, e = 10-1 (see also
Tables 4.2, 4.3)
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Figure 4-40: Wave-like surface; mesh with t rms local maximum points, f = 10-1 (see
also Table 4.2)

- - I... I

Figure 4-41: Wave-like surface; mesh without Krms stationary points, E = 10- 1 (see
also Table 4.2)
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Figure 4-42: Wave-like surface; mesh with c = 10- 2, TAR
4.4)

= 4 (see also Tables 4.3,

Figure 4-43: Wave-like surface; mesh with e = 10- 3, TAR = 4 (see also Table 4.3)
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Figure 4-44: Wave-like surface; approximating surface with E = 10-1 , TAR = 4 (see
also Table 4.3)

Figure 4-45: Wave-like surface; approximating surface with e = 10- 2, TAR = 4 (see
also Table 4.3)
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Figure 4-46: Wave-like surface; approximating surface with = 10- 3 , TAR = 4 (see
also Table 4.3)
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Figure 4-47: Wave-like surface; mesh with e = 10- 2, TAR = 3 (see also Table 4.4)
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..- -•_·: -• _
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Figure 4-48: Wave-like surface; mesh with .. 10.2. -TR (see also Table 4.4)
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CPU (sec)
S Init-A 6-A AR-A Fin-A Total N N 'x 100 (%) ARavg ARmax

10- 1719 266 0.3 0.15 1985.45 69 1 2.3 4.1
10 -  1720 679 0.1 0.33 2399.43 132 0 1.9 3.5
10-  1724 3188 1.3 1.61 4914.91 594 0 1.8 3.7

Table 4.6: High degree surface; TAR = 4 (see also Figures 4-49 - 4-55)

TAR CPU (sec) NAR A-•ix100 (%) ARavg ARmax
3 0.2 6 1 1.8 3.1
4 0.1 0 0 1.9 3.5

Table 4.7: High degree surface; AR-A, e = 10- 2 ,
4-56)

N6 = 132 (see also Figures 4-51,

Table 4.8: High degree surface; C = 10- 2, TAR = 4

CPU (sec)
Init-A 6-A AR-A Fin-A Total N

FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA
1720 53761 679 8689 0.1 1.2 0.33 5.48 2399.43 62456.68 132 133
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Figure 4-49: High degree surface; exact

Figure 4-50: High degree surface; mesh with - = 101, TAR= 4 (see also Table 4.6)
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I - I -... . . , _ ", - •.. .. • .,

Figure 4-51: High degree surface; mesh with e 10-2 TAR = 4 (see also Tables 4.6,

4.7)
"-. " .' .'•l. . . .• • " . - . :
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Figure 4-51" High degree surface; mesh with • = 10-2, TAR = 4 (see also Tables 4.6,

4.7)

Nl.

Figure 4-52: High degree surface; mesh with c = 10- 3, TAR = 4 (see also Table 4.6)
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Figure 4-53: High degree surface; approximating surface with E = 10-1, TAR = 4 (see
also Table 4.6)

Figure 4-54: High degree surface; approximating surface with e = 10-2, TAR = 4 (see
also Table 4.6)
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Figure 4-55: High degree surface; approximating surface with E = 10-3, TAR = 4 (see
also Table 4.6)
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Figure 4-56: High degree surface; mesh with f = 10- 2, TAR = 3 (see also Table 4.7)
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Topologically Reliable Approximation of Composite Surfaces

CPU (sec)
e Init-A 6-A AR-A Fin-A Total N " X 100 (%) ARavg ARmax

10- 1  210 31 0.13 0.23 241.36 188 1 2.2 4.4
10-2 211 52 0.39 0.87 264.26 433 1 2.0 6.8
10- 216 518 38 11 783 4109 1 2.0 11.6

Table 4.9: Ship hull; TAR = 4 (see also Figures 4-57 - 4-65)

TAR CPU (sec) NAR h X 100 (%) ARavg ARmax
3 2.65 250 6 1.9 7.1
4 0.39 43 1 2.0 6.8
5 0.13 10 0 2.1 5.0

Table 4.10: Ship hull; AR-i, e = 10- 2 , N6 = 390 (see also Figures 4-59, 4-66, 4-67)

Table 4.11: Ship hull; E = 10- 2, TAR = 4

CPU (sec)
Init-A 6-A AR-A Fin-A Total N

FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA
211 6595 52 1506 0.39 4.31 0.87 13 264.26 8118 433 431
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Figure 4-57: Ship hull; exact

Figure 4-58: Ship hull; mesh with e = 10- 1, TAR = 4 (see also Table 4.9)
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Topologically Reliable Approximation of Composite Surfaces

Figure 4-59: Ship hull; mesh with e = 10-2, TAR = 4 (see also Tables 4.9, 4.10)

Figure 4-60: Ship hull; mesh with f = 10- 3, TAR = 4 (see also Figure 4-62 and Table
4.9)
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Figure 4-61: Ship hull; absolute curvature map

SI '

Figure 4-62 Ship hull; mesh with = 10-3, TAR = 4 (magnified)
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Topologically Reliable Approximation of Composite Surfaces

Figure 4-63: Ship hull; approximating surface with E = 10- 1 , TAR = 4 (see also Table
4.9)

Figure 4-64: Ship hull; approximating surface with e = 10- 2 , TAR = 4 (see also Table
4.9)
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Figure 4-65: Ship hull; approximating surface with f = 10-3 , TAR = 4 (see also Table
4.9)

Figure 4-66: Ship hull; mesh with E = 10-2, TAR = 3 (see also Table 4.10)
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Topologically Reliable Approximation of Composite Surfaces

Figure 4-67: Ship hull; mesh with E = 10-2, TAR = 5 (see also Table 4.10)
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CPU (sec)
S Init-A 6-A AR-A Fin-A Total N "a x100 (%) ARavg ARmax

10- 1  1508 78 4 21 1611 2574 3 2.6 5.7

10-  1510 80 5 22 1617 2760 2 2.6 8.3
10- 1515 387 33 78 2013 6800 2 2.1 7.7

Table 4.12: Airfoil; TAR = 4 (see also Figures 4-68 - 4-78)

TAR CPU (sec) NAR X 100 (%) ARav ARmax
3 9 1449 7 2.1 11.6
4 5 542 2 2.6 8.3
5 2 114 0.1 2.8 5.3

Table 4.13: Airfoil; AR-A, e = 10- 2 , N 6 = 2218 (see also Figures 4-70, 4-79, 4-80)

Table 4.14: Airfoil; E = 10- 2 , TAR = 4

CPU (sec)
Init-A 6-A AR-A Fin-A Total N

FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA
1510 38835 80 2059 5 49 22 349 1617 41292 2760 2761
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Figure 4-68: Airfoil; exact

Figure 4-69: Airfoil; mesh with E = 10-1, TAR -- 4 (see also Table 4.12)
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Figure 4-70: Airfoil; mesh with e = 10- 2, TAR = 4 (see also Tables 4.12, 4.13)

Figure 4-71: Airfoil; mesh with e = 10- 3, TAR = 4 (see also Table 4.12)



Topologically Reliable Approximation of Composite Surfaces

Figure 4-72: Airfoil; mesh near leading edge with f = 10- 2, TAR = 4

Figure 4-73: Airfoil; mesh near leading edge with E = 10- 3, TAR = 4

- - I I " 11- .... ... ... ..I ....... ..... ........... I I .......... .... ..... .... 1 11

190



4.12 Examples 191

Figure 4-74: Airfoil; mesh near trailing edge with E = 10- 2, TAR = 4

Figure 4-75: Airfoil; mesh near trailing edge with = 10- , TAR = 4

4.12 Examples
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Topologically Reliable Approximation of Composite Surfaces

Figure 4-76: Airfoil; approximating surface with E = 10- 1, TAR = 4 (see also Table
4.12)

Figure 4-77: Airfoil; approximating surface with e = 10- 2, TAR = 4 (see also Table
4.12)
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Figure 4-78:
4.12)

Airfoil; approximating surface with e = 10- 3, TAR = 4 (see also Table

Figure 4-79: Airfoil; mesh with e = 10-2, TAR = 3 (see also Table 4.13)
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Figure 4-80: Airfoil; mesh with e = 10-2, TAR = 5 (see also Table 4.13)
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Table 4.15: Teapot; TAR = 4 (see also Figures 4-81 - 4-88)

TAR CPU (sec) NAR NX x100(%) ARav ARmax
3 13 850 6 2.1 9.2
4 4 304 4 2.4 7.6
5 1 86 1 2.6 6.7

Table 4.16: Teapot; AR-A, E = 10- 2 , N3 = 1520 (see also Figures 4-83, 4-89, 4-90)

Table 4.17: Teapot; e = 10- 2, TAR = 4

CPU (sec)
e Init-A 6-A AR-A Fin-A Total N iI x 100 (%) ARavg ARmax

10-W 453 13 2 4 472 636 4 2.7 10.9
10-  457 57 4 15 533 1824 4 2.4 7.6
10-i 464 1613 320 139 2536 16109 4 2.2 11.8

CPU (sec)
Init-A 6-A AR-A Fin-A Total N

FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA
457 12187 57 721 4 53 15 249 533 13210 1824 1819
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Figure 4-81: Teapot; exact

Figure 4-82: Teapot; mesh with f = 10-1, TAR = 4 (see also Table 4.15)
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Figure 4-83: Teapot; mesh with 6 = 10- 2, TAR = 4 (see also Tables 4.15, 4.16)

Figure 4-84: Teapot; mesh with f = 10- 3, TAR = 4 (see also Table 4.15)

....... ... ... .
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Figure 4-85: Teapot; approximation near handle with E = 10-1, TAR = 4

Figure 4-86: Teapot; approximating surface with E = 10- 1 , TAR = 4 (see also Table
4.15)
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Figure 4-87: Teapot; approximating surface with f = 10- 2 , TAR = 4 (see also Table
4.15)

Figure 4-88: Teapot; approximating surface with c = 10- 3, TAR = 4 (see also Table
4.15)
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Figure 4-89: Teapot; mesh with E = 10-2, TAR = 3 (see also Table 4.16)

Figure 4-90: Teapot; mesh with f = 10- 2 , TAR = 5 (see also Table 4.16)
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CPU (sec)
E Init-A 6-A AR-A Fin-A Total N -N x 100 (%) ARavg ARmax

10-  609 42 4 12 667 1358 9 2.5 11.2

10-2 637 43 8 20 708 1827 3 2.4 6.9
10- 640 124 15 49 828 4386 2 2.2 9.7

Table 4.18: Stem; TAR = 4 (see also Figures 4-91 - 4-97)

TAR CPU (sec) NAR ' X100 (%) ARavg ARmax
3 14 1246 4 2.0 18.6
4 8 860 3 2.4 6.9
5 5 498 1 2.6 5.7

Table 4.19: Stem; AR-A, E = 10 - 2, N3 = 967 (see also Figures 4-93, 4-98, 4-99)

Table 4.20: Stem; E = 10- 2 , TAR = 4

CPU (sec)
Init-A &-A AR-A Fin-A Total N

FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA FPA RIA
637 15487 43 1281 8 114 20 387 708 17269 1827 1831
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Figure 4-91: Stem; exact

Figure 4-92: Stem; mesh with e = 10-1, TAR = 4 (see also Table 4.18)
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Figure 4-93: Stem; mesh with f = 10-2, TAR = 4 (see also Tables 4.18, 4.19)

Figure 4-94: Stem; mesh with ( = 10- 3, TAR = 4 (see also Table 4.18)
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Topologically Reliable Approximation of Composite Surfaces

Figure 4-95: Stem; approximating surface with E = 10- 1, TAR = 4 (see also Table
4.18)

Figure 4-96: Stem; approximating surface with f = 10- 2, TAR = 4 (see also Table
4.18)
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Figure 4-97: Stem; approximating surface with E - 10- 3 ,

4.18)
TAR = 4 (see also Table

Figure 4-98: Stem; mesh with e = 10- 2, TAR = 3 (see also Table 4.19)
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Topologically Reliable Approximation of Composite Surfaces

Figure 4-99: Stem; mesh with e = 10-2, TAR = 5 (see also Table 4.19)
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Chapter 5

Conclusions and Recommendations

We finally summarize the major results and contributions of this thesis and present

recommendations for future research.

5.1 Summary and Contributions

Development of piecewise linear approximation methods of high order polynomial

composite curves and trimmed composite surfaces, which include :

* Use of numerically robust interval geometric definitions and computations.

- The use of rounded interval arithmetic (RIA) prevents a possible system

failure which happens in the extremely important computations of the

approximation algorithm such as intersection test between the edges of

an approximately developed surface net, mappings between the triangula-

tion domain and the parametric space, Delaunay test and self-intersection

test of the approximating triangles. Especially, robust decision criteria of

Delaunay test relying on RIA, are presented to remove the possibility of

degenerate or non-conforming triangulations.

* Identification of various kinds of geometrically significant points.



- Equations and solution methodology are described to identify geometri-

cally significant points of polynomial curves and surfaces, which reflect

differential geometric features of the exact geometry and provide mean-

ingful initial approximations. For a loose approximation tolerance, a tri-

angulation with only points of hrm, local maxima as initial nodes shows

the most optimal result in terms of a space cost compared with the result

without using the stationary points of ,rms or the result by including all

the stationary points of Krms. For a tight approximation tolerance, slightly

less number of triangles are generated in case of all the stationary points of

Krms being included as initial nodes; however, the difference in space cost

is not so sensitive to the existence of stationary points of K;rms as initial

nodes.

* An efficient and adaptive approximation method to satisfy the prescribed geo-

metric tolerance.

- An adaptive unstructured meshing algorithm, which employs a convex

hull method to compute a tight upper bound of the approximation error,

is developed. An efficient method is proposed to compute such an upper

bound of the approximation error between an arbitrarily oriented triangu-

lar sub-Bezier patch on the exact tensor product Bezier surface and the

corresponding approximating triangle. Compared with an existing polar

form based method, our method is 2P times more efficient in terms of time

cost, where p is the sum of degrees of a given tensor product Bezier surface

in each parametric direction.

* A surface meshing algorithm which generates triangles with an acceptable aspect

ratio (AR) in three-dimensional space.

- A method is presented to construct a two dimensional domain of triangu-

lation which sufficiently preserves the shape of triangular elements when

mapped into the three-dimensional space.

__
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- An algorithm is proposed to improve the AR of badly-shaped triangles.

* An efficient method to identify and remove the possible inappropriate intersec-

tions of the approximating elements, ensuring the existence of a homeomorphism

between the approximating elements and the actual nonlinear curves and sur-

faces.

5.2 Future Research

For topics of future research, we recommend:

* Development of a topologically reliable approximation algorithm for (smooth)

simple space curves which guarantees the existence of a space homeomorphism

between the curves and the corresponding approximant. More specifically, let C

be a (smooth) simple space curve and C its piecewise linear approximant that

is homeomorphic to C. Then, as Figure 5-1 shows, it may happen that knots

can be created (or undone) in the curve C, that is, it is quite possible that the

two curves C and C might not have the same knot type. The reason for this

is that even though there exists a homeomorphism f : C -+ C, they are not

space homeomorphic; in other words, there does not exist a homeomorphism

h : '3 -+ R3 which carries C onto C, see [64].

To overcome the above, one may construct a nonsingular pipe surface, (also

called a tubular neighborhood of C), Pc(r), for a suitable positive number r,

whose spine curve is C, see [61]. Then if the approximant curve C is so con-

structed that

- C lies entirely inside Pc(r), and

- C has the same orientation as C,

then it can be shown that C and C are space homeomorphic via an orienta-

tion preserving homeomorphism h, and thus they have the same knot type,

(P. Sakkalis, Private Communication, 1997).
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(a) exact curve and its approx-
imant with knots

(b) exact curve and its space
homeomorphic approximation

Figure 5-1: A composite unknotted space curve and its approximations
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* Extension of the topologically reliable piecewise linear approximation method

of high order integral Bezier curves to :

- Topologically reliable piecewise linear approximation of high order rational

Bezier or NURBS curves.

- Topologically reliable piecewise lower order non-linear approximation of

high order integral Bezier, rational Bezier or NURBS curves.

* Incorporation of medial axis transform (MAT) into the early stage of surface

tessellation algorithm, which provides feature recognition such as identification

of symmetries, constrictions and local length scales.

* Modification of AR-improving procedure in the surface meshing algorithm in

order to achieve better termination criteria e.g., intelligently weakening the ter-

mination condition by introducing a weighting factor to Eq. (4.70) as a function

of AR of currently chosen worst triangle and number of triangles, in order to

balance the quality of triangles and the space cost.

* Extension of the topologically reliable piecewise linear approximation method

of high order trimmed polynomial Bezier surface patches to :

- Topologically reliable piecewise linear approximation of high order trimmed

rational Bezier or NURBS surface patches.

- Topologically reliable piecewise lower order non-linear approximation of

high order trimmed integral Bezier, rational Bezier or NURBS surface

patches.

- Topologically reliable adaptive tetrahedral meshes of a B-rep solid.
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