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ABSTRACT. Given a regular closed curve « in the plane, a ¢-isoptic of « is a locus of points from
which pairs of tangent lines to « span a fixed angle ¢. If, in addition, the chord that connects
the two points delimiting the visibility angle is of constant length ¢, then « is said to be (¢, £)-
isochordal viewed. Some properties of these curves have been studied, yet their full classification is
not known. We approach the problem in an inverse manner, namely that we consider a ¢-isoptic
curve ¢ as an input and construct a curve whose ¢-isoptic is ¢. We provide thus a sufficient condition
that constitutes a partial solution to the inverse isoptic problem. In the process, we also study a
relation of isoptics to multihedgehogs. Moreover, we formulate conditions on the behavior of the
visibility lines so as their envelope is a (¢, £)-isochordal-viewed curve with a prescribed ¢-isoptic c.
Our results are constructive and offer a tool to easily generate this type of curves. In particular,
we show examples of (¢, £)-isochordal-viewed curves whose ¢-isoptic is not circular. Finally, we
prove that these curves allow the motion of a regular polygon whose vertices lie along the (¢, £)-
isochordal-viewed curve.

1. INTRODUCTION

Free-form planar curves possessing a tangential contact with a straight line appear in many
applied disciplines, probably the most apposite example being in cam mechanisms [20]. Cam
mechanisms can be found in various machines, for example as part of dwells, aircraft drift meters,
or engine components, where the curve-line and/or curve-curve entity serves as an actuator-follower
pair that, for example, converts a rotational motion to a translation.

There are various cam mechanisms, the one most relevant to our research is probably the double-
disk cam with two rigidly connected followers, see Figure[l| There are two radial disks, non-circular
planar curves, fixed rigidly together, being in a tangential contact with a flat-faced fork-like follower.
Such a mechanism is used e.g. to convert a uniform speed rotation into a back-and-forth swing
motion with a non-uniform speed. The geometric ground for such a mechanism is an isoptic curve
that spans a fixed angle with a pair of 2D curves.

We start first with the mathematical background for an isoptic of a single curve. Given an angle
¢ €10, 7], a ¢-isoptic of a planar curve « is defined as a locus of intersection points of two distinct

Key words and phrases. Isoptic curve, Isochordal-viewed curve, Multihedgehog, Inverse isoptic problem, Regular
polygon, Cam mechanism.
This is a preprint of an article published in Journal of Computational and Applied Mathematics. The final
authenticated version is available online at: https://doi.org/10.1016/j.cam.2023.115432.
1


https://doi.org/10.1016/j.cam.2023.115432

2 DAVID ROCHERA AND MICHAEL BARTON

’ Cam disk No. 2‘

‘ Cam disk No. 1

FIGURE 1. Double-disk cam mechanism with an oscillating flat-faced follower. The
two curved cam disks are fixed together and rotate around a common rotation center
O. The follower touches tangentially the cam disks, converting the rotational motion
to a back-and-forth swing. Purely geometrically, this problem leads to a motion of
a fixed angle structure along two planar curves.

tangent lines to « that span the given constant angle ¢, see Figure 2l We refer the interested reader
to [3, [, [7] and references therein for an introduction and relevant research on isoptics theory.

FIGURE 2. A ¢-isoptic ¢ to a curve a.

The parametric construction of a ¢-isoptic of o implicitly assumes the existence of a homeomor-
phism f such that a(t) and a(f(t)) are the contact points of a where two tangent lines to o meet
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at an angle ¢. This homeomorphism is called the Holditch function for the parameterization « and
the angle ¢ and its consideration assumes that no retrograde movements are done by the moving
chord that joins both contact points, see [I7] for more details.

Given a closed curve «, the homeomorphism f is not unique in general and its choice would
lead to different curves which can be seen all as ¢-isoptics of a. If « is regular and convex, there
are only two of such homeomorphisms, which correspond to the angles ¢ and m — ¢ and they also
correspond to the angle between the tangent vectors to a at the contact points.

For general non-convex closed curves (not necessarily simple, with or without cusps), each choice
of these homeomorphisms will correspond to a value ¢ or m— ¢ up to a multiple of 7 and, in general,
it would lead to different curves that serve as a ¢-isoptic.

Notice that from the definition of a ¢-isoptic, we are only imposing that the pair of tangent
lines to a make a constant angle ¢, not that the tangent vectors to « that define these lines span
an angle ¢. In fact, once a homeomorphism f has been chosen, the angle between tangents could
change and be either ¢ or m — ¢ for different parameter values for curves with cusps (see [17]).

If the curve « is parameterized by a support function, the allowed homeomorphisms f are just
translations by the angles ¢ or m — ¢ up to a multiple of 7 and, thus, isoptics can be easily
computed. In the case of other parameterizations, one can formulate the problem algebraically
and look for the intersection point of the two tangents, see e.g. Prop. 2.1 of [17]. This typically
leads to an underconstrained problem with two variables (parameters t; and t3) and one constraint
(the two tangent lines at a(t1) and a(t2) spanning the given angle ¢). For polynomial or piecewise
polynomial curves, one can compute numerically the intersection points using solvers, see e.g. [2],
which generically leads to a one-parameter family of solutions (a curve).

If, in addition, the chord that connects the two contact points delimiting the visibility angle is of
constant length ¢, then « is said to be (¢, £)-isochordal viewed. We refer the reader for more details
and further properties of these curves to [0, 17, 18, [19]. Requiring the distance between the contact
points to be of constant length, i.e., Ha(tl) — oz(tg)H = /, however, makes the problem difficult.
Looking at the problem from the perspective of systems of non-linear equations, it leads to a well-
constrained 2 x 2 problem with two variables (curve parameters ¢1 and t2) and two constraints (fixed
angle and fixed length). Well-constrained problems have, generically, only finitely many solutions
which would correspond only to finite positions of a pair lines meeting the (¢, £)-isochordal viewed
property, not a motion (infinitely many solutions of the 2 x 2 system). Therefore the property
of being (¢, ¢)-isochordal viewed requires some special behavior of the curve a that cannot be
arbitrary. Interestingly enough, there exist cases where the solution set is one-parametric, and our
work offers a constructive tool to generate these curves from a given isoptic c.

The inverse isoptic problem has been studied by several authors before, see e.g. [12] and [9] 11,
10, 13} ] for related research. In [12], it is proved that if two convex bodies By and Bs have a
common isoptic for the same angle ¢ € ]0, 7| such that 1 — % is irrational or rational with even
numerator in its lowest terms, then B; = Bs. The reader can find a brief introduction to some

inverse problems on isoptics in pages 15-17 of [5].
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Wunderlich, who made great contributions to the isoptics and their applications in machine
theory (see e.g. [22] 25]), refers to the inverse construction as a “difficult problem” in [24] and he
himself found partial results for the particular case in which the isoptic is a circle [21], 23] or an
ellipse [24].

In this paper, we tackle the inverse isoptic problem from a kinematic perspective. The main
contributions are:

A method to construct curves and, in particular, isochordal-viewed curves with a given
regular closed isoptic.

The answer to an open question whether there exist isochordal-viewed curves whose isoptic
is a curve different from a circle.

A proof that, in case of bounded and differentiable curves, the constructed curves with a
prescribed regular closed isoptic are multihedgehogs.

A proof that a regular polygon is allowed to move with its vertices lying on the constructed
isochordal-viewed curves.

The rest of the paper is organized as follows. Section [2| generalizes the isoptics to a pair of curves
and explains the direct construction. In Section[3]an inverse isoptic construction is discussed. First,
the construction of a pair of curves with a given isoptic is provided (Theorem and it is shown that
these curves are multihedgehogs (Corollary . Then, a sufficient condition for the construction of
a single curve with a given isoptic is obtained (Theorem . In Section [4| the isochordal condition
is set and Theorem [3| provides a constructive tool to construct isochordal-viewed mates. Section
yields a method to construct isochordal-viewed curves (Theorem . Section |§| shows that the
constructed isochordal-viewed curves admit motions of regular polygons (Theorem [5)) and, finally,
Section [7] draws some conclusions and discusses a few directions for future research.

2. ISOPTICS TO A PAIR OF CURVES

We start our analysis by considering a pair of curves («, 3) that are viewed from a given curve ¢
under a constant angle. In [16], a definition of an isoptic to a pair of nested strictly convex curves
is given. We now extend this definition to any pair of curves, not necessarily nested nor convex.

Definition 1. Let ¢ € ]0,7[ and let o and 8 be two planar piecewise-regular curves. A ¢-isoptic
of the pair («, ) is defined as a curve consisting of points through which a supporting line of «
and a supporting line of 5 pass making an angle of ¢.

The terminology of supporting line comes from the fact that both o and 8 are envelopes of a
family of these lines. At regular points of « or 8 such supporting lines are, of course, tangent lines.
Notice that even for nested convex curves the definition of isoptic above is not unique [16].

Let a and 8 be two piecewise-regular curves. If t, and tg are the tangent vectors to a and 3
(where they can be defined), respectively, then a ¢-isoptic ¢ of the pair (a, ) can be parameterized
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in two ways as follows:
c(t) = alt) + Ai(t) ta(t),
= B(t) + A2 (t) 5(2),
where A1 (t) and A2(t) are signed distances from « or 3, respectively, to the ¢-isoptic ¢ (see Figure|3)).

FIGURE 3. A ¢-isoptic ¢ of a pair of curves (a, ) and the definition of the signed
distance functions A1 and \s.

Immediately from the extension of the definition of an isoptic to a pair of curves, the correspond-
ing generalization for the concept of an isochordal-viewed curve is also possible.

Definition 2. Let ¢ € ]0,7[ and let @ and 8 be two planar piecewise-regular curves. The pair
(a, B) is said to be a (¢, £)-isochordal-viewed mate if a ¢-isoptic ¢ of («, B) is such that the chord

joining the contact points with « and S of their supporting lines meeting at ¢ has constant length
L.

If B is another parameterization of the curve «, i.e. § = a o f, for some homeomorphism f,
then notice that the definition of a (¢, £)-isochordal-viewed mate («a, 3) is reduced to the known
definition of a (¢, £)-isochordal-viewed curve.

Observe that Definition [I| corresponds exactly to a double-disk cam mechanism with a flat-faced
follower, such as the one shown in Figure However, the definition does not require convexity.
Definition [2| is a bit more restrictive because the distance between the contact points on the flat-
faced follower is required to be constant for the entire motion.

3. INVERSE CONSTRUCTION OF ISOPTICS
In this section we address the inverse isoptic problem and describe a method to compute a curve
whose isoptic is a given regular curve.

Let ¢ € ]0,7[ and let ¢ : I — R? be a closed regular planar curve, where I is some interval. We
aim to construct a pair of curves a and f such that ¢ is a ¢-isoptic of (o, 8). Let {t.,n.} be a
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moving orthonormal frame associated with ¢, where t. and n. are the tangent and normal vectors,
respectively, of ¢. Denote further by k. the curvature function of ¢. From the kinematic point
of view, the construction of isoptics is determined by the smooth motion of a pair of secant lines
(crossing at the isoptic curve) that form an angle ¢, in such a way that the curves a and 3 are the
envelopes of these two families of supporting lines, see Figure

FIGURE 4. Inverse construction of ¢-isoptics. Left: one time instant of a pair of
lines spanning a fixed angle ¢. Right: a 2D motion of a pair of lines (the intersection
point moves along c) creates a pair of envelopes « and /.

Each secant line can be described by a corresponding directional vector field. Let v(t) be a unit
vector in the direction of the supporting line to (t), and analogously w(t) to 3(t), Figure [dHeft.
Let (t) be an oriented angle function from n.(¢) to v(t). The signed distance from c(t) to a(t) is
defined by a function A;(¢) and the signed distance from c(t) to 5(t) by a function Ag(t).

We have that
(1) a(t) = c(t) + M (t) v(?),
where
v(t) = cosy(t) n.(t) — siny(t) te(t).

That is, o depends on the given curve ¢ and two functions A; and . Similarly,
(2) B(t) = c(t) + A2(t) w(t),

where

w(t) = Rot(—¢)v(t) = COS((b — fy(t)) n.(t) + Siﬂ(d) — ’y(t)) te(t).

The curve S depends on the given curve ¢, the angle ¢ and on two functions Ao and . However,
note that the functions A, Ay and v are not independent; they are bind by the fact that ~(¢)
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controls the instantaneous rotation of the pair of lines and, consequently the distance between the
contact point, a(t) or B(t), and c(t). This is stated in the next result.

Theorem 1. Let ¢ €10, 7[ and let ¢ : I — R? be a single-traced closed regular C3-curve, where I is
some interval. Any pair of C'-curves (a, ) given by and (@ with ¢ as its ¢-isoptic is defined
through the signed distance functions A1 and Ao given by

el
@ U 0] PRORT R
and
() aot) = —— WO o6,

le@)]] ret) (1)
where they are defined, and where v is an m|I|-periodic (up to a multiple of 27 ) C?-function, for
some m € Z\ {0}.

Proof. First of all, we must impose that v(¢) is, indeed, parallel to &/(¢), i.e., parallel to
o (t) =)+ N(t)v(t) + () V(2).
Since ||v(t)|| = 1, this happens if and only if (¢/(t), v/(t)) = 0, that is to say,
(d(t)+ @) V'(t), V() =0.

This is,

(5) (), V(1)) + ||V O] M (#) = 0.

It is straightforward to compute

(6) V/(t) = V(t) (= cosy(t) te(t) — siny(t) n.(t)),
where

V(t) = || ()] ke(t) +' (D),
which is such that V (¢)? = Hv’(t)HZ. Thus, from @) we have
<c'(t), v’(t)> = —Hc’(t)” V(t) cos~(t)
and, hence, (5)) turns into
V()2 (t) = Hc’(t)H V(t) cosy(t).
Therefore, if V(t) # 0, we conclude that

which is the expression of the statement.
A similar discussion can be done for w(t), which must be parallel to
B(t) = (t) + No(t) w(t) + Xa(t) W' (2).

This happens if and only if
('(t) + X2 (t) W'(t), W'(t)) =0,
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that is,
(7) (1), (1)) + W ()] * a(t) = 0.
We have that
w'(t) = Rot(—¢) v'(t) = Rot(—¢) V(t) (— cos y(t) te(t) — siny(t) nc(t))
=V (#) (= cos(6 = (1)) te(t) + sin(6 — 1(1)) ne(t)).
Thus,

<c’(t), w'(t)> = —Hc’(t)H V(t) cos(d) — 'y(t)).
Therefore, if V(t) # 0, from (7)) we deduce

Ao(t) = I cos (¢ — (1)),

which leads to the expression (4]).

Finally, notice that since c is |I|-periodic (c is closed) and ~ is m|I|-periodic (up to a multiple
of 27), then the distance functions A\; and Ay are m|I|-periodic and so the curves a and 8 are also
m|I|-periodic. In addition, note that any differentiation we have performed makes sense because «
and /3 are C'. O

Remark 1. Notice that in Theorem [1| the angle function + is assumed to be m|I|-periodic (up to
a multiple of 27) for some m € Z \ {0}. This means that

V(E+mlI]) —~(t) =2k,

for some k € Z. The geometric interpretation of the two integers k and m is as follows. In general,
the isoptic curve ¢ could be traced twice, thrice, etc. when the moving chord travels along the
curves « and . This means that if ¢ is |I|-periodic and single-traced, then the curves o and
may be, in general, m/|I|-periodic, for some m € Z \ {0}. Further, notice that the integer m is not
necessarily the minimum integer that makes o and 3 closed (see Example [1| below). Regarding the
integer k, it simply indicates how many total revolutions (counted with sign) the pair of crossing
lines have performed during the motion.

As an example, consider
) =2+ Lt 4 singe)
= — 4 = sin
Y D) )

which satisfies (¢t + 47) — y(t) = 2, so that v is 4w-periodic up to 27. See a plot in Figure

Remark 2. If ¢ is arc-length parameterized, i.e. Hc’ (t)H = 1, then the expressions and from

Theorem [I] turn into .
M) = ————— t
1() PO cos (1)

and

Ao(t) = M cos(¢ — (1)),
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FIGURE 5. A plot of y(t) = Z + 1t +sin(t), which is 4m-periodic up to 2.

respectively. Moreover, a choice y(t) = 0 for all ¢t € I yields

a(t) = c(t) + n.(t),

re(t)

which is the well-known expression of the evolute of c.
Example 1. Let c: [0,27] — R? be the ellipse
c(t) = (3cost, 2sint).

With Theorem |If we can construct infinitely many pairs of curves (a, 3) such that their ¢-isoptic
is ¢, for some ¢ € |0,7[. This is achieved by choosing a 27wm-periodic (up to a multiple of 27)
function ~, for some m € Z \ {0}, so that the distance functions A\; and Ay are determined by

and .

See in Figure |§| some examples of (a, B) for different choices for a 2m-periodic function - and the
angle ¢. Notice that for each choice of an angle function -, the curve « is fully determined, and so
is B, linked with « via the constant angle ¢.

Let us illustrate another example taking the angle function

T 1

t)=—4-t

which satisfies

y(t+4m) —v(t) = 27.
This function is not periodic, but it is 2wrm-periodic up to 27, for m = 2. See in Figure [7] the
resulting pair of curves («a, ) given by Theorem [1|in this case.

In this example, the curves (a, 8) are 2m-periodic, which shows that m = 2 is not the minimum
integer that makes (a, 3) closed curves. The fact that («, 3) are closed is related to returning the
isoptic chord to its initial position after the motion of the pair of secant lines. However, it can
happen (as in this case) that (¢t + 27) — y(t) = 7 (i.e. the pair of secant lines returns to its initial
position but with reverse orientation) and the signed distance functions satisfy A1 (t)+A;(t4+27) =0
and A2(t) + A2(t 4+ 27) = 0, which implies that their sign “compensates” the reverse orientation.
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FIGURE 6. Three pairs of curves («, 8) constructed from a single elliptical ¢-isoptic
c. The design parameters are the constant angle ¢ and the 7(t) function. From
left to right: ~(t) = 2% + %sin(i’)t), ¢ =7 t) = 5§+ %sin(t), ¢ = %; and

3
(1) = &5+ sin(t), ¢ = 5.

FIGURE 7. Left: a pair of curves (a, ) constructed from its ¢-isoptic ¢, where
¢ = 5. Right: 15 discrete positions of the pair of lines (dashed).

Remark 3. If the denominators of and @ vanish for some value of ¢, then although the same
construction of Theorem (1|is possible at any other point, it would lead to pairs of curves («, ) that
go to infinity. For example, consider a 27-periodic function v(¢) = 1 — 2 sin(t), which corresponds
to the fact that the term
[/ (®)]| #e(t) +'(2)

has two real roots in [0,27]. The pair of curves (a, ) results with asymptotes, see Figure
However, this behavior cannot happen if the isochordal condition is also set because in such a case
|/ (®)|| ke(t) + 4/ (t) # 0 for all t € I (in order to have a finite chord length, as a consequence of
Theorem (3 below).
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FIGURE 8. Left: a pair of curves (a, ) that go to infinity and such that ¢ is its
¢-isoptic, for ¢ = 7. Right: plot of the function Hc’(t)H ke(t) +9/(t), which has two
Zeros.

Given m € N, an m-hedgehog (or, generically, a multihedgehog) is the envelope of a family of
supporting lines
xcost+ysint = h(t),
where h: R — R is a 2rm-periodic function called support function [14, [15].

An m-hedgehog has exactly m cooriented supporting lines with a given normal vector (counted
with their multiplicity). Convex curves are singularity-free hedgehogs (that is, 1-hedgehogs). The
next result states that the curves that we construct are actually multihedgehogs.

Corollary 1. Let ¢ € ]0,7[, £ > 0 and let ¢ : I — R? be a single-traced closed regular C3-curve,
where I is some interval. If (o, B) is a pair of Ct-curves given by and (@ with ¢ as its ¢p-isoptic,
then a and B are multihedgehogs.

Proof. The supporting lines to « are described by the vectors
v(t) = cosy(t) n.(t) — siny(t) te(t).
Notice that we can write
v(t) = (—sinu(t), cosu(t)),
where
u(t) = () + 0e(t),
with 6. being the counterclockwise oriented angle from a fixed direction to the tangent vector of c.
Similarly, the supporting lines to 3 are described by

w(t) = (—sinu(t), cosu(t)),
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with
u(t) =(t) — ¢+ 0e(t).

To show that a and 8 are multihedgehogs, it is enough to prove that u(t) and u(t) are strictly

monotone. Now,
u'(t) = ' (t) = () + || (1) || we(t)-

Since a and 3 are C! and closed (they do not go to infinity), by Theorem |I| we have that ~/(¢) +
|/ (#)|| Ke(t) has no zeros (see also Remark . Therefore, u(t) and u(t) are strictly monotone and
thus a and 8 are multihedgehogs. (|

The following theorem provides a sufficient condition on the function + in order to ensure that
the curves o and [ describe the same curve.

Theorem 2. Let ¢ € 10,7 and let ¢ : I — R? be a single-traced closed regular C3-curve, where I is
some interval. Let (o, B) be Cl-curves defined by and (@ with well-defined distance functions
A1 and Ao given by and (4}) for some m|I|-periodic (up to a multiple of 2 ) C?-function -y, where
m e Z\ {0}. If

(8) ¢ —(t) = —(t +k|I]) +mm,
for some k € 7. \ {0} and m € Z, then the parameterizations  and 3 describe the same curve. In
such a case m # —1,1.
Proof. Let a = |I|. We have that
alt+ka)=ct+ka)+\(t+ka)v(t+ka).

Since ¢ is a-periodic, we know that c(t + k a) = c(t). Moreover, ¢'(t + ka)=c(t) and ke(t+ka) =
Ke(t). Also, the assumption (8) implies 7/(t + ka) = +/(¢). Thus,

~ _ Hcl(t)H COS’y(t—i—];'a)

_ @) (—1)™cos(y(t) — @) = (—1)™ Xa(2).

a) = n.(t), we have

—
=
2
o
&
&
o
B
Z.
=
@)
D
+
o
—~
~
+
F
2
I
o+
o
=
&
=
o
=
S~— o
—~
o~
+
T

v(t+ ka) = cosy(t + ka) ne(t) — siny(t + k a) to(t)
t)) ne(t) + sin(¢ — y(¢)) tc(t)>

3
(@)
o
wn

-

|
=

Therefore, we can conclude
alt 4+ ka) = c(t) + Xa(t) w(t) = B(t).
It is only left to prove that m # +1. If m = +1, we have that the angle function satisfies
V(t£a)—~(t) =2km,
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for some k € Z. Therefore, that
—¢+inm =yt +ka) —~(t)
implies that ¢ is a multiple of 7, which cannot happen as ¢ € ]0, x| d

Remark 4. Notice that there are single-traced curves whose isoptics are single-traced as well. In
these cases, m = +1, which shows that the condition of Theorem [2]is sufficient but not necessary.

Example 2. Theorem [2| provides a way to construct a curve o whose ¢-isoptic is a given curve c.
Let c: [0,27] — R? be the ellipse from Example |1, which is 27-periodic. Consider
T
) ==+ -.
1) =5+
This function + is 8w-periodic up to 2w, that is,

~y(t + 81) — v(t) = 2.

Thus, in this example m = 4. Moreover,
T

y(t+2m) —~(t) = 5 €10, x].

Thus, choosing k=1,m=1and ¢ = 5, we have that the curve a given by and the expression
of Theorem |[I| has ¢ as its §-isoptic. The endpoints of the isoptic chord are given by «(t) and
a(t 4+ 2m). See the resulting curve in Figure @ In this case, the ellipse is double-traced as the

isoptic chord goes back to its initial position.

FIGURE 9. A curve a with the ellipse ¢ as its F-isoptic.

Following similar ideas, many other examples of curves having the ellipse ¢ as its ¢-isoptic can
be given. See a few examples in Figures[10] and [[1} In particular, observe the impact of the initial
value of v at t = 0 on the final shape of « in Figure

A remarkable example is provided if
t
~y(t) = 1" 3tan(t)
as the curve a presents an infinite number of singularities while having the ellipse c as its §-isoptic
(see Figure . Notice that here v is piecewise-C? and that « is indeterminate at two points (for

t=17and t = 3T).
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FIGURE 12. A curve « with an infinite number of singularities with the ellipse ¢ as
its S-isoptic.
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4. INVERSE CONSTRUCTION OF ISOCHORDAL-VIEWED MATES

Now we want («, 3) to be, in addition, a (¢, £)-isochordal-viewed mate. In this case, the function
~v is also determined (except for some free parameters) as we show in the following result.

Theorem 3. Let ¢ € ]0,7[, £ > 0 and let ¢ : I — R? be a single-traced closed reqular C3-curve,
where I is some interval. Any (¢, )-isochordal-viewed mate (a, 3) given by and (@ with ¢ as
its ¢-isoptic is determined by well-defined distance functions A1 and g as in (@ and and an
m|I|-periodic (up to 2km) C*-function

21 (k+mn)
9 t) =k ———————>5.(t) — 0.(1),
) ) = b+ 2 ()~ 0u(t)

where k1 € R, m € Z\ {0}, k € Z, with k+mmn # 0, L(c) is the length of ¢, n is the rotation index
of ¢, s¢ is the arc-length parameter of ¢ and 0. is the counterclockwise oriented angle from a fized
direction to the tangent vector of ¢, and with
L(c)
27

m
k+mn

sin ¢.

Proof. By Theorem [l| we have that any pair (a, ) with the conditions on \; and A9 have ¢ as its
¢-isoptic. We must impose now the isochordal condition, which is that

18(t) = a(®)]] = ¢
is constant. By the cosine rule (recall Figure [4) we have that
0% = N3(t) + N2(t) — 2 A1 (t) Aa(t) cos &

If we put in this equation the expressions of A\;(¢) and A2(t) given by and and simplify it,
we get

(10) ? = B*(t)sin® ¢,

where

" P L) 0]
V) (@] relt) + v (1)

which is an equation that relates ¢, ¢, ¢ and the function +. From it, since ¢ and ¢ are constant,
then B(t) must be constant too (and not zero). Write this constant as 1/ko, where kg € R\ {0}.

From , we have
V(1) = ko || @)]| = we(®) | (1)
Integrating this expression:

v(t) = k1 + ko /ianHc’(s)H ds — /in“nc(s) Hc’(s)H ds,

for any k1 € R. Now, recall that 6.(t) satisfies
0c(t) = [|c'(1)]] e(t)
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Hence, we can write

v(t) = k1 + ko sc(t) — 0.(1),
where s, is the arc-length parameter of c.

Let a = |I| € R. Notice that v must be m a-periodic (up to a multiple of 27) for some m € Z\ {0},

that is,

vt +ma)—~(t) =2km,
where k € Z. This will determine the value of k3. We have

Yt +ma)=ki+kosc(t+ma)—0.(t+ma),
V(t) = k1 + ko Sc(t) - ec(t)'

Therefore,

(12) ko (sc(t +ma) — se(t)) — (6e(t + ma) — 6c(t)) =2k

Since ||¢/(t)|| is a-periodic, we see that

t+ma t ma
Se(t+ma) — sq(t) = / Hc’(s)” ds —/ IHC'(S)H ds = /0 HC'(S)H ds =m L(c),

in in

where L(c) is the length of ¢. Now, if n is the rotation index of ¢, then

Oc(t+ma) —6.(t) =27 mn.

Thus, from Equation ,
2 k+mn

L) m
where k + mmn # 0 (this is a consequence of being A; well defined or, equivalently, being ko # 0).
The expression for the length ¢ comes from Equation , which implies

ko =

14

= ——sin ¢.
kol ¢

Notice that k1 = y(inf I), so that the free parameter kj represents the initial angle of the angle
function ~(t). O

Example 3. Consider the same ellipse ¢ as in Example [I| In this case we have
6

nelt) = (9 sin?(t) + 400s2(t))3/2 .

Define

0u(t) = /0 () ¢'(5)]| ds = arctan(2cos(t), 3sin(t)) + 2n M - VJ

T 27
which is defined continuously on the whole R.

The arc-length parameter of c is

s.(t) = /(:Hc'(s)H ds = /Ot \/981112(8) + 4 cos?(s) ds,
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which is an elliptic integral. The length of ¢ is given by
L(c) = sc(2m) =~ 15.8654.

By Theorem [3] the angle function v must be of the form

27 (k+mn)
——————=5.(t) — 0.t
E(C) m SC( ) C( )’
where n =1, for any k1 € R, k € Z and m € Z \ {0}.
Thus, fixed an angle ¢ and two integers k and m, we have a 1-parameter family of pairs of curves
(c, B) that have c as its ¢-isoptic. See in Figure some examples of isochordal-viewed mates with
c as their ¢-isoptic.

v(t) = k1 +

FIGURE 13. Some pairs of (¢, ¢)-isochordal-viewed mates («, 5) with ¢ as their ¢-
isoptic. For a fixed angle ¢ = 5, k = 0 and m = 1, we have chosen k1 = 0, k1 = %
and k; = 2, respectively.

The impact of the integer parameters k and m on the shape of the isochordal-viewed mates is
shown in Figure

k=1,m=2 k=-1,m=2

FIGURE 14. Some pairs of (¢, £)-isochordal-viewed mates («, 5) with ¢ as their ¢-
isoptic for different choices of k and m. Here, k; = 2.
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5. INVERSE CONSTRUCTION OF ISOCHORDAL-VIEWED CURVES

We are now reaching one of our main results, namely, how to construct isochordal-viewed curves
from a given isoptic. In the following theorem we write the expression of these curves in a con-
structive manner.

Theorem 4. Let £ > 0 and let ¢ : I — R? be a single-traced closed reqular C3-curve with rotation
index n, where I is some interval. For any k1 € R and k,m € Z \ {0} such that k +mn # 0, let
Qkm be the curve parameterized by

kn(t) = et + 5P 053 (1) (o057 () (6 — s 1) :(0).
where L(c) is the length of ¢ and
300 =+ ZEEEMI) ) o0,

L(c)m
with s. being the arc-length parameter of ¢ and 0. the counterclockwise oriented angle from a fized
direction to the tangent vector of c.

If i € Z and k,k,m € Z\ {0} are such that
~ k
(13) p=mnm—2n1k— €]0,7],
m

with k +mmn # 0, then the curve oy, is (¢, £)-isochordal viewed with ¢ as its ¢-isoptic and with a
chord length
L(c)

_27T

m
k4+mn

sin ¢.

Proof. We have that c is a-periodic, where a = |I|. Therefore, for any k € Z, we have
c(t+ka) = c(t).
From the proof of Theorem [3| and with the same notation, recall that
a(t) = c(t) + A (t) v(1),
B(t) = c(t) + Xo(t) w(t),

where

M) = 5 T cosa ),

Aao(t) = m cos(¢ — (1)),
and

v(t) = cosy(£) ne(t) — sin (1) (1),
wi(t) = cos(é — 7(t)) ne(t) + sin (6 — (1)) te(t):
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If we have k € Z \ {0} and 7 € Z such that
¢ —7(t) = —y(t + ka) +mm,
then we will have ot + ka) = (t), as seen in Theorem [2, and we will finish.
Now, by Theorem [3] notice that
- 27 (k+mn) - -
t+ka)—y(t) ="t
A+ ) =) = 2

Since Hc’(t)H is a-periodic, we have

se(t +ka) —se(t) =k L(c).
Also, B }
Oc.(t +ka)—0.(t) =27kn,
where n is the rotation index of ¢. Therefore,
t+ka) —(t) =2k —
Y+ k) =) =27k
so that we must demand that L
p=mr—21k— €)0,7,
m

which is the expression of ¢ of the statement.

(sc(t+ka) —sc(t)) — (0c(t + ka) — 6c(t)).

19

0

Example 4. Let us use Theorem [4] to construct some examples of isochordal-viewed curves whose
isoptic is prescribed. The results for the ellipse are shown in Figure Observe that there are no
convexity constraints in Theorem [4] for the isoptic curve c¢. In Figure [I6 we construct some other
examples taking as an isoptic curve c a curve of constant width, a symmetric non-convex curve and

a trifolium (non-simple) curve.

FIGURE 15. Some examples of (¢, ¢)-isochordal-viewed curves with an elliptic ¢-
isoptic, for the angles ¢ = 5 or ¢ = § and k; = %.
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k=-5m=4 k=-T,m=4

FIGURE 16. Some examples of (¢, ¢)-isochordal-viewed curves for three different
isoptic curves: a curve of constant width, a symmetric non-convex curve and a
trifolium (non-simple) curve.

Remark 5. By construction, if ay ,, is the curve defined in Theorem F_IL we can check that
(1) = (D).

This means that one of the two integers, k or m, without loss of generality can be supposed to be
a natural number. For example, we can consider m € N and k € Z\ {0}. Notice that k # 0 implies
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that we cannot generate isochordal-viewed curves with 7 being just 2mm-periodic (it must be up
to a multiple of 2m).

In practice, when we use Theorem [] to construct curves we have just two free parameters,
which are the integers k and m. Once these parameters are chosen, the curve ay ,, will lead to a
(¢, ¢)-isochordal-viewed curve if there exist k and 7 such that the condition on ¢ is fulfilled
(independently of the choice of the prescribed isoptic ¢). Further, notice that this condition can
be fulfilled for different k and m. As an example, if &k = —1 and m = 8, we get that ay,, is
(¢, £)-isochordal viewed for ¢ = 7 (with k=1 and m = 0) and also for ¢ = 5 (with k =2 and
m = 0), see Figure

FIGURE 17. A (¢, {)-isochordal-viewed curve o whose ¢-isoptic is an ellipse, both
for the angles ¢ = 7 and ¢ = 7.

Notice also that once admissible free parameters k and m are chosen, we actually get a 1-
parametric family of isochordal-viewed curves oy, ,, dependent on a parameter k1 € R.
Example 5. Let us consider now the case of a circular isoptic
c(t) = (cost,sint).

The (¢, £)-isochordal-viewed curves that we will construct are multihedgehogs (Corollary and the
complete classification of (¢, £)-isochordal-viewed multihedgehogs with circular ¢-isoptics is already
known [19]. Therefore, the examples that we can construct with our method shall be contained in
the known explicit classification. See in Figure [I§] some examples of these curves using Theorem [4

7
\» > /‘\
\. <
k=-1,m=3 k=-3,m=8 k=-3m=4

F1cure 18. Examples of (¢, £)-isochordal-viewed curves with a circular isoptic.
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6. REGULAR POLYGONS ON ISOCHORDAL-VIEWED CURVES

For (¢, ¢)-isochordal-viewed hedgehogs of constant ¢-width (i.e., with a circular ¢-isoptic), a
smooth motion of some regular polygons whose vertices moved along the curves was shown in [I§].
In the given proof of this fact, the hypothesis of having a circular ¢-isoptic was used to prove that
the polygon was equiangular. Later, in [I9] a generalized version to multihedgehogs of constant
¢-width was given. Now, we address a natural question on what happens for general isochordal-
viewed curves, not necessarily having circular isoptics. We prove below that the isochordal-viewed
curves constructed by our method (Theorem [4]) also satisfy this property.

Theorem 5. Under the hypothesis of Theorem if ged(k,m) = 1, then there exists N € N, N > 2,
such that a regqular polygon of N sides of length ¢ is allowed to move with its vertices always lying
on the isochordal-viewed curve o y,.

Proof. Denote @ = a, , and a = |I]. Since a is (¢, £)-isochordal viewed, the polyline I'(¢) formed
by joining the points «(t), a(t + ka), a(t + 2k a), etc. has side length ¢.

We want to find a natural number N such that ot + N ka) = a(t). We know that
v(t+ka) =~(t) — ¢+,

Therefore, for any N € N, we get
(14) Y(t+Nka)=~(t) —No+ Nimm,
by applying N times the identity above.

For any N € N, since ¢(t + N ka) = ¢(t) and using , from the expression of o we deduce

ot + Nka) — alt)
L(c)m

= ok tmn) sin(No) (— sin(N¢ — 2(t)) ne(t) + cos(No — 2(t)) tc(t)),

(
Notice that a(t+ N ka) = «(t) if and only if sin(N¢) = 0, which happens if and only if there exists
r € Z such that ¢ = m 5. This trivially holds from the expression

-k n—2kk
(ﬁ:ﬁwr—QWk—:Wimm
m m

by taking N :==mand r :=mm—2k k. Notice that this N is not necessarily the minimum natural
number that closes the polyline I'(¢), but its existence ensures that I'(¢) is closed. Notice that
N =# 1 because otherwise the chord length ¢ would be zero.

It is only left to prove that F(tz is equiangular. Without loss of generality, we can check that the
angle between the vectors a(t + ka) — «(t) and a(t — ka) — «(t) is constant.

With the same computations performed above, we have that

alt +ka) — aft) = ££ (— sin(¢ — 27(t)) ne(t) + cos(6 — 27(t)) tc(t)>
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and
alt —ka) —aft) = 74 (sin(qs + 27(t)) ne(t) + cos(¢p + 27(t)) tc(t)>.

The two possible signs of the expressions above is because of the absolute value in
L(c)

_27r

m
k+mn

sin ¢.

Hence,
%2 (a(t + k) — a(t) alt — ka) — alt)) = Feos(26),

which means that the angle is either 2 ¢ or m — 2 ¢ up to a multiple of 7. In any case, constant in
all the vertices of T'(t), which proves that I'(¢) is a regular polygon. O

Example 6. Although the regular polygon of Theorem [5| can be degenerated if N = 2, this is
not always the case. See in Figure [19|some examples of (¢, £)-isochordal-viewed curves constructed
with Theorem [4] together with a regular polygon of N sides that can slide along the curve.

N=5

FIGURE 19. Some (¢, ¢)-isochordal-viewed curves with a non-symmetric curve as
their ¢-isoptic, for some values of the free parameters k and m. The motion of a
regular polygon of N > 2 sides along the curve is possible.
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A frame-by-frame visualization of the motion of one of these regular polygons over an isochordal-
viewed curve can be find in Figure [20]

FIGURE 20. Some positions of the motion of a triangle over an isochordal-viewed
curve with an elliptic isoptic.

7. CONCLUSIONS

We have studied the inverse isoptic problem and have provided a constructive method to generate
curves whose ¢-isoptic is a given curve ¢. We have incorporated the constant chord length ¢
constraint to our construction to generate also (¢, £)-isochordal-viewed curves with a given ¢-isoptic
c¢. This constructive approach positively answers the open question if there exist isochordal-viewed
curves that are not of constant ¢-width (that is, whose ¢-isoptic is not circular). We have also
studied kinematic motions of a regular polygon along the isochordal-viewed curves generated by our
method and have proved that a circular isoptic is not a necessary condition to have this property.

There are a few questions that remained unanswered, namely if our construction generates all
(¢, £)-isochordal-viewed curves, i.e., if it is a necessary condition, not just sufficient. Notice that
Theorem [2| provides a sufficient condition that is not necessary (Remark , however this could
be different if the isochordal condition is set. In fact, we must point out that we have not found
any example of a (¢, /)-isochordal-viewed multihedgehog with a circular isoptic that cannot be
generated with our construction as well.

Another related open problem is to answer if there exists any convex isochordal-viewed curve
other than the circle (see partial results towards this conjecture in [6] and [I]). The results of this
paper may be interesting to address this conjecture as well.
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